
A translation model for non-stationary, non-Gaussian random processes

F.J. Ferrante*, S.R. Arwade, L.L. Graham-Brady

Department of Civil Engineering, The Johns Hopkins University, 202 Latrobe Hall, 3400 N. Charles Street, Baltimore, MD 21218 2686, USA

Available online 20 July 2005

Abstract

A model for simulation of non-stationary, non-Gaussian processes based on non-linear translation of Gaussian random vectors is

presented. This method is a generalization of traditional translation processes that includes the capability of simulating samples with spatially

or temporally varying marginal probability density functions. A formal development of the properties of the resulting process includes joint

probability density function, correlation distortion and lower and upper bounds that depend on the target marginal distributions. Examples

indicate the possibility of exactly matching a wide range of marginal pdfs and second order moments through a simple interpolating

algorithm. Furthermore, the application of the method in simulating statistically inhomogeneous random media is investigated, using the

specific case of binary translation with stationary and non-stationary target correlations.

q 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Modeling of uncertainty analysis in engineering pro-

blems via probabilistic simulation (i.e. Monte Carlo) has

achieved considerable development in current probabilistic

mechanics research. With the increase in available

computational power, techniques for synthesis and esti-

mation of stochastic processes have been able to include

more complex characteristics such as multi-dimensionality,

non-Gaussianity and non-stationarity.

Modeling of non-stationary processes has remained one

of the greatest challenges in simulation. Analysis of

environmental loads (such as wind pressure or seismic

forces) pointed to the need for accurate representation of the

time-dependent probabilistic content of phenomena. Early

work on the subject by Priestley [1] led to the development

of processes with evolutionary spectra, where a modulating

function was used in order to characterize how the power

spectrum of such records changed with respect to time. This

was followed by the continuous development of non-

stationary Gaussian simulation for specific applications

using a wide range of techniques (i.e. [2–5] and [6]).
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Equally important is the ability to extend simulation for

cases in which Gaussian representation cannot characterize

the random process with sufficient accuracy. To this end,

methods based on spectral representation ([7–9]), trans-

lation processes [10] and polynomial expansion [11] have

been developed.

Most of the work on non-Gaussian, non-stationary

processes has been based on a homogeneous pdf (i.e. pdf

at all points in time is the same), with a temporally

varying non-stationary spectral density function. Less

work is available for samples with spatially or temporally

varying marginal pdfs. Some examples are [12], which

considered mixtures of marginal distributions obtained

through translation processes; [13], that presented a model

to obtain samples with varying marginal pdfs at specific

points using translation; [14], which used polynomial

chaos expansion and [15], with a Karhunen-Loeve based

iterative scheme.

This paper provides the theory to extend the translation

technique with varying marginal pdfs for efficient simu-

lation of non-Gaussian, non-stationary processes based on a

continuously varying pdf, initially used in [16]. These

processes are non-stationary in the sense that both the

covariance used and the pdf may be temporally dependent.

The approach does not require iteration in order to match

target marginal pdfs and/or correlation function and,

therefore, can be easily implemented for fast and efficient
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Fig. 1. Sketch of a functionally graded material with two phases (black and

white), exhibiting a linear gradation from left to right.
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simulation. Examples are used to demonstrate the applica-

bility of the approach to vector processes.

Finally, the simulation of statistically inhomogeneous

two-phase random media through binary representation is

also considered as an application. An example of such

media are functionally graded materials (see Fig. 1) in

which the microstructure is intentionally changed with

location. Extensive work has been done on homogeneous

random media simulation (as in [17–20]). However, there

are few examples of such simulations cases where the

statistics on the material properties depend on the absolute

position along the composite ([21–23]). Using the method

developed here, samples of inhomogeneous binary pro-

cesses with specific correlation functions are obtained.
2. Non-stationary translation processes

In this section, the new theoretical developments to non-

stationary translation processes will be developed. Let Z(t)

be a non-stationary scalar valued random process with

marginal cumulative distribution function F(z, t) and

marginal probability density function f(z, t). If F(z, t)Z
F(z, s), ct,s, and if certain constraints on the second

moment properties are met, then the process can be modeled

as a standard translation process [10]. If F(z, t)sF(z, s) for

any pair of time instants (t, s), then the process can be

modeled, subject to a set of constraints which will be

developed herein, as a non-stationary translation process

ZðtÞ Z gðYðtÞ; tÞ Z FK1
t +FðYðtÞÞ (1)

where FK1
t ð$Þ is the inverse of F(z, t), F($) is the standard

Gaussian cdf and Y(t) is a Gaussian random process. The

process Y(t) is stationary with respect to its marginal

distribution and has mean zero and unit variance. The

process Y(t) may, however, have second moment properties,

including the scaled covariance function xg(t, s), that are not

invariant to time shifts.

