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Abstract Tree failure may cause significant economic
and societal disruptions in urban environments. A better

understanding of the relationship between branches and

stem as they affect the dynamic response of decurrent trees
under wind loading is needed to reduce the risk of tree

failure. Finite element (FE) models were used to identify

the parameters that primarily impact tree response. A base
model was developed using data from a sugar maple (Acer
saccharum L.) located in Belchertown, MA, USA, from

which parametric models were subsequently developed.
Confidence in the base model was gained by comparing the

natural frequency of this tree with experimental results.

Results from a parametric study incorporating changes in
eight different tree parameters (stem diameter, slenderness

ratio of branches, number of branches, damping ratio,

branch attachment heights, branch attachment angles,
branch azimuth angles, and elastic modulus) are then pre-

sented to help identify critical model properties that affect

the dynamic amplification factor (Rd) of the tree. A single
parameter was varied in each model while keeping others

unchanged from the base model. Parameters with the
greatest effect on Rd included stem diameter, number and

slenderness of branches in the crown, elastic modulus of

stem and branches, and damping ratio. Thus, it may be

possible to use pruning to alter crown architecture to
reduce the risk of tree failure.

Keywords Sway frequency ! Oscillation ! Dynamic
analysis ! Damping ratio ! Maple ! Wind

Introduction

In developed landscapes, trees provide many benefits

(Nowak and Dwyer 2007), which accrue mostly from larger

trees (Nowak et al. 2002). However, if they fail, large trees
are more likely to cause property damage and personal

injury. Wind is a primary cause of tree failure, and much

work has been conducted to develop mechanistic models
predicting critical wind speeds at which failure of forest

trees will occur (see Gardiner et al. 2008 for a review). A

large body of knowledge has investigated windthrow and
trunk breakage under static loading (Peltola 2006), but very

few studies have considered large, open-grown trees (Kane

and Clouston 2008). It has also long been recognized that
predictions of critical wind speeds from static winching

tests are overestimates since they do not capture the
dynamic interaction of wind and tree (Oliver and Mayhead

1974). The dynamic amplification factor, which is descri-

bed below, is the ratio of dynamic to static displacements
(Chopra 2007) and has previously been used to investigate

the dynamic response of trees (Sellier and Fourcaud 2009).

Investigations of tree dynamics have been both empirical
(Blackburn et al. 1988; Baker 1997; Moore and Maguire

2005; James et al. 2006; Spatz et al. 2007; Rodriguez et al.

2008; Kane and James 2011) and theoretical (Baker 1995;
Kerzenmacher and Gardiner 1998; Saunderson et al. 1999;

England et al. 2000). Finite element modeling has also been

used to investigate the effect of crown architecture and
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wood properties on the wind-induced dynamic response of

trees (Sellier et al. 2006; Moore and Maguire 2008; Sellier
et al. 2008; Sellier and Fourcaud 2009). Moore and Maguire

(2004) reviewed the literature pertaining to dynamics of

forest-grown conifers and presented an empirical relation-
ship, consistent with dynamic beam theory (Niklas 1992),

that predicted natural frequency of such trees from the ratio

of diameter at breast height (DBH) to the square of tree
height. Recent work, however, has highlighted the impor-

tance of crown shape and branches on the oscillation of
trees (Sellier and Fourcaud 2005; James et al. 2006; Spatz

et al. 2007; Sellier and Fourcaud 2009).

Damping is critical in trees to avoid resonance and to
rapidly decrease the response when wind excitation

diminishes (James et al. 2006; Sellier and Fourcaud 2009).

The motion of branches relative to one another and the
stem has been referred to as structural (Niklas 1992), mass

(James et al. 2006), or multiple resonance (Spatz et al.

2007) damping. This is an important component of the
overall damping of sways of decurrent (James et al. 2006)

and excurrent (James et al. 2006; Spatz et al. 2007; Moore

and Maguire 2008) trees, through which wind energy is
transferred between the stem and branches of varying

order.

The mechanism of structural damping is presumably
more important in open-grown trees. Such trees typically

develop a decurrent form so that the relative proportion of

branch and stem mass is the reciprocal of that of excurrent
trees, but they also tend to have much less slender trunks.

Open-grown trees also do not benefit from damping asso-

ciated with crown collisions (Milne 1991; Rudnicki et al.
2008), so the effect of the sway motion of branches is

likely to be important to the overall dynamic response of

the tree.
Empirical studies (Baker 1997; James et al. 2006; Kane

and James 2011) have demonstrated the effect of crown

form on natural frequency of open-grown trees. In contrast
to Moore and Maguire’s (2004) empirical relationship to

predict natural frequency, Baker (1997) showed that the

natural frequency of open-grown, deciduous trees was
inversely proportional to DBH. Although Baker’s (1997)

empirical equation predicted the mean natural frequency of

Bradford Pear (Pyrus calleryana), predicting natural fre-
quency of individual trees from the ratio of DBH to the

square of tree height proved problematic (Kane and James

2011). Recent FE models considering mature trees have
focused on plantation-grown conifers (Moore and Maguire

2008; Sellier et al. 2008). And while Rodriguez et al.

(2008) examined the effect of branches on a small walnut
tree (Juglans regia L.), it is not clear that their results can

be scaled to a large tree of decurrent form. The failure of

such trees presents substantial risk of damage or personal
injury in developed landscapes.

Previous FE models have assumed a constant value of

the elastic modulus (MOE) for the entire tree (Sellier et al.
2006), separate but constant MOE values for the stem and

branches (Moore and Maguire 2008; Rodriguez et al. 2008;

Sellier and Fourcaud 2009) or axial variation in MOE of
the stem but constant MOE for branches (Sellier et al.

2008). Moore and Maguire (2008) noted that greater

attention should be paid to axial variation in MOE of
branches, which has been shown to vary in Norway maple

(Acer platanoides L.) (Dahle and Grabosky 2010). Previ-
ous FE studies have mostly applied single frequency

excitation to the tree models (Sellier and Fourcaud 2009).

A better understanding of the effect of branches on the
dynamic response of large, open-grown trees will help

assess and reduce the risk of failure of such trees, which

can damage property and injure people. In the United
States, from 1995 to 2007, 407 people died as a result of

wind-related tree failures (Schmidlin 2009), and litigation

often accompanies property damage and personal injury
(Mortimer and Kane 2004). Given the complex crown

architecture of many open-grown trees and the sparse

empirical data relevant to developing mechanistic models
for such trees, an initial approach to address this challenge

is to use FE analysis to investigate the dynamic response of

a mature, decurrent tree. In light of the identified gaps in
knowledge in the dynamic response of trees under wind

excitation, the objectives of this study were to investigate

the effects of (a) geometric and material properties of
branches, (b) crown architecture, and (c) the stem on the

dynamic amplification factor at a range of wind excitation

frequencies.

