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Abstract

A model for non-Gaussian random vectors is presented that relies on a modification of the standard translation transformation which has

previously been used to model stationary non-Gaussian processes and non-Gaussian random vectors with identically distributed components.

The translation model has the ability to exactly match target marginal distributions and a broad variety of correlation matrices. Joint

distributions of the new class of translation vectors are derived, as are upper and lower bounds on the target correlation that depend on the

target marginal distributions. Examples are presented that demonstrate the applicability of the approach to the modelling of heterogeneous

material properties, and also illustrate the possible shortcomings of using second moment characterizations for such random vectors. Lastly,

an outline is given of a method under development for extending the model to non-stationary, non-Gaussian random processes.

q 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Many engineering systems contain elements of uncer-

tainty that are governed by probability rules that are not

Gaussian. Examples include the wind pressure on the facade

of a building, the local phase volume fraction in composite

materials, and the crystallographic orientation in crystalline

solids. A variety of techniques exist for generating

realizations of non-Gaussian random variables, processes,

and fields [1–4]. One of these techniques is the translation

technique, in which non-Gaussian random quantities or

functions are modelled as non-linear transformations of

Gaussian random quantities [5,6]. The translation mapping

has been successfully applied to random variables, vectors,

and vector fields of arbitrary dimension. The purpose of this

paper is to extend the translation model to random vectors

that have components that are not identically distributed.

The simulation of wind pressure fields is an area in which

such a need has been identified, and some steps have been

taken to modify the translation method for such applications

[7]. Another example application of such a model would be
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the local volume fraction and elastic modulus fields in a

random composite material. Each of these fields is in

general non-Gaussian, but the fields have non-zero cross-

correlation.

Non-Gaussian random variables, vectors, fields, and

vector fields have wide application in essentially all

engineering disciplines. For that reason, the problem of

simulating such non-Gaussian random quantities has

received wide attention. Two main approaches have been

used in solving this problem: (1) non-linear transformations

of Gaussian quantities, and (2) iterative algorithms. In both

cases, the goal of the approach has most often been to match

marginal distributions and second moment properties.

A common transformation technique is the translation

model, details about which are given in the next section. In

translation modelling of a non-Gaussian random process, for

example, a non-linear transformation, based on the target

marginal distribution of the process, is applied to an

underlying Gaussian random process. This non-linear

transformation delivers a non-Gaussian process with speci-

fied target marginal distribution. With appropriate cali-

bration of the correlation function of the underlying Gaussian

process, a specified target correlation function of the non-

Gaussian process can be matched, within certain limitations.

Several versions of iterative approaches have been

developed for simulating non-Gaussian random quantities.
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These approaches provide samples of non-Gaussian

processes that approximately match target marginal distri-

butions and correlation functions [1,2]. The error in the

distributions and correlation functions can be made

arbitrarily small by increased iteration. The advantage of

these methods is their flexibility. They are able to produce

approximate samples of certain non-Gaussian processes that

cannot be modelled as translation processes. The disadvan-

tage is the computational expense of the iterative procedure

and the approximate nature of the agreement with target

distributions and correlation functions.

To date, translation modelling has been applied to scalar

valued random processes and fields, random vectors with

identically distributed components, and vector random

processes and fields with identically distributed com-

ponents. This paper extends the model to random vectors

with non-identically distributed components. It is indicated

that this addition to the model may provide the ability to

model non-stationary non-Gaussian random processes and

fields.

First, a brief review of the translation model is given.

Next the mathematical extension of the model to random

vectors with non-identically distributed components is

presented. The paper closes with three example appli-

cations, one an idealized example to illustrate the

applicability, and two examples in which actual experimen-

tal data are modelled using the extended translation model.

The examples are taken from experimental measurements of

local random material properties in polycrystalline alumi-

num and F-Actin polymer suspensions. Finally an approach

to the simulation of non-Gaussian non-stationary processes

is given in outline form.
2. The translation model

The goal of the translation model is to provide an

efficient method for simulating non-Gaussian random

vectors and fields with specified target marginal distribution

and correlation function. Since the topic of this paper is non-

Gaussian random vectors, the translation model is now

described briefly for the case of random vectors.

Let Z2R
d be a non-Gaussian random vector. The

components {Zi} of Z have marginal cumulative distri-

bution function (cdf) F(z), marginal probability density

function f(z), and the covariance matrix c defined by cZ
E½ðZKmÞðZKmÞT� where E[$] is the expectation operator.