The transformation of Eq. (1) exactly matches the target

marginal distribution of Z(t) since

PðZðtÞ%zÞ Z PðFK1
t $FðYðtÞÞ%zÞ

Z PðYðtÞ%FK1$Fðz; tÞÞ Z Fðz; tÞ: ð2Þ

The finite dimensional distributions of Z(t) are given, in

terms of the d-dimensional multivariate Gaussian
distribution Fd($), by

Fdðz1;.; zd; t1;.; tdÞ Z Fdðy1;.; ydÞ (3)

where yi ZFK1$Fðzi; tiÞ, yiZy(ti) is the Gaussian image of

z(ti). The finite dimensional joint probability density

functions of Z(t), which are obtained by direct differen-

tiation of Eq. (3) are

fdðz1;.; zd; t1;.; tdÞ Z fdðy1;.; ydÞ
Yd

rZ1

f ðzr; trÞ

fðyrÞ

Z
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2pÞddetxg

q exp K
1

2
yT xK1

g y

� �Yd

rZ1

f ðz; trÞ

fðyrÞ
(4)

where yZ[y1,.,yd]T, f($) is the univariate Gaussian

density function and xg,ijZxg(ti, tj) with xg(t, s) being the

scaled covariance function of the underlying Gaussian

random process Y(t).

The second moment properties of Z(t) are partially

described by the scaled covariance function x(t, s) which is

related to the covariance function of the Gaussian process

Y(t) by

mðtÞmðsÞC
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cðt; tÞcðs; sÞ

p
xðt; sÞ

Z

ðN

KN

ðN

KN
gðu; tÞgðv; sÞfðu; v; xgðt; sÞÞdu dv (5)

in which f($,$,x) is the bivariate Gaussian density function

with correlation coefficient x and c($,$) is the covariance

function of Z(t) so that c(t, t)Zs(t) and c(s, s)Zs(s), the

standard deviations of Z(t) and Z(s). The scaled covariance

of Z(t) therefore depends upon the marginal distributions

F(z, t) and F(z, s), as well as the correlation coefficient of the

Gaussian random variables Y(t) and Y(s). Rearrangement of

Eq. (5) leads to a definition of the correlation distortion

function which is denoted here by x(t, s)Zh(xg; t, s).
2.1. Properties of the correlation distortion function

The correlation distortion function is, for fixed t and s, a

monotonically non-decreasing function of xg. This is shown

by use of Price’s theorem [24] which states that

d

dxgðt; sÞ
hðxg; t; sÞ Z

vxðt; sÞ

vxgðt; sÞ

Z
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cðt; tÞcðs; sÞ
p E

d

dU
gðU; tÞ

d

dU
gðU; sÞ

� 	
: (6)

The right hand side of Eq. (6) is non-negative, since

g($, t) is non-decreasing due the non-decreasing character of

the inverse cdfs FK1
t ð$Þ. Since the right hand side of Eq. (6)

is non-negative, the correlation distortion function must be

itself monotonically non-decreasing.

Since h(xg; t, s) is non-decreasing, and since K1%xg%1,

it must be bounded by

hðK1; t; sÞ%hðxg; t; sÞ%hð1; t; sÞ: (7)
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The scaled covariance of Z(t), x(t, s) is zero when xg(t,

s)Z0. When xg(t, s)Z0, the Gaussian random variables Y(t)

and Y(s) are independent so that the integral of Eq. (5) can

be separated into

xðt; sÞ Z

ðN

KN
gðu; tÞfðuÞdu

ðN

KN
gðu; sÞfðuÞdu KmðtÞmðsÞ

� 	

!
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cðt; tÞcðs; sÞ
p Z 0: ð8Þ

The upper and lower bounds on x(t, s) can be calculated

using Eq. (5). Evaluation of h(K1; t, s), for which f(u, v;

