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a b s t r a c t

Homogenization of randomly heterogeneous material properties into effective properties is an essential
procedure in facilitating the analysis of a wide range of mechanics problems. Although formulas exist to
calculate deterministic effective properties for structures larger than the representative volume element
(RVE), no general method other than Monte Carlo simulation exists to evaluate the variability of these
effective properties for structures smaller than the RVE. In a recent paper [1], a method was proposed
for evaluating the stochastic variability of effective properties by incorporating the variability response
function (VRF) concept. Subsequently, the existence of the VRF for effective properties for linear, statically
determinate structures was formally proven. The concept of the VRF has been proposed as a means to
systematically capture the effect of the spectral characteristics of uncertain system parameters modeled
by homogeneous stochastic fields on the uncertain structural response. Although the existence of VRFs
can be formally proven only for statically determinate structures, a Monte Carlo-based methodology
has been proposed recently as a generalization of the VRF concept [19]. In this paper, this methodology
is extended to establish estimates of the VRF for effective properties of statically indeterminate beams.

! 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Homogenization of material properties into effective properties
occurs, often implicitly, when conducting standard tests such as
tensile tests, direct shear tests, v-notch tests, creep tests, and oth-
ers. This is because most materials exhibit random heterogeneity
at the meso- and microscales. Much work has been done to estab-
lish bounds on these effective properties. The most commonly ci-
ted pioneering scientific inquiries concerning bounds on effective
properties are the works of Voigt and Reuss, both published in Ger-
man in 1889 and 1929, respectively, from which the famous Reuss
and Voigt bounds come. The Voigt bound, also called the isostrain
average, gives the upper bound of the elastic modulus. The Reuss
bound, called the isostress average, establishes the lower bound
of the elastic modulus. Both the Voigt and Reuss bounds can be de-
rived by requiring that the elastic strain energy stored in a material
volume is equal when the heterogeneous material is replaced by
the homogeneous material and all boundary conditions are kept
the same.

It is shown in [23] that elastic effective properties can be con-
sidered as deterministic when the structure considered is suffi-
ciently larger than the correlation length scale of the random

heterogeneities. The size of the structure where the effective prop-
erties become deterministic corresponds to that of the representa-
tive volume element (RVE). When the structure considered is
smaller than the RVE, the effective properties are random variables
[3,11,14,16,18,31]. With the growing interest in microscale
mechanics, characterizing the probabilistic properties of effective
properties has become an important research topic. The develop-
ment of multiscale finite element analysis has provided a means
of propagating material property uncertainty across scales
[8,7,15,17,28,30]. A need exists, however, for efficient methods
based on sound mechanics that provide a direct connection be-
tween material property uncertainty at different scales. The goal
of this paper is to describe one such method.

The difficulties in establishing detailed probabilistic informa-
tion (e.g. spectral density function (SDF) and probability distribu-
tion function (PDF)) of uncertain parameters in structural
systems are due to a lack of data, an inability to measure the de-
sired parameters, model error, noisy measurements, and many
more factors. An efficient way to address this problem is to estab-
lish functions providing probabilistic characteristics of a structural
response quantity while being independent of the uncertain
parameters. One such function is the variability response function
(VRF), first introduced by in [24], which is essentially a Green’s
function relating the variance of a response quantity of a structure
(e.g. displacement) to the SDF of the uncertain input parameters
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(usually the material properties) that are modeled as random
fields.

The applicability of the VRF concept for effective properties is
explored for statically indeterminate beams in this paper. The
VRF for the effective flexibility in linear, statically determinate
beams was introduced in [1]. For linear and nonlinear statically
indeterminate beams, a generalized variability response function
(GVRF) methodology has been developed to establish generalized
variability response functions (GVRFs) for displacement response
[19,27]. In this paper, the GVRF methodology is expanded to estab-
lish GVRFs for effective flexibility of linear statically indeterminate
beams. The paper is outlined as follows. First, the VRF concept is
introduced. Then an energy based approach to determine effective
properties is presented, followed by the derivation of the VRF for
the effective flexibility of a linear statically determinate beam.
The GVRF methodology for effective properties is then described
in detail and a numerical example is provided to demonstrate its
usage. Finally, the results of the example as well as the applicabil-
ity of the GVRF methodology for effective properties are discussed
and evaluated.

2. Variability response function (VRF) concept

In the VRF approach, it is assumed that the uncertain system
parameters (e.g. material properties) can be described by a statis-
tically homogeneous random field, f(x). If the displacement re-
sponse (e.g. u(x) as the transverse displacement of a beam) is the
quantity of interest, its variance can be expressed using the follow-
ing integral form involving the VRF

Var½uðxÞ$ ¼
Z 1

&1
VRFuðx;jÞSf ðjÞdj; ð1Þ

where Sf(j) is the two sided SDF of the zero mean, homogeneous
random field f(x) modeling the uncertain system parameters, u(x)
is the displacement response of the structure at location x, and j
is the wave number. It should be noted that Eq. (1) is formulated
for f(x) being a one-dimensional random field. The VRF is a deter-
ministic function that depends on deterministic properties of the
structure, loading, and boundary conditions. It identifies the sensi-
tivity of the response variability to the spectral characteristics (or
equivalently the correlation structure) of f(x) and provides the
supremum of the response variance if only the variance of f(x) is
known. There are a few exact analytical derivations of VRFs for stat-
ically determinate structures [1,2,6,27]. Through numerical tech-
niques, however, numerous approximations of the VRF for
statically indeterminate structures have been made [9,10,20–
22,25,29].

