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A Markov model for the performance of wind turbines is developed that accounts for
component reliability and the effect of wind speed and turbine capacity on component
reliability. The model is calibrated to the observed performance of offshore turbines in
the north of Europe, and uses wind records obtained from the coast of the state of Maine
in the northeast United States in simulation. Simulation results indicate availability of
0.91, with mean residence time in the operating state that is nearly exponential and has a
mean of 42 days. Using a power curve typical for a 2.5 MW turbine, the capacity factor
is found to be beta distributed and highly non-Gaussian. Noticeable seasonal variation in
turbine and farm performance metrics are observed and result from seasonal fluctuations
in the characteristics of the wind record. The input parameters to the Markov model, as
defined in this paper, are limited to those for which field data are available for calibra-
tion. Nevertheless, the framework of the model is readily adaptable to include, for exam-
ple: site specific conditions; turbine details;, wake induced loading effects; component
redundancies; and dependencies. An on-off model is introduced as an approximation to
the stochastic process describing the operating state of a wind turbine, and from this on-
off process an Ornstein-Uhlenbeck (O-U) process is developed as a model for the avail-
ability of a wind farm. The O-U model agrees well with Monte Carlo (MC) simulation of
the Markov model and is accepted as a valid approximation. Using the O-U model in
design and management of large wind farms will be advantageous because it can provide
statistics of wind farm performance without resort to intensive large scale MC simulation.

[DOI: 10.1115/1.4004273]

Keywords: wind energy, reliability, Markov chain, availability, wind farm

1 Introduction

Rapidly increasing emphasis on wind as an energy source is
being accompanied by growth in the size of individual turbines
and the number of turbines included in industrial scale farms. The
development of offshore wind energy resources is also being
emphasized both to exploit the tremendous potential of the off-
shore wind resource and mitigate the impact of large scale wind
farm development on human populations [1]. Growth in turbine
and wind farm size and the possibility of offshore installations
substantially increase the capital investment required to develop
wind generating stations, and in the case of offshore wind farms,
the operating costs. The offshore environment also introduces
many more sources of uncertainty to the performance of a wind
farm such as the loads generated by the sea and the difficulty of
access for repair and maintenance. These factors motivate the
need for probabilistically based assessments of the performance of
large scale wind farms.

This paper describes an approach that can deliver assessments
of the probability distribution of wind turbine and wind farm per-
formance metrics such as availability, the length of operating and
down periods, and power generation. The model, as described,
accepts many different kinds of input parameters, yet the set of
input parameters has been limited to those which can be calibrated
to available field observations. Without any theoretical adjust-
ments, however, the model could be adapted to include site spe-
cific conditions, turbine specifics, wake induced structural
loading, and component redundancy and dependency. Two
approaches are described, one based on the direct Monte Carlo
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simulation of a Markov model for wind turbine and farm perform-
ance, and one based on analytical treatment of a stochastic process
describing performance that can be derived if certain simplifying
assumptions are made. The accuracy of the more efficient simpli-
fied model, which is based on an Ornstein—Uhlenbeck process, is
evaluated with respect to the Monte Carlo simulations. The MC
simulation model begins with performance models for the me-
chanical components of a turbine, and, assuming series linking of
the components, develops models for turbine performance. The
component performance models are calibrated to data that
describes the actual, in-service, performance of an ensemble of
wind turbines off the northern coast of Europe [2], and the input
wind speed model, which partially defines the component per-
formance and the power generation process, is calibrated to
observed wind speeds off the coast of Maine over a 20 yr period
[3]. Although there is a geographic mismatch between the calibra-
tion of the component performance models and the wind speed
model, the component performance models are assumed to be typ-
ical for industrial scale turbines, and the offshore Maine site is a
likely location for future consideration of offshore wind generat-
ing installations. The approximate model directly models the
operating state of a large scale wind farm without the need to sim-
ulate the performance of each individual turbine.

Previous efforts at probabilistic evaluation of wind turbine and
farm performance have focused either on collection of perform-
ance data from the field or performance modeling and simulation.
Although most performance data are considered proprietary, the
German “250 MW Wind” test program has made a database of
observed turbine reliabilities publicly available [2]. Data mining
of this database has revealed a strong negative correlation
between turbine reliability and turbine size [4], and between reli-
ability and wind speed [5]. Field observations have also been used
to develop predictive models for turbine reliability [6]. One
critical evaluation of reliability models has shown that average
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in-service turbine availability is 0.93 [7], somewhat lower than
projections made from models [8].

Much of the probability-based modeling of turbine performance
accomplished thus far has focused on the effect of turbine design,
for example, direct drive versus geared drive, on reliability [9], or
the probabilistic determination of design loads based on the sto-
chastic wind and sea models [10—-13]. A small number of studies
have applied the methods of system reliability to the modeling of
wind farm performance, incorporating wake effects on the fatigue
life [14] or using the direct Monte Carlo simulation of Markov
models to evaluate availability and power generation [8,15]. One
study has explicitly addressed the role of reliability analysis in
scheduling inspection of offshore turbines [16].