Materials and methods

Please see Appendix A for a list of all symbols associated

with formulas throughout the text.

Base tree

All parametric models described in this section were cre-

ated with reference to a base model (denoted M100) of a

sugar maple (Acer saccharum) growing in Belchertown,
MA, USA (72.4138W longitude and 42.2778 N latitude).

The site was formerly an institutional property with streets

and buildings, and the size and crown architecture of trees
(Fig. 1) were typical of those growing in residential set-

tings in the northeastern United States. In particular, the

seventh branch (Table 1) effectively served as a co-domi-
nant stem. The diameter of the main stem is 53 cm mea-

sured 1.4 m above the ground (diameter at breast height,

DBH) and the tree height is 17.1 m. Its crown is 13.7 m in
height and 12.1 m in width; the ratio of minimum to
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maximum crown width, measured orthogonally, is 0.74.

The height, diameter, attachment angle, and azimuth of all

eleven primary branches were also measured (Table 1).
Branch length was not measured due to time constraints.

To create the parametric tree models, selected physical

properties of M100 (stem diameter; damping ratio; and the
number, slenderness ratio, attachment height, attachment

angle, and azimuth of branches) were changed indepen-

dently. Each parametric model is fully described below.
In August 2006, strain meters that measured axial trunk

displacements accurate to 0.001 mm were attached

orthogonally to the stem (north or south and east or west
sides) of M100 approximately 1.4 m above the ground as

described by James and Kane (2008). A skidder with a

cable winch (John Deere model 440D) was used to apply a
point load at approximately 40 % of tree height, where the

diameter of the trunk was large enough to sustain the

applied load without failing. The tree was pulled and
released three times, incident with each strain meter (six

tests total); loads were always applied to place the strain
meters in tension. Axial displacements during free sways

were recorded on both strain meters (incident and orthog-

onal) and plotted with respect to time. The time (T) and
amplitude (y) of five successive maximum displacements

(i = 1, 2, 3, 4, 5) were used to determine damping ratio (f),

which was calculated using the logarithmic decrement
method:

yi

yiþ1
¼ exp

2pfffiffiffiffiffiffiffiffiffiffiffiffiffi
1$ f2

p : ð1Þ

For each time history of displacement, a Power Spectral

Density (PSD) was plotted in MATLAB (7.10.0 R2010a,
Mathworks, Natick MA) and used to calculate the tree’s

natural frequency.

Finite element modeling

The finite element (FE) modeling program ADINA-8.5
(ADINA Software, Watertown, MA, USA) was used to

conduct the analyses of all tree models. The stem and

branches of M100 and all of its parametric iterations were
divided into longitudinal elements of constant geometry

and MOE. For each branch or stem element, MOE and

diameter were separately defined before meshing the ele-
ments. The concept of local averages of random fields

introduced by Bucher (2009) was used to define the

properties of each element. In this method, each element is
assigned properties of a homogenous material instead of

using heterogeneous material properties, but the overall
material variations are captured by dividing the tree model

into sufficient elements.

Elements within each tree stem and branches (M100 and
its parametric iterations) were modeled using Euler–Ber-

noulli beam elements of varying cross-sectional dimen-

sions to model the branch taper. Branches were divided
into 12 cylindrical elements of equal length. Diameter of

the proximal element was from the measured value and

each subsequently distal element was reduced in diameter
according to the assumed slenderness value as long as the

diameter of the most distal element was C2 cm. Stems

were divided into elements as follows: nodes were estab-
lished on the stem at the height of each branch; if the

distance between two successive nodes exceeded 0.5 m,

additional nodes were added at equal lengths midway
between them so that no nodes were more than 0.5 m apart.

The MOE of the proximal stem element was set to 10.7

GPa (Kretschmann 2010). For each subsequent element,
MOE was adjusted in accordance with the slope of an

empirical relationship for branches of Norway maple

(Dahle and Grabosky 2010). For the elements in the distal
4.3 m of the stem (the top branch), MOE was held constant

at the value of the first element in the top branch. Spatz

et al. (2007) noted a decrease in MOE of branches with
branch height, so MOE of the proximal element of each

branch was initially assigned the MOE of the stem element

to which the branch was attached. MOE can also vary with
branch diameter (Niklas 1997), so MOE of each proximal

branch element was adjusted approximately according to

the empirical relationship developed by Spatz et al. (2007).
Using their exact relationship produced unrealistically high

Fig. 1 Maple tree in Belchertown, MA which is used for the base
model, M100
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values of MOE, presumably because of different species

and the disparity in branch diameter between branches used
to derive the relationship and those of M100. Adjusting

MOE as described produced similar mass-weighted mean

values of MOE for branches of similar diameter (Table 1),
with one exception: the unadjusted, mass-weighted mean

MOE of the seventh branch was substantially less than

branches of similar diameter (e.g., the first, second, and
third branches). MOE of the proximal element of the

seventh branch was increased so that the mass-weighted
mean MOE of the entire branch was within the 95 % CI of

the best-fit line predicting mass-weighted MOE of each

branch from its diameter. MOE of subsequent elements in
each branch was adjusted in accordance with the slope of

an empirical relationship for branches of Norway maple

(Dahle and Grabosky 2010).
The stem was assumed to be fixed at the base, and con-

nections between branches and the stem were assumed to

transfer moment and shear force at the attachments. The
mass of the stem and branches was estimated assuming

mean density of specimens of green wood (560 kg/m3) from

the Wood Handbook (Kretschmann 2010) and calculated
volume of the stem or branch. This method will slightly

overestimate branch mass because diameters were mea-

sured outside the bark, which is not as dense as the wood
itself. The FE models only included the stem and primary

branches. The mass of secondary and tertiary branches was

included in the mass of their parent primary branch by
increasing its density proportionately assuming a fractal

structure between primary and higher order branches. The

ratio of stem volume to the total volume of primary

branches was calculated for M100. Assuming that M100

followed a fractal structure as described by Rodriguez et al.
(2008), the ratio was applied to each primary branch to

estimate the additional mass contributed by secondary and

tertiary branches. Previous work has demonstrated that
modeling branches as lumped masses attached to the stem

can lead to errors of modeled natural frequencies of trees

(Sellier et al. 2006; Moore and Maguire 2008), so the
weight of each branch was modeled as uniformly distrib-

uted along each branch. This procedure ensured that the
entire mass of the tree was included in the analysis.

The measured value of f from free sway tests was

18 %. This value was rounded down to 15 % to facilitate
visual presentation of the parametric analyses and it did

not meaningfully affect the results (as described in the

‘‘Results’’ section). In order to emphasize damping for the
first two modes of oscillation, the Rayleigh damping

coefficient (b) was assumed to be 0.001; previous studies

(Sellier et al. 2006; Castro-Garcı́a et al. 2008) have used
similar values. If b is known, a can be calculated from

Eq. (2):

aþ bx2
k ¼ 2xkfk ð2Þ

where xk is known from the undamped dynamic analyses

and f is 15 %.