The components of the scaled covariance matrix x of Z are

xij Zcij=
ffiffiffiffiffiffiffiffiffi
ciicjj

p
. The translation model treats the random

vector Z as a non-linear transformation of a Gaussian

random vector Y2R
d. The transformation is given by

Zi Z gðYiÞ Z FK1+FðYiÞ (1)

where F($) is the standard (mean zero, unit variance)

Gaussian cdf, and {Yi} are the components of Y. Exact
expressions for the joint pdfs and cdfs of Z have been

derived [6].

The underlying Gaussian vector Y has components that

are standard Gaussian random variables, and correlation

matrix rgZE[YYT] that is equal to the scaled covariance

matrix xgZrg. The components of x are given in terms of

the components of xg by

mimj C
ffiffiffiffiffiffiffiffiffi
ciicjj

p
xij Z

ðN

KN

ðN

KN
gðuÞgðvÞfðu; v; xg;ijÞdu dv (2)

where fð$; $; xÞ is the bivariate Gaussian density function

with correlation coefficient x. This expression demonstrates

that the non-linear transformation of Eq. (1) distorts the

correlation, so that xsxg. It can be shown that xg;ijZ00
xij Z0 and xg;ij Z10xij Z1. The implication xg;ij ZK10
xij ZK1 does not, however, hold. The lower bound on any

component xij of x is given by

x� Z
E½gðUÞgðKUÞ�KE½gðUÞ�2

E½gðUÞ2�KE½gðUÞ�2
(3)

where U is a standard Gaussian random variable that

serves as a dummy variable. When g($) is an odd function

x*ZK1, otherwise x*OK1. It is, therefore not possible to

simulate random vectors for which g($) is not odd, and for

which xij!x* for some index pair (i, j).
3. Non-identically distributed components

Consider now a random vector Z2R
d that has

components with marginal cdfs {Fi(z)}. If Fi(z)ZFj(z) ci,

j2[1,d], then the vector can be modelled as a standard

translation vector as described in the previous section. More

generally, when all the cdfs {Fi(z)} are distinct, it is now

shown how Z can be modelled by the translation mapping

Zi Z giðYiÞ Z FK1
i +FðYiÞ (4)

where {Yi} are the components of the standard Gaussian

vector Y. This transformation amounts to a standard

translation model for each of the components of Z. The

target marginal distribution functions are matched exactly

since

PðZi %zÞ Z PðFK1
i +FðYiÞ%zÞ Z PðYi%FK1+FiðzÞÞ

Z FiðzÞ: (5)

The joint cdf of Z is given by

FðzÞ Z FðyÞ (6)

where F($) is the d-dimensional joint Gaussian cdf, and y

has components yiZFK1+FiðziÞ. The joint pdf is
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f ðzÞ Z fðyÞ
Yd

rZ1

frðzrÞ

fðyrÞ

Z
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2pÞddetðxgÞ
q exp K

1

2
yTxK1

g y

� �Yd

rZ1

frðzrÞ

fðyrÞ
: (7)

where f($) is the Gaussian pdf.

The scaled covariance matrix x of Z is defined in terms of

the functions {gi($)}, and the correlation xg of the

underlying Gaussian vector Y as

mimj C
ffiffiffiffiffiffiffiffiffi
ciicjj

p
xij Z

ðN

KN

ðN

KN
giðuÞgjðvÞfðu; v; xg;ijÞdu dv;

(8)

which, as in the case where Z has identically distributed

components, introduces a distortion in the correlation between

Y and Z. It is emphasized at this point that, for Z to be modeled

as a translation vector, xg, the correlation matrix of the

underlying Gaussian vector must be non-negative definite. If

this is not the case, the correlation matrix and marginal

distributions of Z are non-compatible, and the translation

model cannot be used. The main contribution of this paper is to

investigate this correlation distortion, particularly identifying

the limitations on the target scaled covariance x.

Each component of the non-Gaussian scaled covariance

depends solely upon the corresponding component of the

Gaussian scaled covariance such that xijZhij(xg,ij) where the

form of hij($), called the correlation distortion function, is

determined by the marginal distributions of Zi and Zj

through gi($) and gj($). It is first shown that hij($) is a non-

decreasing function.