This study builds directly upon previous simulation-based [8]
and analytical [17] approaches to evaluating the reliability of
wind turbines or similar systems, and makes the following novel
contributions:

1. The component reliabilities depend on wind speed in a way
supported by field observations,

2. The turbine reliabilities are derived directly from component
reliabilities that are calibrated to observations,

3. A stochastic process model for the availability of wind farms
is found to agree well with simulation results.

The paper also contains the description of the wind turbine and
wind farm models along with a description of the MC simulation
procedure, the simplified analytical model for turbine perform-
ance, and a numerical example in which the performance of a re-
alistic model wind farm is evaluated by MC simulation and the
simplified method and the accuracy of the simplified method is
evaluated.

2 Markov Model for Turbine and Farm Performance

The Markov wind farm performance model described here inte-
grates performance at the component, turbine, and farm scales.
Beginning at the component scale, it is assumed that each compo-
nent of the wind turbine can be in one of two states, the on state or
the off state, represented by 1 and 0, respectively. The state of
component / in turbine j can be represented as a continuous time
stochastic process C; (1), or as a series of time-indexed random
variables C;;, representing the state of component i during time
interval [#,_1,7r) . The component state processes are at this point
assumed to be stochastically independent.

The time intervals are defined as a partitioning 0 =1 <
<o <oy <t <o <t of the reference time interval [0,7)
where #; — t;_ = At = t/k for k = 1,2, ..., k. The state of turbine
J in time interval [#;_1.f;) is denoted by M, can take the values O
and 1 if the turbine is off or on, and depends on the component
states according to

M; :Hcij,k (€Y}
i1

where 7, is the number of components considered in the wind tur-
bine model and the components are in series, so that the turbine is
in an off state in a given time interval if a single component is in
an off state during that time interval. The model can be modified
to incorporate either interdependency of the component reliabil-
ities or redundancy of the components. If interdependence of the
component reliabilities were to be included, motivated either by
data indicating such interdependence or a plausible physical
mechanism for such interdependence, the turbine state would be
defined by a series of n,. dimensional random vectors. Appropriate
definition of the transition probabilities could account for the fact
that failure of one component may influence the likelihood of
other components to fail. The drawback of this approach is that
the resulting matrix of transition probabilities becomes very large
(at least n.x n.) making calibration potentially unwieldy. To
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introduce component redundancy would require modifying
Eq. (1) such that each C;;, would represent a group of redundant
components. This random variable would indicate failure only
when all of the redundant components failed. The turbine model
would essentially become a series of parallel subsystems, where
the parallel subsystems include the component redundancy.

In modeling the state of a wind farm composed of n,, turbines,
the state of each turbine can be tracked in the series of n,, -dimen-
sional random vectors F;, which have components [F];=M;
such that each component of F; tracks the state of an individual
turbine. If only the fraction of turbines in the on state is desired,
the availability, then the wind farm state can be represented by the
fraction of turbines in the on state

1 N

Fi=—
My

M, 2)
=

Our model for wind turbine and farm performance depends on
the wind speed process in two ways. First, the component reliabil-
ities depend on wind speed, capturing the effect that component
and turbine failures occur more frequently when the wind speed is
high, and second, power generation depends directly on the wind
speed through the turbine’s characteristic power curve. We
neglect explicit treatment of wake effects, directionality, and spa-
tial variability of the wind speed at this point, so that the stochas-
tic process V(t) defines the wind speed at all turbines in the farm.
In the numerical example presented later in the paper wake losses
will be approximated by a wake loss factor of 0.9 [18]. The effect
of wakes on the structural loads acting on turbines, and therefore
on the reliabilities, is not explicitly included in the model, yet
such wake effects are present implicitly in the turbine reliability
data used to calibrate the model since such turbines were them-
selves installed in wind farms. Referring to the partitioned time
index, V= (V(1), tr_y <t < 1 is the average wind speed in the
interval [ty_1,%), k= 1,2,...,k. We further divide the range of
observed wind speeds into m intervals [v,_i, v,),q =1,2,...,q,
where 0 = vy < v << V1 <V =00.

We assume that at t=t¢,, the beginning of the reference time
interval, all components are in the on state, that is, C;;; =1 for
alli=1,2,...,n.and j=1,2,...,n,, Residence times in the on state
are assumed to be exponential so that P(C;jr—1=1NC;;,=1)
=Pirig=exp(—/i1;4A) and P(C;jr1=0 N Cijx=0)=pioiq
=1—pi1,g Where pyy;, and pyo;, are transition probabilities
and /, ; , is the expected residence time in the on state of compo-
nent i of turbine j when V; € (v, — 1, v,). Residence times in the
off state, which represent the time required for repair, are
assumed to be deterministic and independent of wind speed in
our model, and are denoted by ro; = 4, !. We note that if the
wind speed remains steady within a specified interval [v,_;.v,)
then the residence times in the on state are exponential with av-
erage /11_11 ,» but that the residence times in the on state are not in
general exponential because of the dependence of failure rate on
wind speed. We note that, although preventive maintenance is
not explicitly included in the model, it is included implicitly
through the calibration data on component reliabilities, which
reflect whatever preventive maintenance was performed on the
monitored turbines. The operation and maintenance model
assumed here is one in which turbine repair begins immediately
following a component failure and in which the repair period is
deterministic. In the absence of suitable calibration data, we
have not treated more complicated and realistic O&M strategies
in which, for example, preventive maintenance occurs, repair of
multiple turbines is schedule simultaneously, repair times are
stochastic, or turbine access is limited by weather conditions.