To validate the FE model, modal frequencies of the
whole tree, the branchless stem, and each branch were

determined several other ways. Natural frequency of the

whole tree was determined from field tests (described
above) and by using two empirical relationships. Baker

(1997) developed Eq. (3) for in-leaf Tilia x europaea:

Table 1 Diameter, estimated mass, mass-weighted mean MOE, attachment height, azimuth, attachment angle, and the first modal frequencies of
the stem and each branch of M100

M100 Diameter
(m)

Mass
(kg)

MOE
(GPa)

Attachment
height (m)

Azimuth
angle (8)

Attachment
angle (8)

Natural frequency
(Hz)

1st Mode frequency
(Hz)

Stem 0.53 1235 9.00 n/a n/a n/a 2.368 2.332

Top branch 0.13 69 4.60 12.80 0 0 1.070 1.641

1st Branch 0.28 393 5.08 3.23 83 44 0.693 0.756

2nd Branch 0.27 320 5.03 3.96 230 23 0.726 0.811

3rd Branch 0.27 338 4.95 5.33 68 27 0.704 0.786

4th Branch 0.08 8 4.29 5.36 180 37 1.291 1.752

5th Branch 0.11 21 4.50 5.94 22 13 1.150 1.471

6th Branch 0.06 4 3.97 6.10 354 62 1.341 2.049

7th Branch 0.32 563 5.08 6.19 298 80 0.594 0.652

8th Branch 0.19 118 4.83 7.38 157 88 0.847 0.983

9th Branch 0.17 81 4.74 7.62 47 85 0.906 1.106

10th Branch 0.12 30 4.52 8.60 109 47 1.062 1.395

11th Branch 0.06 5 4.03 9.66 111 90 1.308 2.003

The first modal frequencies were calculated using Eq. (6) (Mabie and Rogers 1972). The estimated first mode frequencies by using Eq. (6) are
comparable with the results of the FE modeling
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fn ¼ ½0:569 $ 0:0021ðDBHÞ(

) 0:0043½1 þ 0:0026ðDBH $ 58:4Þ2(1=2
: ð3Þ

where DBH is measured in cm and the right-hand term
is the 99 % confidence interval. Substituting 53 cm into

Eq. (3) yields 0.50 Hz. Mayhead (1973) developed Eq. (4)

for conifers:

fn ¼ 0:86þ 0:74
H

ffiffiffiffiffiffiffiffi
MH
p

DBH2

" #$ %$1

ð4Þ

where DBH is given in cm, H is total tree height (m) and M
is tree mass (kg). Entering values of M100 into Eq. (4)

gives:

fn ¼ 086þ 074
17:1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3185ð171Þ

p

532

 !" #$1

* 0:52 Hz ð5Þ

The first four modal frequencies of the branchless stem

and each branch were determined in the FE analysis (first

frequency), or using Mabie and Rogers’ (1972) equation
for double-tapered cantilever beams (second, third, and

fourth frequencies):

fn ¼
ðlkÞ2

2pðl2=h1Þ

ffiffiffiffiffiffiffiffi
Eg

12q

s

ð6Þ

where (lk)2 is a constant associated with a particular beam

taper, l is the length of the element, h1 is the thickness at
the distal point of the element parallel to the direction of

the applied load, E is the elastic modulus, g is gravitational

acceleration, and q is the density of the element. Imperial
units were used for these parameters to be consistent with

Mabie and Rogers (1972).

Numerical method employed in dynamic analyses

The time history method used to conduct the dynamic
analyses is unconditionally stable if the ratio of time step to

natural period of the model (Dt/Tn) is less than or equal to

0.551 (Chopra 2007). To avoid any stability problems,
particularly for higher modes, a sufficiently small time step

of 0.05 s was selected for the analyses. To verify the

accuracy of the prototype model, the undamped natural
frequency was calculated in the FE program as 0.59 Hz (so

Tn = 1.69). Thus, the ratio of the time-step increment to

the natural period of the model is Dt/Tn = 0.05/1.69 =
0.029 \ 0.551.

Material nonlinearity was ignored in the FE model

because the tree response did not exceed the yield stress, so
displacements and stresses remain within the elastic region.

Geometric nonlinearity was neglected, because stiffness

reduction caused by P-Delta effects is negligible given the
relatively small mass of the stem near the top of the tree.

Although the lateral deflection of M100 may be large near

the top, the weight of the top branch and stem elements
immediately proximal to it was much less massive than

stem elements proximal to the ground, which experience

very small lateral deflection. Including the P-Delta effect
increased Rd on average by 1 % for the range of modeled

wind frequencies.

Assumed wind loading

Since wind speed varies with height (z) above the ground

(Hsu et al. 1994; Zhu et al. 2000), for each element of the

tree in the FE model, wind profile (u) was determined by
Eq. (7) (Panofsky and Dutton 1984), which is commonly

used in engineering texts for land based and for the neutral

stability of the atmosphere:

u ¼ uh z=hð Þ1=7 ð7Þ

where uh is the referenced wind speed at height
(h = 1.4 m). Wind speed profiles used in forest stands

were deemed inappropriate because of the substantial

reduction in wind speed below the top of the canopy.
Maximum wind speed modeled was 10 m/s. The

aerodynamic drag (D) applied as a harmonic function on

each tree element was calculated as:

D ¼ 0:5rairu
2ACD ð8Þ

where q is air density (assumed to be 1.226 kg/m3), A is the

frontal area of each cylindrical element of a branch or the
stem, and CD is the drag coefficient, which was assumed to

vary with wind speed in accordance with Kane and Smi-

ley’s (2006) empirical relationship for small red maples
(Acer rubrum). The distribution of drag on the tree and

individual branches is shown in Fig. 2. Each model was run

38 times for wind excitation frequencies ranging between 0
and 5 Hz. Wind frequencies were incremented by 0.05 Hz

for frequencies up to 1.20, 0.1 Hz for frequencies between

1.20, 2.00, and 0.50 Hz for frequencies[2.00 Hz. Multiple
frequencies were investigated because of the highly vari-

able air flow and turbulence associated with wind in

developed settings (Kastner-Klein et al. 2004). Smaller
increments were used at lower frequencies to better capture

the low frequency response of the trees, where greater wind

energy can be transferred to the tree (Baker 1995). Plots of
Rd versus wind frequency in the ‘‘ Results’’ section include

interpolated values between modeled wind frequencies.