The Price theorem [8] gives

d

dxg;ij

hijðxg;ijÞ Z
vxij

vxg;ij

Z
1ffiffiffiffiffiffiffiffiffi

ciicjj
p E

d

dU
giðUÞ

d

dU
gjðUÞ

� �

(9)

and since the functions {gi($)} are non-decreasing since the

marginal cdfs {Fi($)} are non-decreasing functions, the

right-hand side of Eq. (9) is always non-negative, and xij is

non-decreasing in xg,ij.

Since hij($) is a non-decreasing function and

K1%xg,ij%1, xij must be bounded by

hijðK1Þ%xij %hijð1Þ: (10)

The functions hij also satisfy hij(0)Z0 so that xg,ijZ
00xijZ0. This holds since, when xg,ijZ0 the Gaussian

random variables Yi and Yj are independent, and Eq. (8) can

be rewritten as

xij Z

ðN

KN
giðuÞfðuÞdu

ðN

KN
gjðvÞfðuÞdv Kmimj

� �
ðciicjjÞ

K1=2

Z 0:

(11)
When xg,ijZK1, the bivariate Gaussian pdf f(u, v;K1)

takes non-zero values only for uZKv, and evaluation of

hij(K1) yields

mimj C
ffiffiffiffiffiffiffiffiffi
ciicjj

p
xmin

ij Z

ðN

KN
giðuÞgjðKuÞfðuÞdu (12)

and

xmin
ij Z

E½giðUÞgjðKUÞ�KE½giðUÞ�E½gjðUÞ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðE½giðUÞ2�Km2

i ÞðE½gjðUÞ2�Km2
j Þ

q (13)

where U is again a dummy Gaussian variable and xmin
ij is

the lower bound on xij, and is analogous to the bound given

in Eq. (3). Eq. (13) reduces to Eq. (3) when gi(U)Zgj(U).

The upper bound is found by evaluating hij(1), for which

f(u, v; 1) takes non-zero values only along the line uZv.

The upper bound is

mimj C
ffiffiffiffiffiffiffiffiffi
ciicjj

p
xmax

ij Z

ðN

KN
giðuÞgjðuÞfðuÞdu; (14)

or

x
max
ij Z

E½giðUÞgjðUÞ�KE½giðUÞ�E½gjðUÞ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðE½giðUÞ2�Km2

i ÞðE½gjðUÞ2�Km2
j Þ

q (15)

which reduces to xmax
ij Z1 when gi(U)Zgj(U).

One final property of the correlation distortion function

hij($) is that it is an odd function if either or both of gi($) or

gj($) are themselves odd. The definition of hij(x), as given in

Eq. (8) is

hijðxÞ Z

ðN

KN

ðN

KN
giðuÞgjðvÞfðu; v; xÞdu dv Kmimj

� �

!ðciicjjÞ
K1=2:

(16)

Substitution of Kx as the argument gives

hijðKxÞ Z

ðN

KN

ðN

KN
giðuÞgjðvÞfðu; v;KxÞdu dv Kmimj

� �

!ðciicjjÞ
K1=2;

(17)

in which the change of variables vZKv can be applied

without altering the integrals, yielding

hijðKxÞ Z

ðN

KN

ðN

KN
giðuÞgjðKvÞfðu;Kv; xÞdu dv Kmimj

� �

!ðciicjjÞ
K1=2

(18)

which, if gj(v)ZKgj(Kv), implying that E[gj(V)]Z0,

becomes

hijðKxÞ ZK

ðN

KN

ðN

KN
giðuÞgjðvÞfðu;Kv; xÞdu dv

� �
ðciicjjÞ

K1=2

ZKhijðxÞ;

(19)
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so that hij(x) is odd. The above steps can be repeated for the

case where gi($) is odd since the integration variables can be

interchanged freely, and also for the case where both gi($)

and gj($) are odd. When at least one of gi($) and gj($) are

odd, the upper and lower bounds on xij are equal and

opposite so that xmin
ij ZKxmax

ij .