The model for wind turbine and wind farm state provides the
foundation for the modeling of wind farm performance in terms of
power generation. For a turbine, the power curve P(v) gives the
electrical power generated as a function of the wind speed. The
power curve is characteristic of a particular turbine design and
features lower and upper cutoff wind speeds Vjgwer and Vypper Such
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Fig. 1 (a) Wind speed time history for one typical year. (b) Histogram of wind speeds with

statistics.

that P(v) =0 if v < Vjgwer OF ¥ > Vypper- Below the lower cutoff
the wind speed is insufficient to efficiently generate electricity and
above the upper cutoff the turbine is shut down to avoid damage.
We assume that the wind farm comprises turbines with identical
power curves, so that the power generated by each turbine can be
expressed as the random sequence P; =M, x P(V}) and the total
power generated by the wind farm is Py = wz;ﬁl P where w
< 1.0 is a wake loss factor meant to approximate the effect of
wake losses on overall wind farm energy production.

A Monte Carlo approach, in which o, indicates an element of
the sample space, to evaluating wind turbine and wind farm per-
formance based on this Markov model is:

1. Calculate, either from an observed or simulated wind speed re-
cord, the average wind speed sequence {V;,k = 1,2,...,k},
and assign numerical values to the mean failure rates
)vl7l'7q.i = 1,2, ey Ny g = 172, ,q

2. Generate samples {C;ji(w,), r=1,2,...,F} of state
sequence for each component i = 1,2, ..., n. of each turbine
j=12,...,n, during each time interval [f_1,%),
k=1,2,... k.

N

3. Calculate the turbine state sequences {M;y(w,) =[],
Cip(w)}, j=1,2,... ny and k = 1,2, ...,k from the com-
ponent state sequences.

. Calculate the corresponding power output sequences for
each turbine {P; (»,)} and {P(w,)}, k = 1,2, ...,k includ-
ing, if desired, the wake loss factor to reduce overall power
production.

The resulting samples of {M;}, {F}, {P;«}, and {P;} can be
used to estimate various statistics describing the turbine and farm
state and power generation process. For example, we may esti-
mate the distribution of the residence time in the on and off states
for a turbine and compare them with the exponential distribution.
We emphasize here that the main purpose of this paper is to
describe a probabilistic modeling framework that spans from the
component scale to the wind farm scale. Our implementation has
necessarily been limited by the data available for calibration, and
the model can be extended in straightforward ways to include
many of the complexities of real win turbines and farms.

2.1 Numerical Example. In this section we present a numer-
ical example to illustrate the application of the models described
in the previous sections, to give an indication of realistic statistics
of wind turbine and farm performance, and to provide data for the
quantitative comparison of the Markov and simplified models.

2.1.1 Wind Speed Characteristics. The wind speed process
that partially drives wind farm performance is modeled on a re-
cord captured at station MISM1 of the US National Oceanic and
Atmospheric Administration located on Matinicus Rock, 10 miles
off the coast of the State of Maine in the Northeast United States
[19]. The record consists of 20 consecutive years of wind speed
data, with day 1 being January 1, 1985, measured 32.7 m above
mean sea level. The record contains hourly average wind speeds.

Journal of Solar Energy Engineering

Figure 1 shows a typical year of the wind speed record from which
the non-Gaussianity, positive skewness, and non-stationarity of the
process can be observed. Specifically, wind speeds are generally
higher in the winter and spring (days 325-140) than in the summer
and fall (days 140-325).

2.1.2 Wind Farm Characteristics. The example wind farm
we consider consists of 2.5 MW wind turbines that are assumed to
be placed in the near offshore environment off the coast of the
State of Maine in the far northeastern part of the United States.
We assume that 100 of these turbines are arranged on a regular
grid with spacing of 500 m, and that the deterministic wake loss
factor is w=0.9. We calibrate the failure rates 4, , to data pro-
vided by the German 250 MW monitoring campaign [2], which
tracked reliability of the components listed in Table 1. We note
that the number of components tracked is relatively small, and
that the total number of components in a turbine can be much
larger. Because of the structure of our model an arbitrary number
of components can be included without theoretical changes to the
model. Simulation times should not increase substantially, since
simulation amounts to little more than the generation of calibrated
random variables.

The data from the German 250 MW monitoring campaign has
been reduced to the component reliabilities summarized in Table 2
in terms of the failure frequency and the mean time between failure
(MTBF). It is interesting to note that most components have MTBF
of greater than 1 year, but none, with the possible exception of the
drive train (12), are greater than the expected service lifetime of a
wind turbine. The reliabilities summarized in Table 2 represent sta-
tistics aggregated over approximately 1200 turbines with generating
capacities ranging from below 500 KW to greater than 1 MW.
Since it has been shown that reliability depends on both wind tur-
bine generating capacity [4] and wind speed [5], we adjust the reli-
abilities to account for these dependencies.