Dynamic amplification factor (Rd)

To capture the characteristics of dynamic response using a
single parameter, the dynamic displacement amplification

(or deformation response) factor (Rd) was selected as the
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primary output of the FE models. Rd is the ratio of the

maximum displacement computed from the dynamic
response of a structure to the maximum displacement

computed from the static response of the structure. This

approach is particularly useful to evaluate systems
responding in the linear range, as assumed for all tree

models in this study. Rd represents a unitless function that

depends on characteristics of the structure (the mass,
damping, and stiffness of the tree in this case) and the

forcing function (frequency in the case of a harmonic load).
For a single degree of freedom (SDOF) system subject to

harmonic loading, Rd can be calculated as (Chopra 2007):

Rd ¼ u0

ustð Þ0
¼ u0

P0=k
¼ 1

½1$ ðx=xnÞ2(2 þ ½2fðx=xnÞ(2

ð9Þ

where x is the frequency of the excitation function, xn is

the natural circular frequency of the system, f is the
damping ratio, k is the stiffness of the system, and P0 is the

amplitude of the excitation force.

For SDOF systems, Rd is plotted as a function of the
frequency ratio (x/xn) (Chopra 2007). There are often

multiple peaks for MDOF systems, however, so Rd was

plotted as a function of x for this study, as in Fig. 3. Modal
frequencies of M100 were identified where peaks in plots

of the damped and undamped Rd for Node-10 (located on

the stem 1.4 m above the ground) occurred at the same
excitation frequency. Modal frequencies of each branch of

M100 were identified where peaks in the plot of the

undamped Rd for a node near the base of the branch
exceeded the Rd plotted for Node-10. Figure 3 includes

these plots for Node-27, near the base of the first branch,

which is closest to the ground.
In civil engineering (or earthquake engineering), Eq.

(10) is a common formula to calculate the total static shear

force at the basement of buildings (Chopra 2007):

Vst
bn ¼

X1

j¼1

X1

n¼1

sjn

& '
¼
X1

j¼1

X1

n¼1

CjnmjUjn

& '
ð10Þ

where Un is the modal participation factor of the nth mode,

mj is the mass of the jth lumped mass and /jn is the nth-

mode shape at the location of the jth lumped mass. The
modal participation factor (Un) includes the modal mass

(Mn) of the total system in its denominator. Thus, the ratio

of mj in Eq. (10) to the modal mass (Mn) is called mass
participation of a branch or branches. To investigate the

effect of branch mass on the dynamic behavior of the stem,

it can be assumed that each branch mass is a lumped mass
(mj) on the stem. The shear force (sjn) at the attachment of a

branch to the stem depends on the branch mass. Therefore,

the largest branches in Table 1 (7, 1, 3 and 2nd branches, in
descending order of diameter), which contain a large por-

tion of the total mass of the tree, cause great shear force

where they attach to the stem, increasing displacement and
Rd.

Parametric models

The parametric analysis used M100 as the base model. To

investigate the effect of tree morphometry on Rd, each of
eight parameters (stem diameter; damping ratio; MOE; and

the number, height, attachment angle, azimuth and slen-

derness ratio of branches) was varied independently,
holding the other parameters constant. A nomenclature was

created to represent all the parametric models, in which the

second digit refers to the number of the parameter being
varied and the third digit refers to the variation of the

parameter. For example, models M111, M112, M113, and

M114 are the four variations of the first parameter; M121
and M122 are two variations of the second parameter, and

so on. Parameters were varied in accordance with personal
observations of the authors for open-grown sugar maples in

the northeastern USA.

The effect of stem diameter was examined by multi-
plying the stem diameter of M100 by 1.25, 1.50, 1.75, and

2.00, which increased the stem diameter to 66, 79, 93, and

106 cm in models M111, M112, M113, and M114,
respectively. Trees of smaller diameters were not modeled

because it was intended to investigate large trees that posed

a greater risk of damage if they failed. To maintain a
realistic taper of the stem, the diameter of the top branch

(the axial extension of the stem) was also increased by the

same factors in these models.

Fig. 2 Illustration of distributed wind forces on stem and branches of
trees. The figure on the left is an elevation view, and the one on the
right is a plan view
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Branches on M100 were assumed to have a slenderness

ratio of 50. This value was selected because it represented
the mean slenderness (rounded to the nearest ten) of

branches, the diameter of which was at least 10 % of stem

diameter on a nearby sugar maple. Only larger primary
branches were measured on the nearby sugar maple

because it was expected, from Eq. (10), that more massive

branches would exert a greater influence on Rd and that the
influence of smaller primary branches was negligible.

Slenderness was changed to 60 and 40 in models M121 and
M122, respectively. These values represented the mean

slenderness (rounded to the nearest ten) of branches the

diameter of which exceeded the median and upper quartile
diameters, respectively, on the nearby sugar maple. Slen-

derness ratio was changed by altering branch length while

keeping branch diameter constant.
The number of branches on the tree was varied as follows

(Fig. 4): model M130 included only the stem and the ‘‘top

branch,’’ the axial extension of the stem. Subsequent
models added individual branches (see Table 1): models

M131, M132, M133, and M134 added the first; first and

second; first, second and third; and first, second, third and
fourth branches of M100, respectively. Branches were

added beginning with those closest to the ground because

the first three branches had comparatively larger diameters
while the fourth was of smaller diameter. This approach

facilitated a comparison of the effect of branch mass and

branch dynamic response on Rd. To explore the effect of
spatial distribution of mass on Rd, additional models were

considered. M131-7 included just the top and seventh

branches. M131 was expanded by moving the first branch to
different heights: 4.7 and 6.2 m. The latter height is the

height of the seventh branch.

The effect of damping was examined by increasing the
damping ratio from 0 to 0.20 with the following values: 0,

0.01, 0.05, 0.10, 0.15, and 0.20. The range was chosen in

accordance with the maximum measured value from free
sway tests on M100 and values similar to those previously

reported for deciduous trees (Roodbaraky et al. 1994; Kane

and James 2011). Because of the non-linear relationship
between Rd and f (equation 13), it was expected that

models with damping ratios greater than 20 % would

approach the static response (few to no oscillations) so
were not considered.

To assess the effect of the branch attachment heights,
the attachment points were increased (M151) and

decreased (M152) by 0.5 m for all branches. These models

were expected to serve as a comparison to models in which
branches were added, because of the consistent change in

the location of mass distribution along the stem.

In addition to a model using measured branch angles
(M163), models were also developed assuming constant

branch angles of 40, 30 and 208 for M161, M160, and

M162, respectively. These attachment angles were selected
because it was observed that many branches on the sugar

maple curved upwards beyond their attachment to the stem.

It was not possible to measure the angle of the branch
relative to its center of mass. Results demonstrated that this

assumption was reasonable.

The effect of wind directionality was investigated by
varying the branch azimuth angle instead of changing the

direction of wind forces, which were initially assumed to

be from the west. Models M171, M172, and M173
increased the azimuth of each branch by 30, 60, and 90

degrees relative to their measured azimuth.