The calculation of the correlation distortion function, the

main feature of the translation approach to modeling non-

Gaussian random vectors, can be computationally some-

what time consuming. If data are available, several other

approaches exist for generating samples that match the

target marginal distributions and second moment properties

of the non-Gaussian data. One approach would be to simply

convert the non-Gaussian data z to the Gaussian space using

the inverse transformation of Eq. (4), and then estimate the

Gaussian correlation matrix from the transformed data. This

approach yields equivalent results to the translation model

in the case where data are available with the target marginal

distributions and desired target correlation structure. In

many cases, however, it is desired to generate non-Gaussian

samples with specified marginal distributions and corre-

lations that may not correspond to an available data set. In

this case, the correlation distortion function can be used to

generate data with any compatible correlation structure. A

similar approach would be to transform the non-Gaussian

data by, for example, the inverse modal decomposition

XZ
ffiffiffi
d

p K1
vK1Z, where d is a diagonal matrix containing the

eigenvalues of x, and v the matrix of corresponding

eigenvectors. This transformation yields a non-Gaussian

vector X with uncorrelated (but not necessarily indepen-

dent) components. By generating independently the

uncorrelated components of X and retransforming into the

correlated non-Gaussian space, satisfactory matching of

the target correlation and marginal distributions can be

obtained. It should be noted that independent component

generation immediately introduces an error since lack of

correlation does not imply independence in the non-

Gaussian space. This approach could, however, be highly

efficient for cases where the random vector is of relatively

small dimension, and where data are available. Again,

however, it does not provide the flexibility of the translation

approach in generating samples with arbitrary compatible

correlation and marginal distributions. The translation

approach is particularly appropriate if the sensitivity of

some system response to parameters of the marginal

distributions or correlation structure is desired.
4. Examples

Three example applications are now given. In the first, a

two-dimensional random vector with one exponential and

one cubic form component is simulated using the translation

model. The second presents simulation of the crystallo-

graphic orientation of a polycrysalline material, and in
the third the elasticity and viscosity of a polymer suspension

are simulated.

The translation model provides a means for exact

matching of target marginal distributions and correlation

coefficients that is highly efficient. Once the correlations of

the underlying Gaussian have been calibrated, the steps for

non-Gaussian simulation are (1) Gaussian simulation, and

(2) translation, each of which can be accomplished in

seconds per sample for random vectors of up to several

thousand components on a desktop computer. The time

consuming part of the simulation scheme is the calculation

of the correlation distortion functions hij($), which must be

done, typically, by numerically solving Eq. (8). For a

random vector with n components, each with a different

marginal distribution, there exist (n2Kn)/2 such functions,

since hij($)Zhji($). In the author’s experience, the corre-

lation distortion functions tend to be quite smooth, and thus

a sufficiently accurate representation of hij(xg,ij) can be

obtained by evaluating Eq. (8) at approximately 20 values of

xg,ij and interpolating these values. Thus, approximately

10(n2Kn) evaluations of Eq. (8) are required to calibrate the

translation model of an n-dimensional random vector. On a

desktop computer, a typical evaluation of Eq. (8) takes in

the order of 1 s. Vectors of dimension up to approximately

20 can be calibrated in under 1 h of computation time. A

vector of dimension 100 would take approximately 1 day of

computation time to calibrate. While these times are long,

the calibration has to be done only once for each set of

marginal distributions. Arbitrarily many samples can then

be generated rapidly with specified target correlation

matrix. Additionally, if the marginal distributions of the

components are related to one another and can be

parametrized (for example, a family of beta distributions),

the calibration time can be further reduced. The translation

model is primarily applicable to those situations in which it

is desirable to be able to vary the target correlation matrix of

the random vector to be simulated.
4.1. Exponential-cubic form random vectors

Let Z2R
2 be a random vector which is to be simulated

using a translation model. The component Z1 is an

exponential random variable with parameter lZ1, and Z2

is a random variable of cubic form. The marginal cdfs of Z

are F1ðzÞZ1KexpðKzÞ and F2ðzÞZFðsignðzÞjzj1=3Þ, and

the functions

g1ðyÞ ZKlogð1 KFðYÞÞ; g2ðyÞ Z Y3 (20)

define the translation mapping.

The bounding values xmin
12 and xmax

12 are calculated by

numerical integration of Eqs. (13) and (15) and yield

K0:75%x12 %0:75: (21)

The correlation distortion function h12(xg,12), computed by

numerical integration of Eq. (8), is shown in Fig. 1 and



–1 –0.5 0 0.5 1
–1

–0.5

0

0.5

1

ξg

ξ

cubic
correlation coefficient 

Fig. 1. Correlation distortion function for a two-dimensional non-Gaussian

vector with one exponential component and one cubic form component.