The published data on the dependency of component reliability
on turbine size groups turbines into three size categories, those

Table1 Wind turbine components included in reliability model

Component number Component

Electrical system
Electronic control
Sensors
Hydraulic system
Yaw system
Rotor blades
Mechanical brake
Rotor hub
Gearbox
Generator
Supporting structure/housing
Drive train

O 00O\ BN =
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Table 2 Wind turbine component reliabilities

Component 1 2 3 4 5 6 7 8 9 10 11 12

MTBEF (years) 1.9 2.5 42 4.4 5.6 5.9 7.8 9.4 10.3 11.2 11.5 19.5

Failure freq. (1/years) 0.53 0.40 0.24 0.23 0.18 0.17 0.13 0.11 0.097 0.090 0.087 0.051
Table 3 Wind turbine component reliabilities for turbines with greater than 1 MW capacity

Component 1 2 3 4 5 6 7 8 9 10 11 12

MTBEF (years) 0.59 0.80 1.3 1.4 1.7 1.8 24 2.9 33 35 3.6 6.2

Failure freq. (1/years) 1.7 1.2 0.75 0.71 0.56 0.53 0.40 0.33 0.30 0.28 0.27 0.16

with generating capacities less than 500 KW, between 500 and
1000 KW, and greater than 1000 KW. Let n,,,, r=1,2,3 denote
the number of turbines in the monitoring group with capacity in
the intervals [0, 500), [500, 1000), and [1000, co), respectively,
with all capacities expressed in kilowatts, and let /4, ;. denote the
failure rate of component i for turbines in capacity class r , and
irrespective of wind speed as indicated by the - in place of the
wind speed index ¢. The failure rate of components in capacity
class 3 is given by

)»1,[,.,1’1,,,,.

C1lm1 + Colp2 + N3

3)

;Ll,i,-,S =

where 4, ;.. represents the aggregate failure rate for all wind tur-
bines in the monitoring group, n,,. is the total number of turbines
in the monitoring group, and ¢, and ¢, are constants. By interpret-
ing the published data [4], the values of the parameters in the
above expression are, approximately, 7,,;= 1000, n,,,= 180,
Ny, 3=20, ¢;=0.275, and ¢, =0.475. Note that the monitoring
group is dominated by small capacity turbines, so these estimates
of capacity dependent reliabilities have high uncertainty associ-
ated with them. Nevertheless, these represent the only measure-
ments of capacity dependent reliability of which we are aware,
and so we use the adjustment for large turbines to calibrate our
reliability model. The capacity adjusted reliabilities are given in
Table 3 and show that increasing turbine generating capacity can
substantially lower reliability.

Our model for wind farm performance includes dependency of
the component reliabilities on wind speed. The German 250 MW
program [2] reports the frequency of failures conditional upon the
daily average wind speed, and the distribution of daily average
wind speeds over the same reference time period. We divide the
domain of possible wind speeds into three intervals by v9=0,
v1=3, v,=11, and v4=00, all in meters per second, and note

that the peak daily average wind speed in the reference time pe-
riod is 17 m/s. From the previous paragraphs, 4,3 is the failure
frequency for component i of a wind turbine with generating
capacity greater than 1 MW when the wind speed is in the interval
(vg—1.vg). Let p,,, denote the probability that the average daily
wind speed falls in the interval (v,_;,v,) and p..; . is the probabil-
ity that a failure of component i occurred when the wind speed
was in interval [v,_;,v,). The wind speed adjusted failure fre-
quencies are then Ay ;3= /A1.3Pc q/Pwgq The failure frequen-
cies A1, 43 therefore represent the rate of failure of component i
when the wind speed is in interval [v,_;,v,), and for turbines with
generating capacity greater than 1 MW. Since this example only
considers turbines with capacity greater than 1 MW, we drop the
final index from the reliabilities, adopting the notation A,;,=/
1.i,q.3- These reliabilities are given in Table 4. Note that there is a
significant sensitivity to wind speed, with failure frequency increas-
ing by more than a factor of three. In general, structural loads on
variable pitch and speed wind turbines are known not to scale
monotonically with wind speed, but rather to peak at or near the
rated wind speed of 10—15 m/s. In our windspeed dependent model
for wind turbine reliability, the high windspeed category includes
the rated speed of the turbine, which is why the reliabilities
decrease with increasing windspeed. Our choice of the windspeed
categories was limited by the form of the calibration data available.

The repair times r(; are assumed to be deterministic and inde-
pendent of wind speed and are given in Table 5.

In addition to availability, our model is intended to characterize
the random sequences {P;;} and {P;} representing the power
generation from each turbine and the wind farm, respectively. In
this example we use a power curve P(v) representative of a 2.5
MW turbine suitable for offshore deployment. The power curve is
obtained by linear scaling of the power curve for a General Elec-
tric 1.5 MW pitch controlled turbine (Fig. 2), which has lower cut-
off of 3 m/s, reaches peak production at 14 m/s, and has an upper
cutoff of 25 m/s.