Two models were created to investigate the effect of
varying MOE axially for branches and the stem. In M181,

MOE of the stem and branches was set to the constant

value of 6.53 GPa, which was the mean MOE of all ele-
ments in M100, weighted by the mass of each element. In

Fig. 3 Comparison of the
dynamic amplification factors of
the first branch and the main
stem in the prototype tree. The
solid line corresponds to Node
10, which is on the stem, 1.4 m
above the ground. The dashed
line is for Node 27, which is on
the proximal element of the first
branch
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M182, MOE of each element of the stem was set to 9.0
GPa, the weighted mean of MOE of stem elements in

M100; MOE of each branch element was set to 4.99 GPa,

the weighted mean of MOE of all branch elements in
M100.

Results

Morphometry and natural frequency of M100

Table 1 includes the estimated mass of each branch and

stem and mean MOE of branches and the stem, weighted by
the mass of each element in a branch or the stem. Table 1

also includes the natural frequencies of the stem and bran-

ches of M100. The mode shapes of the stem, top branch, and
first branch are shown in Fig. 5. It can be seen that smaller

natural frequencies correspond to branches of greater
diameter because natural frequency is inversely propor-

tional to the diameter of a beam. The circular frequency

(xn) of a branch is the square root of the ratio of stiffness (k)
and mass (m), which increase as functions of diameter

raised to the fourth power and cubed, respectively:

xn ¼
ffiffiffiffiffiffiffiffiffi
k=m

p
ð11Þ

Figure 3 reveals the first three modal frequencies of the

first branch (see Table 1 for values) in comparison with
modal frequencies of M100. Unless stated otherwise, Rd

values refer to those at Node 10 in the FE model, which is

on the stem, 1.4 m above ground.
Figure 6 shows Rd of M100 as a function of wind fre-

quency for damping ratios of 0 and 15 %. The fully
damped model shows a peak at 0.59 Hz, which is greater

than the value determined from pull and release tests

(0.42 Hz). Although 0 % damping is unrealistic, it is
included to illustrate peaks in the Rd curve that would

otherwise not be visible. The peaks of the undamped plot

of Rd at 0.59 and 2.0 Hz correspond to the first and the
second modal frequencies of the tree; the first modal fre-

quency is close to the first modal frequencies of the large

branches and the second modal frequency is close to the

first modal frequency of the stem, the second modal fre-
quency of the medium and small sized branches and the

third modal frequencies of the largest branches (Table 1).

Other peaks in the undamped model correspond to modal
frequencies associated with branches. The number of

branches and the number of peaks in the plot are not equal

because several branches have natural frequencies that are
approximately equal (because they have similar diameters).

For example, the first modal frequencies of the first, sec-

ond, and third branches are similar (Table 1), which caused
the peak in Rd near 0.7 Hz (Fig. 6).

Effects of parameters on dynamic response of tree
models

Figure 7 shows Rd plotted with respect to wind frequency

for M100 and models of trees with greater stem diameter.

The plot can be divided into three regions, identified by
ovals. The left-hand oval marks the region where the first

peaks of the Rd curves occur. The first peaks reflect the first

modal frequency of several large branches (Table 1). Peaks
in the center oval include the natural frequency of the top

branch in the models. Peaks in the right-hand oval reflect

the natural frequency of the stem in each model. The fre-
quency at which Rd was maximum increased in the center

and right-hand ovals because of increased diameters of the

top branch and the stem. The first modal frequencies of the
stem and top branch in each model can be found in

Fig. 4 Illustration of models
M130, M131, M132, M133, and
M134, where the parameter
varied is the number of
branches. M131-7 represents the
tree that has only the top and
seventh branch. M131-1@4.7 m
and M131-1@6.2 m are for the
models that attached the first
branch to the trunk at 4.7 and
6.2 m above the ground,
respectively

Fig. 5 Natural frequencies and mode shapes of selected members
(1st branch, top branch, and main stem, respectively, from left to
right)
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Table 2. Peaks in Fig. 7 that coincide with natural fre-

quencies of different branches (left-hand and center ovals)
and the stem (right-hand ovals) are consistent with the

mass participation of different elements in the structure

(Chopra 2007). As the diameter of the stem and top branch
increased, their mass participation increased, which

explained why Rd of models of greater stem diameter

decreased in the left-hand oval, but increased in the center
and right-hand ovals.

Changes in slenderness ratio were introduced in the
models by changing the length (and, consequently, the

mass) of branches, which altered natural frequency of

the branches as expected from the dynamics of a cantilever
beam with uniformly distributed mass and elasticity

(Chopra 2007):

fn /
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_EI= _mL4

q
ð12Þ

where _E is the distributed elastic modulus, I is the moment

of inertia, and _m and L are the distributed mass and length,
respectively, of the beam. As slenderness decreased, Rd

increased (Fig. 8) because the natural frequency of larger

branches became closer to the natural frequency of the
stem and top branch (Table 1), which had slenderness

ratios of 24 and 33, respectively. Changing the assumed

value of slenderness from 50 to 60, caused a peak at
0.40 Hz (Fig. 8), consistent with the value determined

from free sway tests.

The effect of adding branches on Rd again captured the
effect of mass participation (Chopra 2007) of different

elements in the system. The addition of branches of similar

natural frequencies increased the magnitude of Rd at the
resonance frequency associated with the branches and

decreased the magnitude of Rd at resonance frequencies

associated with the stem and top branch (Fig. 9). Rd of

M130 (just the stem and top branch) had maxima at 1.07

and 2.50 Hz, which corresponded to the natural frequencies
of the top branch and stem, respectively (Table 1). Adding

the first branch (M131) added another peak of Rd at

0.65 Hz, close to the natural frequency of the first branch
(Table 1). Adding the first branch also reduced the mag-

nitude of Rd at 1.07 and 2.50 Hz because the natural fre-

quency of the first branch was not similar to that of either
the stem or top branch. This pattern recurred when the

second (M132) and third (M133) branches were added.
Adding the fourth branch did not meaningfully alter Rd

because of the small diameter (and thus small mass) of the

fourth branch (Table 1). Adding the seventh branch to
M130 (M131-7) shifted the left-hand peak of Rd to coin-

cide with the natural frequency of the seventh branch. It is

not coincidental that the natural frequency of the seventh
branch was similar to the natural frequency of M100

because the seventh branch is the most massive and it is

also located higher on the stem than other large branches
(Table 1). Increasing the height of the first branch (M131-