A computationally efficient numerical approach called the Fast
Monte Carlo method, first proposed in [25] and further developed
in [21,22], can be applied to general mechanical/structural systems
to establish an approximation of the VRF of statically indetermi-
nate structures. This method involves a fundamental conjecture:
a unique VRF exists for statically indeterminate structures that is
independent of the PDF and SDF of the stochastic field modeling
the uncertain system parameters. In order to validate this conjec-
ture, a methodology has been proposed as a generalization of the
Fast Monte Carlo method, the aim of which is to establish a gener-
alized VRF (GVRF) for statically indeterminate structures [19,27]
without having to assume the existence of Eq. (1) a priori. Accord-
ing to the GVRF methodology, the uncertain system parameters are
described by stochastic fields with a wide range of combinations of
marginal PDFs and SDFs. For each combination considered, a corre-
sponding GVRF is computed. If all the computed GVRFs are approx-
imately the same (allowing for numerical and estimation errors),
then it can be claimed that an approximate VRF exists that is nearly

independent from the SDF and the PDF. This methodology is de-
scribed in detail in Section 5.

In a recent paper [1], the VRF for the effective flexibility of het-
erogeneous statically determinate structures was analytically de-
rived. The formulation is an extension of the VRF concept for the
displacement response of statically determinate structures [6]. In
this case, a VRF was derived for the variance of the effective flexi-
bility D, which depends on the displacement response field u(x), as:

Var½D$ ¼
Z 1

&1
VRFDðjÞSf ðjÞdj; ð2Þ

where Sf(j) is the two sided SDF of the zero mean, homogeneous
random field f(x) modeling the fluctuations of the flexibility about
its mean value. A general property of the VRF is that as j ? +1,
VRF ? 0 because extremely rapid fluctuations (equivalently fluctu-
ations of very small wave length) are not felt by the structure. If the
VRF equals zero for a given range of wave numbers, then a random
material property having all of its power within this range of wave
numbers will produce an effective property that is deterministic
(constant) and not random (i.e. the effective property will be that
of the RVE).

3. Effective properties

Consider a heterogeneous body X described by coordinates
x 2 R3 whose material properties can be described as locally iso-
tropic. The strong form of the boundary value problem with its
boundary conditions is

rij;j þ bi ¼ 0 ð3aÞ

rij ¼ CijklðxÞ!kl ð3bÞ

!ij ¼
1
2
ðui;j þ uj;iÞ ð3cÞ

rijnj ¼ !ti 2 Ct ð4aÞ
ui ¼ !ui 2 Cu ð4bÞ
Ct [ Cu ¼ @X and Ct \ Cu ¼ ;; ð4cÞ

where r and ! are the stress and strain tensors, respectively, while
u and b are the displacement and body force vectors, respectively.
The boundary @X, defined by the outward unit normal vector, n,
is the union of spaces Ct and Cu defining the spaces of prescribed
traction, !t, and prescribed displacement, !u, respectively. The consti-
tutive tensor C(x) is a function of position x due to random fluctu-
ations of the elastic modulus or Poisson’s ratio of the material
occupying X. Let a homogeneous counterpart of X, denoted XH,
be occupied by a material with a constitutive tensor, C, that is con-
stant within XH but is a function of the displacement boundary con-
ditions (Eq. (4b)), surface tractions (Eq. (4a)), and an integral
expression of C(x). The effective material properties are determined
such that the strain energy in XH equals the strain energy in X un-
der the same set of boundary conditions, that is

1
2

Z

XH

!0ðxÞ ( C ( !0ðxÞdV ¼ 1
2

Z

X
!ðxÞ ( CðxÞ ( !ðxÞdV

¼
Z

Ct

uðxÞ!tðxÞdCt; ð5Þ

where !0(x) is the strain in XH, and ‘(’ denotes the tensor inner
product.

Consider now the case where Poisson’s ratio is constant and
only the elastic modulus E(x) is randomly heterogeneous. Then
the effective elastic modulus E can be factored out of the effective
constitutive tensor (i.e. C ¼ EC0), and can be expressed as
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E ¼
R

Ct
uðxÞ!tðxÞdCt

1
2

R
XH
!0ðxÞ ( C0 ( !0ðxÞdV

¼
R

X !ðxÞ ( CðxÞ ( !ðxÞdV
R

XH
!0ðxÞ ( C0 ( !0ðxÞdV

: ð6Þ

The effective elastic modulus is bounded by the Reuss and Voigt
bounds [13]