Table 4 Wind turbine component reliabilities for turbines with greater than 1 MW capacity at low, medium, and high windspeed

Component 1 2 3 4 5 6 7 8 9 10 11 12

/1.1 Failure frequency (low wind) 0.83 0.62 0.37 0.35 0.27 0.26 0.20 0.16 0.15 0.14 0.13 0.08

/1.4 Failure frequency (med wind) 2.00 1.49 0.89 0.85 0.66 0.63 0.48 0.40 0.36 0.33 0.32 0.19

A1.i3 Failure frequency (high wind) 3.00 2.23 1.34 1.28 1.00 0.94 0.72 0.60 0.54 0.50 0.49 0.28
Table 5 Wind turbine component repair times

Component 1 2 3 4 5 6 7 8 9 10 11 12

Repair time 1.8 23 1.8 1.4 33 5.1 33 4.4 7.9 9.3 4.1 7.1

(days)

041006-4 / Vol. 133, NOVEMBER 2011
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Fig. 2 GE 2.5 MW turbine power curve and histogram of wind
speeds

2.1.3 MC Simulation Results. This section contains the
results of Monte Carlo simulation of the Markov model for wind
turbine and farm performance and contains comments on the
results of the simulations including distributions of performance
metrics such as availability and power generation. We simulate
the performance of 100 turbines subject to the same 19 yr wind re-
cord, but with different turbine state series {M;} generated by in-
dependent simulation of turbine component failures. The
simulation, therefore, provides a 19 yr record of the performance
of a single, 100 turbine wind farm. Assuming that each year of the
wind record is statistically representative of conditions at the ob-
servation site, that each year of wind data is independent of the
others, and that the wind and turbine/farm performance processes
are ergodic, this simulation is equivalent to 19 independent trials
of a single year of wind turbine and farm performance.

2.1.3.1 Single turbine performance. Figure 3 shows the
capacity factor for a single turbine in a typical year in the refer-
ence time interval with the turbine state shown below along a hor-
izontal line where the heavier weighting indicates a period in the
off state. We focus first on the characteristics of the turbine state
{M;}, then on the characteristics of the power output {P;}, and
finally on the performance characteristics of the wind farm.
Although most of the periods of zero power production are associ-
ated with component failures, some short periods of zero power
production result simply from low daily wind speed, such as a
short period around day 190 (See Fig. 3). For this particular year
of wind data, sustained maximum power generation is not
achieved, and a seasonal variation in power is observed. The de-
pendence of component reliability results in a higher likelihood of
sustained residence in the off state during seasons in which aver-
age wind speed is higher. This appears as the long periods of resi-
dence in the off state between days 0 and 50 and around day 325.

The availability of a turbine {A;,=Pr(M;,=1)} is the likeli-
hood that turbine j will be in the on state during the time interval
[ti_1,tr). The estimate of availability based on the entire 19 yr
wind record is A;. = 0.91. By calculating availability for each year

o
3

Capacity factor

o

0 50 100 150 200 250 300 350
time (days)

Fig. 3 Typical year of simulated power generation for a single
turbine. The turbine state is shown on the horizontal line below
the power with the heavier weighted line indicating an off pe-
riod resulting from component failure.
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Fig. 4 Interarrival times for turbine failures. Each interarrival

time consists of a residence period in the on state followed by a
repair time. The line is the best fit exponential pdf.

of the reference time we can estimate higher order statistics of the
yearly availability. The estimate of the variance of the yearly
availability is 0.056, the skewness —1.2, and the kurtosis 3.5, indi-
cating that the availability is non-Gaussian, and any management
plan based on the assumption of Gaussianity will be in error. The
variance of the yearly availability is substantial, corresponding to
a coefficient of variation of approximately 20%, and would propa-
gate into the power production from a turbine. In the wind farm
simulations presented later it is shown that wind farms consisting
of many turbines, as expected, show much less variability in over-
all availability.

During the 19 yr reference time, there are 150 periods during
which the turbine is in the on state, interrupted by 150 periods in
the off state. In a classical Poisson model of mechanical failure,
the failures are treated as arrivals of a Poisson process, with the
resulting exponential distribution. A histogram of the time
between the beginning of periods in the off state is superimposed
with the best fit exponential distribution (Fig. 4), showing that,
although these times cannot be exactly exponential due to the de-
pendence of component reliability on wind speed and the deter-
ministic nature of the repair times, an exponential fit to the failure
interarrival times is reasonable. This conclusion is supported by
the near equivalence of the mean and standard deviation of the
interarrival times. For an exponential variable these statistics
should be equal, and in the case of the simulated interarrival times
the difference is largely attributable to the addition of the repair
time, which averages 4 days.

The input wind record includes seasonal variation in the aver-
age wind speed, which induces seasonality in the availability of
the wind turbine. The availability for each day of the year can be
estimated as 1'—9 lez 1 M 365(i-1)+1> and this availability is shown in
Fig. 5 along with the similarly estimated seasonally varying power
generated. The seasonal variability of the availability is much
lower than that of the power generation, although the days with

1 . : . . .

1AM ! |
2 09f A 0.8 &
= &
8 osll|h vy 06 =
= vi | 8
3 04 8
0.7 S

0.2
06 L L I L 1 1 1 0
50 100 150 200 250 300 350
time (days)

Fig. 5 Seasonal variation of availability and power generation
based on estimation for the 19 yrs included in the reference
time period
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the lowest average availability do occur during the winter and fall,
times of high wind speed.