1) resulted in similar reductions of the magnitude of Rd at

the resonance frequencies associated with the top branch
(1.07 Hz) and stem (2.50 Hz), as well as increasing the

magnitude of Rd near the resonance frequency of the first

branch (0.69 Hz) (Fig. 10). As the height at which the
shear force and moment of the first branch were transferred

to the trunk increased, the magnitude of Rd (a) increased at

the resonance frequency of the first branch (the first peaks
region in Fig. 10), but (b) decreased at the resonance fre-

quencies corresponding to the top branch and stem (second

and third peaks regions, respectively, in Fig. 10).
Figure 11 illustrates the non-linear decrease in the

magnitude of Rd with increasing damping as expected

from Eq. (9). For damping ratios less than 10 %, modal
frequencies associated with different branches and the stem

Fig. 6 Dynamic amplification
factor (Rd) plotted against wind
frequency for the undamped and
damped (15 %) MDOF systems
of the prototype tree (M100)
subjected to harmonic wind
forces. Values of Rd are from
Node 10 which is on the stem,
1.4 m above ground
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are obvious. These modal frequencies disappear, however,
as damping increases beyond the measured value from free

sway tests, and the plot of Rd for f of 15 and 20 % is nearly

identical. The small values of Rd for f = 15 and 20 %
illustrate the heavy damping observed in the free sway

tests.

Altering the height, attachment angle and azimuth of
branches did not have a measurable effect on Rd (data not

presented). Although changing the attachment angle of

branches altered the spatial distribution of branches mass,
the shear force and moment of the swaying branch were

still transferred at the same height on the stem. The small

magnitude and global application of change may have also
limited the effect on Rd. The negligible effect of altering

branch azimuth on Rd was consistent with the natural

frequency of the tree measured during pull and release
tests. Empirically determined values of natural frequency

were similar for initial displacement in the north–south

(0.40) and east–west (0.42) directions.
Assuming a constant MOE for the entire tree (M181)

substantially increased Rd (Fig. 12). This was expected

because the fundamental frequency of each element in the
model would be more similar because each element had the

same value of MOE [according to Eq. (12)]. The increase

Fig. 7 Dynamic amplification
factor (Rd) in terms of wind
frequency for the selected
models (M100, M111, M112,
M113, M114). Values of Rd are
from Node 10 which is on the
stem, 1.4 m above ground

Table 2 Diameter and estimated first modal frequency of the stem
and top branch in models shown in Fig. 11

Model Stem Top branch

Diameter
(m)

Frequency
(Hz)

Diameter
(m)

Frequency
(Hz)

M100 0.53 2.50 0.13 1.05

M111 0.66 3.00 0.16 1.20

M112 0.79 3.50 0.20 1.45

M113 0.93 4.00 0.23 1.70

M114 1.06 4.50 0.26 1.85

Fig. 8 Dynamic amplification
(Rd) factor in terms of wind
frequency for the selected
models, M100, M121, and
M122. Values of Rd are from
Node 10 which is on the stem,
1.4 m above ground
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in the frequency at which the maximum Rd of M181

occurred was also expected because MOE of the seventh
branch (at which natural frequency the peak Rd occurred in

M100) increased, so its natural frequency was expected to

increase according to Eq. (12). Assuming different, but
constant values of MOE for stem and branches (M182)

slightly reduced Rd relative to M100. This result was also

expected because there was a greater disparity between
natural frequency of the seventh branch and that of the

stem and top branch. The resonance frequency was slightly

less for M182 because the natural frequency of the seventh
branch would be slightly less assuming the slightly smaller

value of MOE for that branch [by Eq. (12)].

Discussion

This study was the first attempt to construct a FE model of

a large, open-grown tree of decurrent form. Previous FE

models have focused on smaller trees (Sellier et al. 2006;
Rodriguez et al. 2008) or plantation-grown conifers (Moore

and Maguire 2008; Sellier et al. 2008). The estimated mass

of M100 (3,185 kg) and the ratio of branch mass to stem
mass (1.4) were significantly larger than Douglas-firs

(Moore and Maguire 2008). Slenderness of the stem of

M100 either including (32) or excluding (24) the top
branch was also smaller than previous studies considering

dynamic behavior of trees (Moore and Maguire 2005;

Sellier and Fourcaud 2005; Jönsson et al. 2007; Spatz et al.
2007; Rodriguez et al. 2008; Sellier and Fourcaud 2009).

This study also incorporated axial variation of MOE for

the stem and branches, but the base value of MOE was
taken from the literature (Kretschmann 2010), rather than

measured directly. The latter approach yields an ‘‘equiva-

lent MOE’’ that has produced mixed results (Sellier et al.
2006; Moore and Maguire 2008). An average value from

the literature was chosen because earlier tests of sugar

maples at the site (Kane unpublished data) revealed a wide
range of values of MOE among trees. In light of Sellier

et al. (2006) caution regarding inter-tree variability with

respect to MOE, and since it was not possible to measure
equivalent MOE for the modeled sugar maple, an average

value from the literature was chosen. It is not clear whether

using a constant equivalent MOE would have similarly
altered the plot of Rd as M181 did. The example of M181

demonstrates the importance of considering variation in

MOE in future work, and is consistent with studies that
have shown that sway characteristics are influenced by

MOE of the stem (Sellier and Fourcaud 2009) and branches

(Moore and Maguire 2008). In contrast, Sellier et al. (2006)
assumption of a constant equivalent MOE for the entire

tree was justified by close agreement of measured and

modeled natural frequency of a small maritime pine (Pinus
pinaster Ait.). This inconsistency with the example of

M181 may have been due to the difference in tree size and

relative proportion of crown and stem mass of the sugar
maple.

The effect of crown architecture on natural frequency

has been illustrated previously (James et al. 2006; Spatz
et al. 2007; Sellier and Fourcaud 2009) and previous work

has shown a similar difference between natural frequency

of the stem compared to the whole tree (Moore and
Maguire 2005; Sellier and Fourcaud 2005; Spatz et al.

2007). Results of the current study demonstrate the sig-

nificant effect of large branches on sway response, con-
sistent with mass participation (Chopra 2007) of different

elements of the structure. Previous authors have speculated

that the effect of large branches in a tree crown made it
more difficult to explain empirical data with simplified

theoretical approaches (Baker 1997; Kane and James

2011). The effect of large branches was also contingent
upon their location in the crown. Altering the height of the

Fig. 9 Dynamic amplification
factor (Rd) in terms of wind
frequency for the models
(M100, M130, M131, M131-7,
M132, M133, and M134).
Values of Rd are from Node 10
which is on the stem, 1.4 m
above ground
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first branch changed the magnitude of Rd in a predictable
way. A large branch has a greater effect on the tree when it

is located higher in the crown because the shear force and

moment associated with the sway of the branch are trans-
ferred to a less massive segment of the stem. This obser-

vation, as well as the absence of maxima of Rd associated

Fig. 10 Dynamic amplification
factor (Rd) in terms of wind
frequency for the models
(M100, M130, and M131-1).
The latter model was
constructed to locate the mass of
the first branch at its actual
height (3.2 m), as well as 4.7
and 6.2 m (which is the height
of the seventh branch). Values
of Rd are from Node 10 which
is on the stem, 1.4 m above
ground