Er 6 E 6 Ev ð7aÞ

Reuss : Er ¼
1

VX

Z

X
EðxÞ&1dV

! "&1

Voigt : Ev ¼
1

VX

Z

X
EðxÞdV ð7bÞ

From Eq. (6), the variance of the effective elastic modulus is deter-
mined as

Var½E$ ¼ 1
C2

1

Var
Z

Ct

uðxÞ!tðxÞdCt

! "
; ð8Þ

where C1 ¼ 1
2

R
XH
!0ðxÞ ( C0 ( !0ðxÞdV . If the random fluctuations of

the elastic modulus around its mean value are described by a statis-
tically homogeneous, zero mean random field, f(x), then the goal of
the VRF concept is to establish a relationship of the following form

Var½E$ ¼
Z 1

&1

Z 1

&1

)
Z 1

&1
Sf ðj1;j2;j3ÞVRFEðj1;j2;j3Þdj1dj2dj3; ð9Þ

where Sf(j1,j2,j3) is the SDF of f(x). Only for cases involving stati-
cally determinate structures can Eq. (9) be proven to exist, because
for statically indeterminate structures the displacement cannot be
expressed in general by a function that is separable with respect
to the applied traction and the stochastic parameters of the consti-
tutive law.

3.1. Effective flexibility for beams

It is more convenient to describe the constitutive law in terms
of the flexibility for beam structures, that is

DðxÞ ¼ 1
EðxÞI

¼ 1
E0I
ð1þ f ðxÞÞ; ð10Þ

where E0 is the mean value of E(x) and I is the moment of inertia of
the beam.

Similarly, a homogeneous beam is established such that the
external work W for the heterogeneous beam due to a distributed
load q(x), concentrated load P, and concentrated moment M is
equal to that on the homogeneous beam WH under the exact same
loading. The expressions for W and WH are given by

W ¼
Z L

0
uðxÞqðxÞdxþ PuðxPÞ þMhðxMÞ ð11aÞ

WH ¼ D
Z L

0
u0ðxÞqðxÞdxþ Pu0ðxPÞ þMh0ðxMÞ

! "
¼ C1D; ð11bÞ

where xP is the coordinate along the length of the beam where the
concentrated load P is applied, and xM is the coordinate where the
concentrated moment M is applied.

In Eq. (11a), u(x) is the displacement of the heterogeneous beam
and h(x) is the slope of the displacement of the heterogeneous
beam (i.e. hðxÞ ¼ duðxÞ

dx ). In Eq. (11b), D is the effective flexibility,
u0ðxÞ ¼ 1=DuHðxÞ and h0ðxÞ ¼ 1=DhHðxÞ with uH(x) and hH(x) being
the displacement and slope of the homogeneous beam. Eqs. (11a)
and (11b) can be easily extended to account for multiple applied
concentrated loads and moments. Combining eventually Eqs.
(11a) and (11b), the effective flexibility is defined as

D ¼ 1
C1

Z L

0
uðxÞqðxÞdxþ PuðxPÞ þMhðxMÞ

! "
ð12Þ

4. Derivation of VRF for effective flexibility for statically
determinate beam structures

The following derivation is an extension of the derivation in [1].
For a statically determinate beam, the displacement and its deriv-
ative can be written as

uðxÞ ¼
Z x

0
Guðx; sÞ

mðsÞ
E0I
ð1þ f ðsÞÞds; ð13aÞ

hðxÞ ¼
Z x

0
Ghðx; sÞ

mðsÞ
E0I
ð1þ f ðsÞÞds; ð13bÞ

where Gu(x,s) and Gh(x,s) are the Green’s functions of the displace-
ment and the slope of the displacement, respectively, associated
with the governing differential beam equation, and m(s) is the inter-
nal moment distribution along the length of the beam. Taking into
account that C1 is a deterministic constant, the expected value of
the effective flexibility can be written as

C1E½D$ ¼ E

Z L

0
qðxÞ

Z x

0
Guðx; sÞ

mðsÞ
E0I
ð1þ f ðsÞÞdsdxþ P

!

Z xP

0
GuðxP; sÞ

mðsÞ
E0I
ð1þ f ðsÞÞdsþM

Z xM

0
GhðxM ; sÞ

mðsÞ
E0I
ð1þ f ðsÞÞds

"