Function calculated by numerical integration of Eq. (8).
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demonstrates the antisymmetry arising from the fact that the

cubic form has an antisymmetric inverse cdf. This example

illustrates that non-identically distributed components of

random translation vectors need not be perfectly correlated

even when the underlying Gaussian components are

perfectly correlated.

To generate realizations of a two-dimensional non-

Gaussian random vector with marginal distributions F1(z)

and F2(z) as defined above, and with target correlation

coefficient x12Z0.5, the correlation coefficient of the

underlying Gaussian is computed by iteratively solving

Eq. (8) to obtain xg,12Z0.69. Fig. 2 shows side by side

scatter plots of 1000 independent realizations of the

underlying Gaussian and the translation vector.
4.2. Crystallographic orientation

The rotational position of the periodic lattice making up

crystalline solids is defined by the crystallographic

orientation. The orientation is perhaps the most important
(b

0–5 5

0

–2

–4

2

4

6

Y1

Y
2

(a)

ξ12 = 0.70

Fig. 2. Scatter plots of 10,000 independent realizations of (a) Gaussian vector Y and

x12Z0.5.
microstructural parameter for the analysis of crystalline

materials. Studies of polycrystalline behavior often use the

orientation distribution function (ODF) to characterize the

material [9–11]. Recently, models in which the orientation

of individual grains is represented explicitly have been

developed [12]. In any study in which Monte Carlo

simulation is to be used to investigate the behavior of

crystalline materials, a necessity is the ability to generate

realizations of the orientation.

The orientation has many possible representations, one

of which is the standard Euler angle representation [13] in

which the orientation is represented by the three angles (f1,

F, f2). In the random vector context of this paper this

notation is modified so that the orientation is given by the

random vector JZ[J1, J2, J3]T where J1Zf1, J2ZF,

and J3Zf2. This example shows how the orientation can

be modelled as a translation vector with non-identically

distributed components.

Experimental measurement of the orientation at 14,012

points on the surface of a 540 mm!540 mm sample of

AL2024 containing approximately 120 grains yields the

marginal histograms for the Euler angles shown in Fig. 3

[14]. Fig. 4 shows scatter plots of the random pairs (J1,

J2), (J1, J3), and (J2, J3) along with their calculated

correlation coefficients. Notable features of Figs. 3 and 4 are

the highly non-Gaussian nature of the data and the fact that

the Euler angle pairs of Fig. 4 appear to exist only in isolated

regions of the orientation space. This last fact indicates that

simulation of the orientation which matches statistical

properties only up to second moment may be insufficient.

The correlation distortion functions hij(xg,ij), i, jZ1, 2, 3

are calculated numerically, and are shown in Fig. 5. The

correlation distortion functions show that perfect correlation

cannot be achieved between the random Euler angles. The

distortion is maximized near xg,ijZK1 and xg,ijZ1 for all

functions. The maximum and minimum values are given in

Table 1 and show a significant maximum distortion of 0.24.

To generate realizations of the orientation vector which

match the second moment properties and marginal
0 5 10

0

20

–20

–40

40

60

80

100)

Z1

Z
2

ξ12 = 0.52 

(b) non-Gaussian vector Z generated to match target correlation coefficient



0 5
0

0.1

0.2

0.3

0.4

ψ1 (rad)

f(
ψ

)

µ = 2.43

σ = 1.45 

ψ2 (rad)
0 1

0

1

2

3

4

5
µ = 0.683

σ = 0.358

ψ3 (rad)
0 5

0

0.5

1 µ = 3.52

σ = 2.08

Fig. 3. Marginal histograms of Euler angles showing also the mean and standard deviation of each.
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Fig. 5. Correlation distortion functions for Euler angle pairs.

Table 1

Values of xmax
ij and xmin

ij for Euler angle data

Euler angle pair (F1, F2) (F1, F3) (F2, F3)

xmin
ij

K0.90 K0.86 K0.82

xmax
ij 0.76 0.79 0.88
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distributions of the data, two steps are required. First,

numerical approximations of the inverse marginal cdfs are

estimated from the data. Second, the appropriate correlation

matrix for the underlying Gaussian vector Y is computed

from the estimated correlation distortion functions shown in

Fig. 5. The scaled covariance matrix of the orientation

vector Z, estimated from the data, is

x Z

1 K0:55 0:15

K0:55 1 K0:11

0:12 K0:11 1

2
64

3
75: (22)