Fig. 11 Dynamic amplification
factor (Rd) in terms of wind
frequency for the base model
(M100) with varying amounts
of damping ranging from 0 to
20 % of critical. Values of Rd
are from Node 10, which is on
the stem, 1.4 m above ground

Fig. 12 Dynamic amplification
factor (Rd) in terms of wind
frequency for models M181,
M100 and M182. Values of Rd
are from Node 10, which is on
the stem, 1.4 m above ground
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with the natural frequencies of the top branch and stem in

M100, provides additional evidence of mass participation,
and is consistent with James et al. (2006) observations of

mass damping. Examining Rd through a wide range of

wind frequencies facilitated the illustration of mass par-
ticipation, as shown by the reduced magnitude of Rd at

resonance frequencies associated with the stem and top

branch. The lack of effect on Rd due to changing the height
of branches was not consistent with the effect of increasing

the height at which the first branch was attached. This
disparity was due to (a) a comparatively smaller magnitude

of change to the height of branches and (b) the global

application of these changes, rather than changing a single
branch.

The modeled natural frequency of M100 fits within the

99 % confidence interval of Eq. (3) (Baker 1997), but it
was 19 % less than the values calculated in Eq. (5)

(Mayhead 1973). This disparity was not surprising because

Eq. (5) was developed from trees of excurrent form.
Although it was convenient that adjusting the assumed

value of slenderness resulted in a modeled natural fre-

quency of M100 much closer to the empirical value
measured in free sway tests, the result may simply be

serendipitous. Results of the parametric analysis of slen-

derness must therefore be interpreted cautiously. The
important effect of slenderness on both the magnitude of

Rd and the resonance frequency underscores the need for

additional work to measure the slenderness of branches
and model its effect on sway motion. Concomitant with

slenderness of branches, future work should more care-

fully account for the curvature of branches on open-grown
trees to better define the spatial distribution of branch

mass.

The effect of large branches on both the magnitude of
Rd and the resonance frequency is clearly important in

decurrent trees. Pruning to remove lower branches in the

crown of excurrent trees did not substantially alter natural
frequency and damping until most of the branches had been

removed (Mayhead et al. 1975; Moore and Maguire 2005).

Removing the seventh branch of M100, in contrast, would
have removed 18 and 29 % of the total tree mass and

crown mass, respectively. For decurrent amenity trees,

predicting the natural frequency of large branches in the
crown has important implications for pruning that warrant

additional investigation. For example, removing one large

branch from a crown that includes several branches of
similar diameter may reduce Rd more effectively than

pruning an equivalent amount of mass from several smaller

branches. This approach ignores possible physiological and
esthetic constraints on pruning, but a better understanding

of the mechanical effects of pruning may lead to alternative

approaches to pruning that more effectively reduce the risk
of branch or tree failure.

The parametric analysis of Rd is useful to illustrate one

aspect of the likelihood of failure of a tree, but, additional
factors must also be considered for tree risk assessment.

Among these are parameters to describe the wind [e.g.,

turbulence spectra studied by Sellier et al. (2008)] and the
effect of structural defects such as decay (Kane and Ryan

2004) and poor branch attachments (Kane and Clouston

2008), which can reduce load at which trees fail. Models
needed to evaluate the risk of failure of decurrent trees may

be simplified and made more efficient given a better
understanding of the main parameters that affect their

dynamic response. However, the importance of large

branches highlights the need to carefully assess crown
architecture of individual trees; and additional work on

parameters such as slenderness and MOE is clearly

necessary.
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Appendix: Acronyms and Abbreviations

Y Displacement

fn Natural frequency in Hz
f Damping ratio

a, b Rayleigh damping coefficients

xk Fundamental circular frequency in the Rayleigh
damping equation

fk Damping ratio for the fundamental frequency in

Rayleigh damping equation
H Tree height (m)

M Tree mass in (kg)

lk Mode frequency factor for various taper ratios of
cantilever beams

l Length of tapered cantilever beams

h1 Thickness (in) at the distal point of the tapered
cantilever beams parallel to the direction of the

applied load

E Modulus of elasticity of tapered cantilever beams
(psi)

g Gravitational acceleration (in/s2)

q Density of tapered cantilever beams (lb/in3)
Dt Time step in dynamic analysis

Tn Natural period (sec)

u(z) Wind profile with respect to height, z
uh Referenced wind speed at height, h (1.4 m)

D Harmonic drag force on tree elements

qair Air density
A Frontal area of tree elements
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CD Drag coefficient
Rd Dynamic displacement amplification factor

P0 Amplitude of excitation (wind) force

x Circular frequency of excitation (wind) force
xn Natural circular frequency

k Stiffness of systems (SDOF or MDOF)

m Mass of systems (SDOF or MDOF)
(ust)0 Maximum static displacement

u0 Maximum dynamic displacement

I Moment of inertia of cross-sections
_m Distributed mass on a cantilever beam
_E Distributed elasticity on a cantilever beam
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P-A (2007) Eighteen years of tree mortality and structural
change in an experimentally fragmented Norway spruce forest.
For Ecol Manage 242(2–3):306–313. doi:10.1016/j.foreco.2007.
01.048

Kane B, Clouston PL (2008) Tree pulling tests of large shade trees in
the genus acer. Arboric Urban For 34(2):101–109

Kane B, James KR (2011) Dynamic properties of open-grown
deciduous trees. Can J For Res 41(2):321–330. doi:10.1139/
x10-211

Kane BCP, Ryan HDP (2004) The accuracy of formulas used to assess
strength loss due to decay in trees. J Arboric 30(6):347–356

Kane B, Smiley ET (2006) Drag coefficients and crown area
estimation of red maple. Can J For Res 36(8):1951–1958. doi:
10.1139/x06-086

Kastner-Klein P, Berkowicz R, Britter R (2004) The influence of
street architecture on flow and dispersion in street canyons.
Meteorol Atmos Phys 87(1):121–131. doi:10.1007/s00703-003-
0065-4

Kerzenmacher T, Gardiner B (1998) A mathematical model to
describe the dynamic response of a spruce tree to the wind. Trees
Struct Funct 12(6):385–394. doi:10.1007/s004680050165

Kretschmann DE (2010) Mechanical Properties of Wood. Wood
Handbook, Wood as an Engineering Material, vol 5. Department
of Agriculture, Forest Service, Forest Products Laboratory,
Madison

Mabie HH, Rogers CB (1972) Transverse vibrations of double-
tapered cantilever beams. J Acoust Soc Am 51(5B):1771–1774