¼
Z L

0
qðxÞ

Z x

0
Guðx; sÞ

mðsÞ
E0I

dsdxþ P
Z xP

0
GuðxP; sÞ

mðsÞ
E0I

ds

þM
Z xM

0
GhðxM; sÞ

mðsÞ
E0I

ds ð14Þ

and the mean square as

C2
1E½D

2$ ¼
Z L

0

Z L

0
qðx1Þqðx2Þ

Z x1

0

Z x2

0
Guðx1; s1ÞGuðx2; s2Þ

) mðs1Þmðs2Þ
ðE0IÞ2

E ð1þ f ðs1ÞÞð1þ f ðs2ÞÞ½ $ds2ds1dx2dx1

þ 2P
Z L

0
qðxÞ

Z x

0

Z xP

0
Guðx; s1ÞGuðxP ; s2Þ

) mðs1Þmðs2Þ
ðE0IÞ2

E½ð1þ f ðs1ÞÞð1þ f ðs2ÞÞ$ds2ds1dx

þ 2M
Z L

0
qðxÞ

Z x

0

Z xM

0
Guðx; s1ÞGhðxM; s2Þ

) mðs1Þmðs2Þ
ðE0IÞ2

E½ð1þ f ðs1ÞÞð1þ f ðs2ÞÞ$ds2ds1dx

þ P2
Z xP

0

Z xP

0
GuðxP ; s1ÞGuðxP ; s2Þ

) mðs1Þmðs2Þ
ðE0IÞ2

E ð1þ f ðs1ÞÞð1þ f ðs2ÞÞ½ $ds2ds1

þ 2PM
Z xP

0

Z xM

0
GuðxP; s1ÞGhðxM; s2Þ

) mðs1Þmðs2Þ
ðE0IÞ2

E½ð1þ f ðs1ÞÞð1þ f ðs2ÞÞ$ds2ds1 þM2

)
Z xM

0

Z xM

0
GhðxM; s1ÞGhðxM; s2Þ

mðs1Þmðs2Þ
ðE0IÞ2

E½ð1

þ f ðs1ÞÞð1þ f ðs2ÞÞ$ds2ds1: ð15Þ

Combining Eqs. (14) and (15) yields the variance of the effective
flexibility
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C2
1Var½D$ ¼

Z L

0

Z L

0
qðx1Þqðx2Þ

Z x1

0

Z x2

0
Guðx1; s1ÞGuðx2; s2Þ

)mðs1Þmðs2Þ
ðE0IÞ2

E½f ðs1Þf ðs2Þ$ds2ds1dx2dx1

þ 2P
Z L

0
qðxÞ

Z x

0

Z xP

0
Guðx; s1ÞGuðxP; s2Þ

)mðs1Þmðs2Þ
ðE0IÞ2

E½f ðs1Þf ðs2Þ$ds2ds1dxþ 2M

Z L

0
qðxÞ

Z x

0

Z xM

0
Guðx; s1ÞGhðxM ; s2Þ

mðs1Þmðs2Þ
ðE0IÞ2

) E½f ðs1Þf ðs2Þ$ds2ds1dxþ P2
Z xP

0

Z xP

0
GuðxP ; s1ÞGuðxP; s2Þ

)mðs1Þmðs2Þ
ðE0IÞ2

E½f ðs1Þf ðs2Þ$ds2ds1 þ 2PM
Z xP

0
Z xM

0
GuðxP; s1ÞGhðxM; s2Þ

mðs1Þmðs2Þ
ðE0IÞ2

E½f ðs1Þf ðs2Þ$ds2ds1

þM2
Z xM

0

Z xM

0
GhðxM; s1ÞGhðxM; s2Þ

)mðs1Þmðs2Þ
ðE0IÞ2

E½f ðs1Þf ðs2Þ$ds2ds1: ð16Þ

Using the Wiener–Khinchin transform to replace the autocorrela-
tion function E½f ðs1Þf ðs2Þ$ with the SDF Sf(j), the variance can be
written as

Var½D$ ¼
Z 1

&1
VRFDðjÞSf ðjÞdj; ð17Þ

where the variability response function for the effective flexibility is
given by

C2
1VRFDðjÞ ¼

Z L

0

Z L

0
qðx1Þqðx2Þ

Z x1

0

Z x2

0
Guðx1; s1ÞGuðx2; s2Þ

)mðs1Þmðs2Þ
ðE0IÞ2

expðijðs2 & s1ÞÞds2ds1dx2dx1

þ 2P
Z L

0
qðxÞ

Z x

0

Z xP

0
Guðx; s1ÞGuðxP; s2Þ

)mðs1Þmðs2Þ
ðE0IÞ2

expðijðs2 & s1ÞÞds2ds1dx

þ 2M
Z L

0
qðxÞ

Z x

0

Z xM

0
Guðx; s1ÞGhðxM ; s2Þ

)mðs1Þmðs2Þ
ðE0IÞ2

expðijðs2 & s1ÞÞds2ds1dx

þ P2
Z xP

0

Z xP

0
GuðxP; s1ÞGuðxP; s2Þ

mðs1Þmðs2Þ
ðE0IÞ2

) expðijðs2 & s1ÞÞds2ds1 þ 2PM
Z xP

0

Z xM

0
GuðxP ; s1ÞGhðxM; s2Þ

mðs1Þmðs2Þ
ðE0IÞ2

) expðijðs2 & s1ÞÞds2ds1 þM2

Z xM

0

Z xM

0
GhðxM; s1ÞGhðxM; s2Þ

mðs1Þmðs2Þ
ðE0IÞ2

) expðijðs2 & s1ÞÞds2ds1: ð18Þ

4.1. Cantilever example

Consider the cantilever in Fig. 1 with length L, distributed load-
ing q(x) = q0(L & x)/L, average flexibility 1/E0I, and concentrated
loads and moments equal to zero without any loss of generality.
The Green’s function for the displacement is

Gðx; sÞ ¼
x& s; s < x
0; s P x:

#
ð19Þ

The moment is determined from statics as: m(x) = & q0L2/6 + q0Lx/
2 & q0x2/2 + q0x3/(6L), and the deterministic coefficient C1 is solved
to be: C1 = q2L5/34.52. After some algebra, the variance of the effec-
tive flexibility is expressed as in Eq. (17) with the VRF given by

VRFDðjÞ ¼
34:52
q2L5

 !2 Z L

0

Z L

0

q0ðL& x1Þq0ðL& x2Þ
L2

Z x1

0

Z x2

0
ðx1 & s1Þðx2 & s2Þ

)
& q0L2

6 þ
q0Ls1

2 &
q0s2

1
2 þ

q0s3
1

6L

$ %
& q0L2

6 þ
q0Ls2

2 &
q0s2

2
2 þ

q0s3
2

6L

$ %

ðE0IÞ2

) expðijðs2 & s1ÞÞds2ds1dx2dx1: ð20Þ

The integrals in Eq. (20) are evaluated analytically with the help of
MAPLE, and VRFDðjÞ is plotted in Fig. 2 using the following values
for the various parameters: L = 15 m, q0 = 1000 N/m, 1/
(E0I) = 3.2 ) 10&6 1/N m2.

5. GVRF methodology

The existence and SDF/PDF-independence of the VRF for re-
sponse displacements has been formally proven for linear, stati-
cally determinate structures [2,6] and for a special class of
nonlinear, statically determinate structures in reference [27]. The
existence and SDF/PDF-independence of the VRF for effective flex-
ibility has been formally proven for linear, statically determinate
beams in reference [1] and was presented in more detail in Sec-
tion 4. The VRF’s existence and SDF/PDF-independence, however,
has never been formally proven for any statically indeterminate
structure. This chapter details a Monte Carlo based methodology,
proposed in [19], that generalizes the VRF concept so that it can
be applied to statically indeterminate linear structures when con-
sidering either the response displacements or an effective prop-
erty. The aim of this methodology is to compute a Generalized
VRF (GVRF) with properties essentially identical to those of the
classical VRF. This methodology involves the following conjecture:
there exists a GVRF for indeterminate structures that is approxi-
mately independent of the marginal PDF and SDF of the uncertain
system parameters. The main objective of the methodology is a
Monte Carlo simulation procedure developed to specifically deter-
mine the validity of this conjecture.

5.1. GVRF methodology for effective properties of linear, statically
indeterminate structures

For a specific linear statically indeterminate structure with a
randomly heterogeneous material property modeled by a specific
one-dimensional homogeneous stochastic field f(x) with SDF Sf(j)

Fig. 1. Cantilever analyzed.
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and prescribed marginal PDF, the variance of its effective property
D can always be written in the following integral form involving
some function GVRFDðjÞ (standing for generalized variability re-
sponse function)

Var½D$ ¼
Z 1

&1
Sf ðjÞGVRFDðjÞdj: ð21Þ

The left-hand-side of the above equation, Var½D$, can be easily com-
puted through brute-force Monte Carlo simulation by generating
sample functions of stochastic field f(x) using its prescribed SDF
and PDF. It is obvious, however, that there is no unique solution
for GVRFDðjÞ in Eq. (21) for a given Sf(j). Eq. (21) can be written
in discretized form as

Var½D$ ¼ 2
XN

l¼1

Sf ðjlÞGVRFDðjlÞDj; ð22Þ

where the wave number domain is discretized into N equal inter-
vals Dj between 0 and an upper cutoff wave number ju, and the
set of wave numbers jn = (n & 1)Dj + Dj/2 are the center points
of the intervals. Eq. (22) can be written equivalently in matrix for as

Var½D$ ¼ 2 Sf ðj1Þ Sf ðj2Þ . . . Sf ðjNÞ½ $

GVRFDðj1Þ
GVRFDðj2Þ

..

.

GVRFDðjNÞ

2

666664

3

777775
Dj: ð23Þ

Consider now that N different stochastic fields with N different SDFs
are selected (but all N with the same marginal PDF) and that Eq.
(23) is written repeatedly for each one of these N fields/SDFs. This
leads to a system of N linear equations with N unknowns, where
the unknowns are contained in the vector of discretized values of
the GVRF. The left-hand-side vector of variances can be easily com-
puted by brute-force Monte Carlo simulations as mentioned earlier.
The resulting system is shown below

Var½D1$
Var½D2$

..

.

Var½DN $

2

666664

3

777775
¼ 2

Sf1 ðj1Þ Sf1 ðj2Þ . . . Sf1 ðjNÞ
Sf2 ðj1Þ Sf2 ðj2Þ . . . Sf2 ðjNÞ

..

. ..
. . .

. ..
.

SfN ðj1Þ SfN ðj2Þ . . . SfN ðjNÞ

2

66664

3

77775

GVRFDðj1Þ
GVRFDðj2Þ

..

.

GVRFDðjNÞ

2

666664

3

777775
Dj:

ð24Þ

Each row in Eq. (24) corresponds to a different stochastic field and
consequently a different SDF, Sfn ðjÞ; n ¼ 1;2; . . . ;N. All these N
fields have the same marginal PDF. The solution of the system of

N linear equations with N unknowns in Eq. (24) will now provide
a unique solution for the vector of discretized values of the GVRF.