The statistics and distribution shape for power generation, pre-
sented in the form of the capacity factor, based on the entire 19 yr
record shown in Fig. 6 illustrate the nearly beta shaped distribu-
tion of power production generated by the convolution of the
wind speed and turbine power curve. Yearly average capacity fac-
tor is 0.39 with standard deviation, skewness, and kurtosis of
0.033, —0.93, and 2.6, respectively, indicating that the power gen-
eration, as the availability, is non-Gaussian.

2.1.3.2  Wind farm performance. We assume that the example
wind farm is composed of 100 nominally identical turbines, incor-
porate wake effects through a wake loss factor w = 0.9 and neglect
other sources of spatial variation of the wind speed. The only
source of variation of performance among the constituent turbines
is therefore the uncertainty associated with component failure.
Simulation of the performance of 100 nominally identical turbines
subject to the same wind record shows that the expected number
of turbines operating at any given time instant is 91. This is equiv-
alent to the product of the number of turbines in the farm and the
average availability since we assume independence of the turbine
reliabilities and neglect spatial variation of the wind speed. The
standard deviation, skewness, and kurtosis of the number of avail-
able turbines are 3.0, —0.27, and 2.98, indicating mild non-Gaus-
sianity as expected since the number of turbines available is
bounded from above by the number of turbines in the wind farm.
The coefficient of variation of the wind farm availability, about
3%, is of course much less than the coefficient of variation of the
availability of an individual wind turbine. There is a measurable
seasonal affect in the wind farm availability, with peak availabil-
ity occurring in the summer months (Fig. 7). The seasonal avail-
ability is negatively correlated, however, with seasonal power
production because the seasonal fluctuations in wind speed over-
whelm the seasonal fluctuations in availability. Finally, yearly av-
erage capacity factor is an important design parameter for large
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Fig. 7 Seasonal variation of the number of available turbines

and the power generated by a 100 turbine wind farm averaged

over a 19 yr period
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scale wind farms. For our example wind farm, the average yearly
capacity factor is 0.35 with standard deviation, skewness, and kur-
tosis of 0.017, —0.59, and 2.4, respectively. Even for a 100 turbine
farm the performance metrics are substantially non-Gaussian.

3 Approximate Model

The Markov model described in the preceding sections allows
relatively efficient simulation of turbine and farm state provided
sufficient data are available to calibrate the model. In practice it is
useful to have a model from which exact expressions for the sta-
tistics of the turbine and farm state can be developed, even if the
model contains approximations. This section describes such an ap-
proximate, but analytical, model for turbine and farm performance
that is based on treatment of the turbine state as a binary stochas-
tic process and the farm state as an Ornstein—Uhlenbeck process.
In the following section the results of the approximate model are
compared to those obtained by direct Monte Carlo simulation.
The approximate models are developed under the simplifying
assumption of stationarity of the turbine state process and also
only for the turbine and farm availability. Approximations to the
turbine and farm power production process or capacity factor pro-
cess are beyond the scope of the analytical work in this paper, but
are the subject of current study by the authors.

3.1 Turbine State. Let M(¢), t > 0 be an on/off stochastic
process that is on at =0 and remains in this state for a random
time Y, such that, M(¢) =1 for t € [0,Y). The process switches to
the off state at time Y, and remains in the off state for a random
time Z; such that M(t) =0 for ¢ € [Y,Y, +Z;). Here M(¢) repre-
sents the state of the turbine, Y, represents the residence time in
the on state and Z; represents the repair time, denoted earlier as
1o, for component i. In the approximate model the individual com-
ponents are not treated separately and so the notations Y, and Z;
are adopted for the residence times in the on and off states.
The on-off cycling is repeated indefinitely, that is, M(f)=1 for

re [Zle Y+ 2Z), 55, (Y +2) + Yk+1) and M(1)=0 for
te [Zf:l (Yi +Zi) + Yiy, Zf:,l (Y; + Z,v)). It is assumed that

the random variables {Y},Y5,...} are independent and identically
distributed (iid), the random variables {Z,,Z,,...} are iid, and that
the families {Y;} and {Z;} are mutually independent.

Properties of interest for the turbine state process M(¢) include
the probability P(r) = Pr{M(t) = 1} = E[M()] that the turbine is in
the on state at any specified time ¢, and the second moment prop-
erties of M(#). Exact expressions for P(z) and var[m(f)] can be
obtained under certain conditions on Y, and Z;, and an approxima-
tion to the covariance function of M(f) can be obtained.

If E[Y, + Z,] < 0o and the distribution of Y| + Z; is not a lattice
distribution, then ([20], Theorem 3.4.4)

p= lim P(O) = EM0] = g 2 @

meaning that the availability is simply the ratio of the mean resi-
dence time in the on state to the sum of the mean residence times
in the on and off states. The variance of M(¢) is readily calculated
as

oﬁ,, = lim var[M(1)] = p(1 — p)
1—00 (5)

The second moment properties of M(#) are further characterized
by the covariance function cy(t)=E[M@)M(t+7)] —E[M(1)]
E[M(t+7)]. Depending on the distributions of Y, and Z; it may be
difficult or impossible to calculate ¢, (7) exactly, but an approxi-
mation can be developed as follows. Introduce the notation
M(t) =M(t) —p so that the covariance is cy(t) = E[M(t)M
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(t+7)] and denote M;=1—p and My = —p. For >0, and
invoking the law of total probability,
EM()M(t + )] = E[M()M(t + 7)|M(r) = Mi] P(M(1) = M1)
+E[M(1)M (1 + 7)|M(1) = Mo] P(M(1) = Mo)
(6)