Mayhead GJ (1973) Swaying periods of forest trees. Scott For
27:19–23

Mayhead GJ, Gardiner JBH, Durrant DW (1975) A Report on the
Physical Properties of Conifers in Relation to Plantation
Stability. Forestry Commission Research and Development
Division, Great Britain

Milne R (1991) Dynamics of swaying of Picea sitchensis. Tree
Physiol 9(3):383–399. doi:10.1093/treephys/9.3.383

Moore JR, Maguire DA (2004) Natural sway frequencies and
damping ratios of trees: concepts, review and synthesis of
previous studies. Trees Struct Funct 18(2):195–203. doi:10.1007/
s00468-003-0295-6

Moore JR, Maguire DA (2005) Natural sway frequencies and
damping ratios of trees: influence of crown structure. Trees
Struct Funct 19(4):363–373. doi:10.1007/s00468-004-0387-y

Moore JR, Maguire DA (2008) Simulating the dynamic behavior of
Douglas-fir trees under applied loads by the finite element
method. Tree Physiol 28(1):75–83. doi:10.1093/treephys/28.1.75

Mortimer MJ, Kane B (2004) Hazard tree liability in the United
States: uncertain risks for owners and professionals. Urban For
Urban Gree 2(3):159–165. doi:10.1078/1618-8667-00032

Niklas KJ (1992) Plant Biomechanics: An Engineering Approach to
Plant Form and Function. University of Chicago Press, Chicago

Niklas KJ (1997) Size- and age-dependent variation in the properties
of sap- and heartwood in black locust (robinia pseudoacacia L.).
Ann Bot 79(5):473–478. doi:10.1006/anbo/79.5.473

Nowak DJ, Dwyer JF (2007) Understanding the Benefits and Costs of
Urban Forest Ecosystems. In: Kuser JE (ed) Urban and
Community Forestry in the Northeast. Springer Netherlands,
pp 25–46 doi:10.1007/978-1-4020-4289-8_2

Nowak DJ, Stevens JC, Sisinni SM, Luley CJ (2002) Effects of urban
tree management and species selection on atmospheric carbon
dioxide. J Arboric 28(3):113–122

Oliver HR, Mayhead GJ (1974) Wind measurements in a pine forest
during a destructive gale. Forestry 47(2):185–194. doi:10.1093/
forestry/47.2.185

Panofsky HA, Dutton JA (1984) Atmospheric turbulence: models and
methods for engineering applications. Wiley, New York

Peltola HM (2006) Mechanical stability of trees under static loads.
Am J Bot 93(10):1501–1511

Rodriguez M, deLangre E, Moulia B (2008) A scaling law for the
effects of architecture and allometry on tree vibration modes
suggests a biological tuning to modal compartmentalization. Am
J Bot 95(12):1523–1537. doi:10.3732/ajb.0800161

Roodbaraky HJ, Baker CJ, Dawson AR, Wright CJ (1994) Experi-
mental observations of the aerodynamic characteristics of urban
trees. J Wind Eng Ind Aerodyn 52:171–184. doi:10.1016/0167-
6105(94)90046-9

Trees

123

http://dx.doi.org/10.1006/jtbi.1995.0147
http://dx.doi.org/10.1006/jtbi.1995.0147
http://dx.doi.org/10.1093/jxb/48.5.1125
http://dx.doi.org/10.1093/forestry/61.1.29
http://dx.doi.org/10.1007/s00468-008-0240-9
http://dx.doi.org/10.1016/j.ufug.2010.01.004
http://dx.doi.org/10.1093/forestry/73.3.225
http://dx.doi.org/10.1093/forestry/73.3.225
http://dx.doi.org/10.1175/1520-0450(1994)033%3c0757:dtplwp%3e2.0.co;2
http://dx.doi.org/10.1175/1520-0450(1994)033%3c0757:dtplwp%3e2.0.co;2
http://dx.doi.org/10.1016/j.agrformet.2008.02.003
http://dx.doi.org/10.3732/ajb.93.10.1522
http://dx.doi.org/10.3732/ajb.93.10.1522
http://dx.doi.org/10.1016/j.foreco.2007.01.048
http://dx.doi.org/10.1016/j.foreco.2007.01.048
http://dx.doi.org/10.1139/x10-211
http://dx.doi.org/10.1139/x10-211
http://dx.doi.org/10.1139/x06-086
http://dx.doi.org/10.1007/s00703-003-0065-4
http://dx.doi.org/10.1007/s00703-003-0065-4
http://dx.doi.org/10.1007/s004680050165
http://dx.doi.org/10.1093/treephys/9.3.383
http://dx.doi.org/10.1007/s00468-003-0295-6
http://dx.doi.org/10.1007/s00468-003-0295-6
http://dx.doi.org/10.1007/s00468-004-0387-y
http://dx.doi.org/10.1093/treephys/28.1.75
http://dx.doi.org/10.1078/1618-8667-00032
http://dx.doi.org/10.1006/anbo/79.5.473
http://dx.doi.org/10.1007/978-1-4020-4289-8_2
http://dx.doi.org/10.1093/forestry/47.2.185
http://dx.doi.org/10.1093/forestry/47.2.185
http://dx.doi.org/10.3732/ajb.0800161
http://dx.doi.org/10.1016/0167-6105(94)90046-9
http://dx.doi.org/10.1016/0167-6105(94)90046-9


Rudnicki M, Meyer T, Lieffers V, Silins U, Webb V (2008) The
periodic motion of lodgepole pine trees as affected by collisions
with neighbors. Trees Struct Funct 22(4):475–482. doi:10.1007/
s00468-007-0207-2

Saunderson SET, England AH, Baker CJ (1999) A dynamic model of
the behaviour of sitka spruce in high winds. J Theor Biol
200(3):249–259. doi:10.1006/jtbi.1999.0983

Schmidlin T (2009) Human fatalities from wind-related tree failures
in the United States, 1995–2007. Nat Hazards 50(1):13–25. doi:
10.1007/s11069-008-9314-7

Sellier D, Fourcaud T (2005) A mechanical analysis of the
relationship between free oscillations of Pinus pinaster Ait.
saplings and their aerial architecture. J Exp Bot 56(416):1563–
1573. doi:10.1093/jxb/eri151

Sellier D, Fourcaud T (2009) Crown structure and wood properties:
influence on tree sway and response to high winds. Am J Bot
96(5):885–896. doi:10.3732/ajb.0800226

Sellier D, Fourcaud T, Lac P (2006) A finite element model for
investigating effects of aerial architecture on tree oscillations.
Tree Physiol 26(6):799–806. doi:10.1093/treephys/26.6.799

Sellier D, Brunet Y, Fourcaud T (2008) A numerical model of tree
aerodynamic response to a turbulent airflow. Forestry 81(3):279–
297. doi:10.1093/forestry/cpn024
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