The entire process resulting in Eq. (24) is repeated for several
other sets of N different fields/SDFs paired with a wide range of dif-
ferent marginal PDFs. If the solutions of all these systems of N lin-
ear equations yield approximately the same solution for the GVRF
(allowing for small differences due to numerical reasons), then it
can be claimed with reasonable certainty that an approximate
VRF exists for this structure that it is almost entirely independent
of the SDF and the PDF of the stochastic field modeling the uncer-
tain system properties. For more information on this methodology,
the reader is referred to [19].

5.2. Non-Gaussian stochastic fields considered

The non-Gaussian stochastic field models considered here for
f(x) are either memoryless translation fields [12] (mapped from
an underlying Gaussian field) or associated fields [4,5] (mapped
from an underlying U-shaped Beta random sinusoid field). The
underlying field is denoted by g(x) and the mapped/transformed
field by f(x), while the two corresponding marginal cumulative dis-
tribution functions are denoted by Pg(() and Pf((), respectively.
Then, whether f(x) is a translation field or an associated field, it is
defined through the following transformation

f ðxÞ ¼ P&1
f ðPgðgðxÞÞÞ; ð25Þ

when f(x) is a translation field, g(x) is a Gaussian field. When f(x) is
an associated field, g(x) is a U-shaped Beta random sinusoid field.
The marginal PDFs considered for f(x) include truncated Gaussian,
Lognormal, and Uniform distributions.

Realizations of f(x) can be generated by simulating g(x) and then
performing the transformation in Eq. (25). In the case of a transla-
tion field for f(x), the underlying Gaussian field g(x) is simulated
using the Spectral Representation Method outlined in [26]. In the
case of an associated field for f(x), the underlying field g(x) is a
U-shaped Beta random sinusoid field. The U-shaped beta random
sinusoid field has an SDF which consists of a delta function located
at wave number jd, given by

SgðjÞ ¼
1
2
r2

g ½dðj& jdÞ þ dðjþ jdÞ$; ð26Þ

while the field itself is expressed as

gðxÞ ¼
ffiffiffi
2
p

rg cosðjdxþ hÞ; h Uniform in ½0;2p$; ð27Þ

with rg denoting the standard deviation of g(x). Eq. (27) can be used
in a straightforward way to generate sample realizations of g(x).

Three marginal PDFs are considered for the non-Gaussian sto-
chastic field f(x) (whether translation or associated). The expres-
sions for f(x) are given below in terms of Pg(g(x)):

Truncated Gaussian (TG)

f ðxÞ ¼
al; sU&1ðPgðgðxÞÞÞ þm < al

sU&1ðPgðgðxÞÞÞ þm; al 6 sU&1ðPgðgðxÞÞÞ þm 6 au

au; au < sU&1ðPgðgðxÞÞÞ þm:

8
><

>:

ð28Þ

Uniform (UN)

f ðxÞ ¼ ðau & alÞPgðgðxÞÞ þ al ð29Þ

Lognormal (LN)

f ðxÞ ¼ expðmþ sU&1ðPgðgðxÞÞÞÞ þ al; ð30Þ

where U(() is the cummulative distribution function of the unit nor-
mal distribution. One specific case is considered from each one of

Fig. 2. VRF for effective flexibility of cantilever shown in Fig. 1.
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the above three probability distributions and the resulting three
cases for the marginal PDFs of f(x) are fully defined in Table 1. It
should be noted that all three of these marginal PDFs have zero
mean value (their standard deviation is denoted by rf and is pro-
vided in Table 1).

The cumulative distribution functions of the two underlying
fields are given by

Gaussian

PgðgðxÞÞ ¼ UðgðxÞÞ ¼
Z gðxÞ

&1

1ffiffiffiffiffiffiffi
2p
p exp & s2

2

' (
ds;

&1 < gðxÞ <1 ð31aÞ

U-Beta

PgðgðxÞÞ ¼ 1& 1
p cos&1 gðxÞffiffiffi

2
p

' (

¼ 1& 1
p cos&1ðcosðjdxþ hÞÞ; &

ffiffiffi
2
p

< gðxÞ <
ffiffiffi
2
p

: ð31bÞ

Note that both of the above cumulative distribution functions have
zero mean and unit standard deviation (rg = 1).

5.3. Families of spectral density functions considered

Each row of the matrix in Eq. (24) represents the SDF of one of
the N transformed fields fn(x); n = 1,2, . . . ,N. However, it is the
underlying fields gn(x); n = 1,2, . . . ,N that are defined first, and then
they are transformed into the corresponding fn(x); n = 1,2, . . . ,N
through the mapping in Eq. (25). The criteria for selecting one fam-
ily of N underlying fields gn(x); n = 1,2, . . . ,N from which the entire
matrix in Eq. (24) will be eventually built are the following.

1. The SDFs of the N fields gn(x); n = 1,2, . . . ,N should show as high
a diversity as possible in providing power over the entire wave
number range considered: [0,ju].