The corresponding correlation matrix of the underlying

Gaussian random vector Y, computed from the functions of

Fig. 5 is

xg Z

1 K0:62 0:18

K0:62 1 K0:14

0:18 K0:14 1

2
64

3
75: (23)
Using the numerical cdfs and correlation matrix of Eq. (23),

10,000 independent translation vectors are generated that

match the marginal distributions. The scatter plots of Fig. 6

show that the joint distribution of pairs of orientaion

components are not necessarily well matched, although the

target correlation coefficients are met satisfactorily. The

sample correlation coefficients are estimated to be K0.53,

0.15, and K0.11 which compare well to the target

correlation coefficients of K0.55, 0.15, K0.11. The scatter

plot of (j1, j2) compares reasonably well with its

experimental target, but the plot of (j1, j2) is a very poor

match to the target. Inspection of Fig. 4 reveals that the joint

pdf of (j1, j2) has a banded structure. Such a structure
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cannot be adequately captured by only the marginal

histograms and second moment properties.

The structure of Fig. 4 can be simplified, however, by

accounting for the periodicity of the Euler angles. The (j1,

j2) values in the lower left-hand corner of the plot can be

shifted in the j1 direction by 2p without changing the

physical orientation. This shifted scatter plot is shown in

Fig. 7 where a much simpler structure is observed. The

transformation applied to Euler angle j1 alters the

correlation distortion function so that the values of Fig. 5

cannot be used directly. For the transformed Euler angles, a

Gaussian correlation of 0.99 is calculated to yield the target

correlation coefficient of 0.98. The results of 10,000

independent realizations of the transformed Euler angle

pairs are shown in Fig. 8a. The target correlation coefficient

is matched successfully, and the match to the structure of the

joint pdf is significantly improved, though perhaps only

marginally satisfactory. An alternative approach to simu-

lating these data would be to treat the random variables of

interest as F1, F2, and F1CF3, taking advantage of the

nearly linear relationship between F1 and F3. Such an

approach would be likely to yield superior results to even

the second simulation method shown here.

Fig. 8b shows the retransformed results of this

simulation, and demonstrates that even pdf structures

which cannot be completely characterized by their second

moment properties can be modelled to a reasonable degree

of accuracy using translation vectors. It must be emphasized

however, that the inaccuracy of the simulated joint

distribution is a major limitation in using second moments

and marginal distributions as the target values of a non-

Gaussian simulation.
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Fig. 7. Scatter plot of (j1, j3) with j1 values shifted to reveal banded

structure of joint pdf.
4.3. Viscoelastic properties of F-Actin

A novel method for measuring the local viscoelastic

properties of soft complex materials at the microscale has

recently been developed. The experimental technique [15,

16] consists of introducing microscopic spherical beads into

the subject material and tracking the position of the

microspheres over time. Tracking the bead position allows

determination of the elasticity and viscosity constants of the

material.
The data obtained for this study consist of measurements

of the local elastic and viscous material properties in a

suspension of the filamentous protein F-Actin. The elastic

modulus (E) and viscosity (n) are obtained for 142

microbeads placed in the suspension. The marginal

histograms and joint scatter plot of the data are shown in

Fig. 9. The material properties have notably different

marginal distributions and a correlation coefficient of 0.48.

The different marginal distributions of the elasticity and

viscosity lead to a significant correlation distortion which

reaches its extremes at h12(K1)ZK0.57 and h12(1)Z0.92

(Fig. 10). The correlation distortion is larger for negative

correlations, but is also significant for positive correlation.

To match the target correlation coefficient of 0.48, the

function of Fig. 10 specifies a Gaussian correlation

coefficient of 0.57. The scatter plot of 142 simulated

random translation vectors is shown in Fig. 11 and indicates

a satisfactory match to the target joint distribution and

correlation coefficient. The joint scatter plot appears to

agree well with that of Fig. 9.
5. Non-stationary processes

The above examples show that the translation model for

random vectors with non-identically distributed
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Fig. 9. Marginal histograms and scatter plot of elasticity and viscosity measurements of F-Actin obtained by the multiple particle tracking method.
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components can be used to model a broad range of

physically meaningful random quantities. Current research

seeks to extend this translation model for application to non-

stationary, non-Gaussian random processes. An outline of

the approach is given here to indicate the possibility, while a

full description will follow in a forthcoming publication.