Replacing P(M(r) = M;) and P(M(r) = My) by their asymptotic
values p and 1 —p respectively, and under the assumptions Y,
Nexp(/lon% /,Lon >0 and Zl NCXP(;Loff), /loff > 0’

EM()M(t + 7)) = M} exp(—Zont)p

+ oo MG exp(—logr7) (1 — p) +
~ MG exp(—/oe7) (1 — p) 0

Noting that M, o E[Z)],My < E[Y\],p x E[Y;] and 1—p oc
E[Z,], the approximation is good when E[Y;] > E[Z;] and implies
that ¢),(7) is approximately exponential with parameter /. . Note
that this approximation assumes stationarity of the turbine state
M(z), and therefore neglects the seasonality in wind turbine avail-
ability induced by seasonal fluctuations in wind speed characteris-
tics. Der Kiureghian, Ditlevsen and Song [17] have developed
exact expressions for on-off processes that are quite suitable for
modeling the state of mechanical systems with alternation operat-
ing and repair times, and their approach should be used when nei-
ther condition E[Y]> E[Z;] or E[Z,] > E[Y,] is valid since the
approximation of Eq. (7), or an alternate one when E[Z;] > E[Y/],
will be poor.

3.2 Wind Farm State. Consider the definition of wind farm
availability

t>0 (8)

which is a continuous time version of Eq. (2) defining the fraction
of turbines in a wind farm consisting of #,, turbines that are on at
time ¢ > 0. In Sec. 3.1, M(t) is defined as the state of a wind tur-
bine at time t. Here, the subscript j is added to denote by M_j(t)
the state of turbine j at time t.

At any arbitrary but fixed time 7,5, (1) = >/, M;(r) is a Bino-
mial random variable with (asymptotic) probability of success
P(?) so that E[S,,,()]=n,P(t) and Var[S,,(H)] = n,P()(1 — P(?))
implying ([21], p. 253)

100 turbine farm

30
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25 6=0.030
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Farm availability F(t)

— ny P(1)

( S0, (1)
nmp(t) (1 7P(t))

< x) — ®(x), n— o0 8)

and F(t) ~N(P(t), P(t)(1 —P(t))/n,,) for relatively large values
of n,,. Asymptotically as + —oo these properties become F(t) ~ N

(P.p(1 = p)iny).
The second moment properties of F(z) are defined by

ri(t) =E[F(0)F(t+7)] = niz [ a0 () + (1, — ) E[M (1)

m

=(1/ny)ru(0)+ (1 =1/n,)P(1)*  (9)

so that the covariance function of F(¢) as t —oo is

cr(t) = E[(F(1) = E[F(1)]) (F(1 + 1) — E[F(1 + 7)])]
= (ru(t) = p*) /1
= E[(M(2) — EM(1)]) (M(1 + 1) — EM(t + T)])] /nn (10)

This shows that the covariance functions of M(¢) and F(¢) have the
same functional form. For example, the covariance function of
F(1) is exponential if that of M(¢) is exponential.

If the correlation function of M(¢) can be approximated as expo-
nential and 7, is sufficiently large, then F(¢) can be modeled by

F(t) p(1— )/n,,, V(t)
dv(r) = fpV 1) dt+ /2 pdB(1), with
V(0) £ N(0,1) (11)

that is, V(¢) is a stationary Ornstein—Uhlenbeck process with mean
0 and covariance function E[V(s)V(f)] =exp(—p|s — t]). The pa-
rameter p & A is directly obtained from the performance of a
single turbine provided the approximation of Eq. (3) is good. The
model of F(f) can be used to find whatever statistics are needed
for this process. Monte Carlo simulation or the associated Fok-
ker—Planck equation can be used for this purpose.

3.3 Model Validation. In this section the approximate model
is validated against results of direct MC simulation of wind tur-
bine and farm performance. The features that are validated are:
(1) the assumption of exponential distribution of Y; (2) the form
of the correlation function r,(7); (3) the distribution of F(¢); (4)
the form of the correlation function r7(t); and (5) the mean down-
crossing rate of a threshold farm availability based on the Orn-
stein—Uhlenbeck approximation.

500 turbine farm
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Fig. 8 Histograms and best fit Gaussian pdfs for the wind farm state F(t) for 100 and 500

turbine wind farms

Journal of Solar Energy Engineering

NOVEMBER 2011, Vol. 133 / 041006-7

Downloaded 14 Jan 2012 to 128.119.168.112. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



1.2

—— MC simulation
T — — — 0-U model

CF('c) / var[F(t)]

-0.2 : ' :
0 10 20 30 40

Fig. 9 Covariance function of F(f) for a farm with 500 turbines
based on MC simulation and the Ornstein—-Uhlenbeck model.
The MC simulation results show a very nearly exponential co-
variance. The covariance is scaled by the process variance to
be unitatt=0.