2. All of these N fields should have the same marginal PDF Pg(()
and consequently the same variance.

3. The N SDFs should be organized in a way such that the condi-
tion number of the matrix in Eq. (24) is minimized.

In addition, it should be kept in mind that the N fields gn(x);
n = 1,2, . . . ,N will be transformed into the N fields fn(x);
n = 1,2, . . . ,N using the same marginal PDF Pf(().

An efficient structure to satisfy the aforementioned conditions
is when the SDFs of the N fields gn(x); n = 1,2, . . . ,N all have the
same shape, differing only by repeated shifts of Dj. In order for
all N fields to maintain the same variance, the corresponding SDFs
are defined in a circulant manner: as the SDFs are shifted towards
the upper cutoff wave number ju, the values that would extend be-
yond ju are carried over to the origin of the wave number domain
as described by Eq. (32). This circulant structure is demonstrated in
Fig. 3 where ju = 2p and N = 128. The SDF of g1(x) (out of the N
SDFs Sgn ðjÞ; n = 1,2, . . . ,N) is known as the parent SDF of this family
and is denoted by Sp(j). This parent SDF is shown in Fig. 3(a) for

one of the two cases considered in this study and is denoted by
Sp1 ðjÞ (exponential decay defined in the first row of Eq. (33)). Five
more SDFs are shown from this family in Fig. 3: the 25th, the 60th,
the 80th, the 105th and the 122nd (out of a total of 128). The nth
SDF of a family Sgn ðjÞ is defined in terms of the parent SDF Sp(j) as

SgnðjÞ ¼
Spðjþ ju & nDjþ DjÞ; 0 6 j 6 ðn& 1ÞDj
Spðj& nDjÞ; nDj 6 j 6 ju:

#
ð32Þ

Two families of N SDFs are considered in this study. The corre-
sponding parent SDFs are denoted by Sp1 ðjÞ and Sp2 ðjÞ and are gi-
ven by

Sp1
ðjÞ ¼ expð&2jjjÞ

Sp2
ðjÞ ¼ dðjÞ

ð33Þ

It should be noted that Sp2 ðjÞ is used for the underlying U-
shaped Beta random sinusoid field, while Sp1 ðjÞ is used for the
underlying Gaussian field.

The preceding discussion described the definition of a family of
N underlying fields gn(x); n = 1,2, . . . ,N and of their corresponding
SDFs. However, it is necessary to determine the SDFs of the trans-
formed fields fn(x); n = 1,2, . . . ,N so that they can be used to con-
struct the matrix in Eq. (24). The SDFs of fn(x); n = 1,2, . . . ,N can
be computed numerically in a straightforward way using transla-
tion field theory [12] or associated field theory [19].

The terminology used to identify a specific family of stochastic
fields fn(x); n = 1,2, . . . ,N associated with the computation of a
GVRF is explained through the following representative example:
S1UN refers to the family of SDFs with parent SDF Sp1(j) defined
in Eq. (33) and with Uniform marginal PDF defined in Table 1.

5.4. A note on computational demand

It should be noted that the GVRF methodology is computation-
ally intensive. For each family, there are N stochastic fields fn(x);
n = 1,2, . . . ,N (defined through a parent SDF and a marginal PDF,
e.g. S1UN), requiring N sets of Monte Carlo simulations (each set
of simulations is necessary to determine one variance on the left-
hand-side of Eq. (24)). These intensive computations are per-
formed on an IBM Blue Gene supercomputer owned by Brookhaven
National Laboratory using the IBM Fortran90 XL compiler. Each set
of Monte Carlo simulations involves 102,400 deterministic runs
that are distributed over 4,096 processors for a total of about
30 min of CPU time for all N sets of Monte Carlo simulations for
a given family of N stochastic fields.

It is noted that the GVRF methodology is a brute-force proce-
dure to explore the degree of approximation inherent in the GVRF
methodology for certain (mostly statically indeterminate) struc-
tures. Once the GVRF is established for a specific structure, the var-
iance of the effective flexibility can be computed for any stochastic
field describing the uncertain system properties with minimal
computational effort (a simple integration of the type shown in
Eq. (21)). The initial upfront expense of the GVRF methodology be-
comes worthwhile if a large number of random fields are to be
examined or especially if a sensitivity analysis is needed (there is
no other way currently available to perform a full sensitivity anal-
ysis with respect to spectral properties). Furthermore, the task of
simply determining a GVRF (without assessing the degree of
approximation) is dramatically less computationally expensive
than the full GVRF methodology since it can be done using only a
small handful of random fields – this can be done when determin-
ing GVRFs for structures that are categorically similar to other
structures where the GVRF methodology has been successfully
performed.

Table 1
Parameters of three zero-mean marginal PDFs considered for f(x).