One of the considerations made in the ongoing research is

the comparison of application of translation processes to the

modeling of nonstationary processes with previously

successful efforts at using the Karhunen–Loeve (KL)
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Fig. 10. Correlation distortion for a two-dimensional random translation

vector modelling the elasticity and viscosity of an F-Actin suspension.
expansion in an iterative framework to simulate

non-stationary processes [17]. While the iterative KL

approach has great flexibility, it is conjectured that the

translation approach may prove more efficient for certain

classes of processes. Another significant comparison must

be made with the performance of wavelet and evolutionary

specrum based methods for simulating non-stationary

processes [18,19].

Let Z(t) be a non-Gaussian random process with marginal

cdf F(z, t) which is a function of time since the process is

non-stationary. The correlation function of Z(t) is denoted

r(t, tCt) and the scaled covariance function is denoted x(t,

tCt). This non-stationary non-Gaussian random process

can be modelled by the translation
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Fig. 11. Marginal histograms and scatter plot of simulated elasticity–

viscosity random vectors.



S.R. Arwade / Probabilistic Engineering Mechanics 20 (2005) 158–167166
ZðtÞ Z FK1
t +FðYðtÞÞ Z gtðYðtÞÞ (24)

where FK1
t is the inverse marginal cdf of Z(t), F($) is the

standard Gaussian cdf and Y(t) is a Gaussian random process

with mean zero, unit variance, and correlation function xg(t,

tCt). Such a transformation exactly matches the target,

non-stationary, marginal distribution of Z(t). The correlation

function of Z(t) is given in terms of xg(t, tCt) according to

mðtÞmðt CtÞCsðtÞsðt CtÞxðt; t CtÞ

Z

ðN

KN

ðN

KN
gtðuÞgtCtfðu; v; xgðt CtÞÞdu dv (25)

The major complication in this approach is that the

correlation distortion function x(t, tCt)Zh(t, tCt, xg(t,

tCt)) given by Eq. (25) is now a function of three

parameters, rather than just the correlation function of

the underlying Gaussian random process Y(t). Thus, in

order to calibrate the correlation function of the

underlying Gaussian random process, a very large

number of solutions to Eq. (25) must be computed. For

example, in estimating the correlation distortion function

for a bivariate random vector, as in example 4.3, a

reasonable approximation can be obtained by evaulating

h12(xg) at xgZ[K1, K0.9,.,1] requiring 21 evaluations

of Eq. (8). This can typically be performed in a several

minutes on a desktop PC. On the other hand, if a non-

Gaussian random process is to be calibrated for sample

length of 100 s, and a time discretization of

the correlation functions of 1 s is found to be acceptable,

210,000 evaluations of Eq. (25) are necessary, which is

in general prohibitive. It may be possible to overcome

this complication by appropriate parametrization of the

time varying marginal distributions F(z, t). A study of

this approach for the simulation of functionally graded

materials is currently ongoing, and will address many of

these issues.
6. Conclusion

The translation model for non-Gaussian random vectors

has been extended to model those non-Gaussian random

vectors that have non-identically distributed components.

The model is able to simulate random vectors with a broad

range of marginal distribution functions and correlation

matrices, matching the target values exactly in most cases.

Exact expressions are derived for the joint distribution of the

non-Gaussian vectors, and for the correlation matrix of the

non-Gaussian vector in terms of the correlation matrix of

the underlying Gaussian. Upper and lower bounds on the

target correlation are computed, and it is shown that very

large positive or negative correlations may not be able to be

simulated using the translation model. The correlation

distortion function is shown to be odd if either of the inverse

cdfs of the individual components is odd.
Three illustrative examples are given. In the first, a two-

dimensional random vector with one component exponen-

tially distributed and one cubic is shown to have significant

correlation distortion. In the second, the crystallographic

orientation of an aluminum alloy is modelled as a random

vector of the Euler angles. Attempts to simulate this random

vector using translation models illustrate the possibility of

matching target marginal distributions and second moment

properties of real experimental data, while only approxi-

mately matching the joint distribution of the target random

vector. The match to the target joint distribution is poor,

demonstrating a key liability of second moment character-

ization of non-Gaussian random quantities. Lastly, the

correlated elasticity and viscosity constants of an F-Actin

gel are successfully modelled using the translation

transformation. By way of closing, an outline is given of a

method currently being developed to simulate non-

stationary, non-Gaussian random processes using trans-

lation models.
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