Figure 4 shows the histogram and best fit exponential probabil-
ity density function (pdf) for the failure interarrival times
Y, +Z+1, and the exponential appears to be a reasonable fit to
the data. Histograms of Y; and Z; are not shown here in the inter-
est of brevity, but both random variables have distributions that
are reasonably well approximated as exponential with parameters
Zon=1/E[Y]1=0.024 and A= 1/E[Z,]=0.24. The approxima-
tion to cy(t) introduced in Eq. 7 underpredicts the actual covari-
ance by about 10%, and is deemed suitable for use in these
calculations.

Figure 8 shows histograms and best fit Gaussian pdfs for F(¢)
with 7, =100 and n,, =500 based on direct MC simulation using
the 19 yr wind record introduced previously. In both cases the
agreement with the Gaussian pdf is reasonably good, though it
appears that the fit is better when n,, =500 as expected since the
distribution of F(¢) is asymptotically Gaussian only as n,, —oo.
Skewness and kurtosis values agree reasonably well with the
expected Gaussian values of 0 and 3, respectively, although there
is a persistent negative skewness that results from the proximity
of E[F(#)] to the upper bound F(¢) < 1 . The standard deviations
also agree well with the predictions of the properties of F(¢) given
immediately following Eq. (8), which predict ¢=0.028 and
¢ =0.013 for n,,= 100 and n,, = 500, respectively.

The covariance function cx(t) of F(¢) is shown in Fig. 9 and has
the exponential form predicted by the approximate model.

One major convenience of the Ornstein—Uhlenbeck (O-U)
model for wind farm state is that samples can be simulated very
efficiently using Egs. 11, and statistics of the wind farm state can
be estimated without the more intensive process of simulating the
performance of individual turbines. For example, a statistic of in-
terest is the frequency vy of the event {F(1) =Fy N dF(t)/dt < 0},
the mean downcrossing rate of F(¢) at threshold F,. Simulation of
the O—U model for 100,000 days with F, =0.88 predicts this rate
to be vr,= 0.0090 day ™', whereas direct simulation of the wind
farm state gives vp,= 0.0080 day~'. The O-U models overesti-
mates vr,, which is a conservative result in the context of wind
farm planning and operation. Overall, the approximate models
agree well with all features of the MC simulation results, and it
would be justified to use the model in performance evaluation of
large wind farms with 7,, > 100. Extension of the approximate
model to capacity factor is straightforward in principle, requiring
the introduction of a model for the wind speed and a subsequent
mapping through the turbine power curve. As shown in the earlier
MC simulation results, the capacity factor is highly non-Gaussian,
and therefore could not be directly modeled by an Ornstein—
Uhlenbeck type process. Translations of Gaussian processes may
provide a suitable model for capacity factor, and can also provide
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direct evaluation of performance metrics such as downcrossing
rates [22].

4 Conclusions

A Markov model for wind turbine and farm performance has
been developed that: (1) is based on turbine component reliabil-
ities that are calibrated to observations of field performance of tur-
bines; (2) accounts for sensitivity of turbine reliability to wind
speed; (3) accounts for variable repair times for different turbine
components; (4) uses a power curve representative of turbines cur-
rently being considered for offshore deployment. By direct MC
simulation of the Markov model, one can obtain samples of tur-
bine and farm performance characteristics such as turbine and
farm availability and capacity factor. Statistics such as the distri-
bution, seasonal variation, and correlation functions of the per-
formance metrics can be readily estimated from the simulated
samples and used in design or management of offshore wind
farms.

For a numerical example of 100 offshore wind turbines hypo-
thetically located off the coast of Maine in the northeastern United
States, the average availability is estimated to be 0.91, which is
agreement with reported wind farm performance. The capacity
factor is highly non-Gaussian, with a mean of 0.39, but the avail-
ability is found to be nearly Gaussian. Seasonal effects appear in
the capacity factor but not in the availability. For an individual
turbine the residence time in the on state is found to be nearly ex-
ponential, with a mean of 42 days.

These results demonstrate the practical applicability of a Mar-
kov model for wind turbine and farm performance. The details of
the model have largely been tailored to the available calibration
data. Throughout the paper instances where the model could be
enriched to consider complications such as site specific conditions
and component dependencies and redundancies have been identi-
fied, and the minimal changes to the theoretical framework that
would be required are described. Incorporating these features of
wind turbine and farm performance will be important to improv-
ing the practical implications of the model, and such improvement
essentially awaits the collection of suitable calibration data.

The properties of the samples of the capacity factor, and the
nearly exponential distribution of time periods of turbine opera-
tion suggest approximate analytical models for turbine and farm
availability. The turbine model is based on binary stochastic pro-
cess with exponential waiting times that represents the on or off
state of the turbine, and, when the farm consists of a sufficiently
large number of turbines an Ornstein—Uhlenbeck model for avail-
ability is proposed. Comparison of the approximate models
against MC simulation of the Markov model indicate that the
model gives accuracy of 10% or better when the number of tur-
bines is greater than approximately 100. The advantage of the ap-
proximate model for wind farm availability is that its properties
can be calculated directly without the need to simulate the per-
formance of a wind farm with many turbines over many years,
thereby delivering a dramatic increase in efficiency.
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