PDF Parameters rf

al au m s

LN &.799 – &.45
ffiffiffiffiffiffiffi
:45
p

.60
TG &.90 .90 0.0 1.0 .67
UN &.99 .99 – – .57
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5.5. Example: GVRF of a fixed simply-supported beam

Consider the fixed-simply supported beam shown in Fig. 4 with
q = 1500 N/m, L = 16 m, E0I = 1.25 ) 107 N m2, and M = 7000 N m.
Using the methodology described in Sections 5.1, 5.2, 5.3, GVRFs
are computed for six pairs of parent SDFs and marginal PDFs:
S1LN, S1TG, S1UN, S2LN, S2TG, S2UN. These computations are per-
formed using Eq. (24). The variances in the left-hand-side vector in
Eq. (24) are estimated by Monte Carlo simulations. For each deter-
ministic analysis in these simulations, the effective flexibility is
computed using Eq. (12).

The six resulting GVRFs are plotted in Fig. 5 where it is observed
that they are very close to each other. The corresponding six pairs
of parent SDFs and marginal PDFs are very different from each
other. Studying Fig. 5 carefully, the following conclusions can be
drawn:

1. The GVRFs are essentially independent of the spectral charac-
teristics of the stochastic field f(x) modeling the uncertain struc-
tural properties (i.e. the GVRFs are SDF-independent).

2. The GVRFs exhibit a slight dependence on the marginal PDF of
f(x). Specifically, the two GVRFs corresponding to the Lognormal

Fig. 3. Selected members of a family of SDFs of an underlying Gaussian field. The parent SDF for this family is shown in (a) and is defined in the first row of Eq. (33).
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marginal PDF are very similar to each other, but have some
slight discrepancy from the GVRFs corresponding to the Uni-
form and truncated Gaussian distributions (the Lognormal
PDF is significantly different from the Uniform and truncated
Gaussian PDFs because it is skewed and has a tail that extends
to +1).

The above conclusions are fortuitous becasue it is much easier
to measure distributional characteristics (marginal PDF) than it is
to measure spatial variation of material properties (SDF).

6. Validation of GVRFs

The validity of the GVRFs is tested by computing the coefficient
of variation (COV) of the effective flexibility by brute-force Monte
Carlo simulation for a different stochastic field model than the six
ones used to determine the GVRFs, and comparing this value to the
predicted COVs determined by the six GVRFs. The random field
model chosen is a translation field whose marginal PDF is the Log-
normal described in Table 1 and with an SDF that is determined
from its underlying Gaussian field having the following SDF

SðjÞ ¼ 1
1:0233678

expð&3j2Þ; ð34Þ

where the coefficient 1/1.0233678 restrains the underlying Gauss-
ian field to the desired unit variance. The predicted COVs from
the six GVRFs are determined by performing the following simple
integrations

Var½D$ *
Z ju

&ju

GVRFðjÞSf ðjÞdj; ð35Þ

where Sf(j) is the SDF of the translated field, and then computing
the COVs from

COV ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var½D$

q

jE½D$j
: ð36Þ

Fig. 6 plots the results of this validation. The red horizontal line rep-
resents the COV of the effective flexibility computed through brute-
force Monte Carlo simulation of the aforementioned random field
model, and the blue diamonds represent the COVs predicted by per-
forming the integration in Eq. (35) for each one of the six GVRFs
computed. All six predictions (blue diamonds) are reasonably good,
validating thus the computed GVRFs. The slight dependence of the
GVRFs on the marginal PDF mentioned earlier is clearly observed
in Fig. 6 where the two GVRFs corresponding to the two stochastic
field models having a Lognormal marginal PDF provide better pre-
dictions than the other four random field models (corresponding
to Uniform and truncated Gaussian marginal PDFs).

7. Conclusions

The main finding of this work is that the VRF concept is applica-
ble for the effective flexibility of statically indeterminate structures
via the GVRF methodology. GVRFs for the effective flexibility have
been established and computed for a linear statically indetermi-
nate beam. Although there are slight discrepancies amongst the
six GVRFs computed (partially due to numerical and estimation er-
rors), these GVRFs have been determined using six significantly
different random field models. This result suggests that for this
class of structures (i.e. statically indeterminate beams), the depen-
dence of the GVRFs on the random field is very minor. Specifically,
the GVRFs appear to be essentially SDF-independent and exhibit a
slight dependence on the marginal PDF of the random field. This
result is quite encouraging as regards to the application of the
GVRF methodology to broad classes of structural systems that
comprise beams and columns; and the full potential of the method
can be realized if it is developed for stochastic effective properties
of continuum bodies. The framework for an extension to contin-
uum effective properties is already published [1] and the major
obstacles appear to be computational in nature, involving the con-
ditioning of Eq. (24), for example. Methods are available for sur-
mounting these challenges such as efficient organization of the

Fig. 6. Validation of GVRFs for fixed-simply supported beam. The red horizontal
line represents the COV of the effective flexibility determined by Monte Carlo
simulation. The blue diamonds represent the predicted COVs through integration of
Eq. (35) and subsequent use of Eq. (36). (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 4. Statically indeterminate fixed-simply supported beam analyzed.

Fig. 5. GVRFs of effective flexibility for fixed-simply supported beam in Fig. 4.
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SDFs in Eq. (24) and the use of inversion techniques well suited to
poorly conditioned matrices. Thus, the key results of this paper
represent an important stage in the development of a robust VRF
theory for effective properties of continuum bodies.
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