K1) takes non-zero values only on the line uZ-v, yields

mðtÞmðsÞC
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cðt; tÞcðs; sÞ

p
x

minðt; sÞ

Z

ðN

KN
gðu; tÞgðKu; sÞfðuÞdu (9)

or, written using the expectation operator,

xminðt;sÞ

Z
E½gðU;tÞgðKU;sÞ�KE½gðU; tÞ�E½gðU;sÞ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðE½gðU; tÞ2�KE½gðU;tÞ�2ÞðE½gðU;sÞ2�KE½gðU;sÞ�2Þ
p

ð10Þ

The upper bound is obtained by an analogous calculation

based on the fact that when xgZ1, the bivariate Gaussian

density function takes non-zero values only for uZv. The

upper bound is

mðtÞmðsÞC
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cðt; tÞcðs;sÞ

p
xmaxðt;sÞ

Z

ðN

KN
gðu;tÞgðu;sÞfðuÞdu (11)

or, written using the expectation operator,

xmaxðt;sÞ

Z
E½gðU; tÞgðU;sÞ�KE½gðU; tÞ�E½gðU;sÞ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðE½gðU; tÞ2�KE½gðU;tÞ�ÞðE½gðU;sÞ2�KE½gðU;sÞ�Þ
p :

ð12Þ

When at least one of the marginal cdfs F(z, t) and F(z, s)

satisfy F(Kz,$)ZKF(z,$), i.e. the function is odd, then

xðt; sÞmin Z
KE½gðU; tÞgðU; sÞ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E½gðU; tÞ2�E½gðU; sÞ2�

p ZKxðt; sÞmax: (13)

This finding can be extended to the conclusion that if at

least one of the marginal cdfs F(z, t) and F(z, s) is odd, then

so is the correlation distortion function h(xg; t, s). Note that

an equivalent statement of this condition can be done with g,

since the standard Gaussian cdf F($) is an even function.

The brief proof is given here assuming that g(z, s) is odd,

and, without loss of generality, that Z(t) has mean zero and
unit variance at all times. The steps to show this property are

hðKxg; t; sÞ Z

ðN

KN

ðN

KN
gðu; tÞgðv; sÞfðu; v;KxgÞdu dv

Z

ðN

KN

ðN

KN
gðu; tÞgðv; sÞfðu;Kv; xgÞdu dv

Z

ðN

KN

ðN

KN
gðu; tÞgðKv; sÞfðu; v; xgÞdu dv

ZK

ðN

KN

ðN

KN
gðu; tÞgðv; sÞfðu; v; xgÞdu dv

ZKhðxg; t; sÞ: (14)

For it to be possible to match a target scaled covariance

function, the target function must satisfy two conditions.

The first is that xmin(t, s)%x(t, s)%xmax(t, s) for all pairs of

time instants (t, s). The second is that the correlation

function of the underlying Gaussian random process,

defined in the inverse by x(t, s)Zh(xg(t, s), t, s) must be

non-negative definite. To be non-negative definite, the

correlation function xg(t, s) must satisfy the condition that

the matrix xg(t), defined by xg,ijZxg(ti, tj), be non-negative

definite for all vectors t2R
n for any integer n. This

condition is equivalent to the condition that aTxg(t)aR0,

again, for all vectors t2R
n for any integer n. An alternative

condition is that l1(xg(t))R0, where l1 is the smallest

eigenvalue of xg(t). The condition of non-negative

definiteness is practically difficult to check using these

conditions because of the requirement that the conditions

hold for all t2R
n for any integer n.

An alternative method for checking non-negative

definiteness of the Gaussian correlation function relies on

the spectral density function defined for a mean zero unit

variance process by

Sðu1;u2Þ Z

ðN

KN

ðN

KN
xðt; sÞei2pðu1tKu2sÞdt ds: (15)

If the correlation function xg(t, s) is non-negative definite

then the spectral density function satisfies Sðu1;u2ÞR0

cðu1;u2Þ2R
2. Finally, the requirement of a non-negative

definite covariance function implies that there may be a

significant restriction on the range of possible correlation

functions that can be achieved by translation. Some

discussion of this issue is provided in [17]. In the following

sections, the feasibility of the theoretical extension into non-

stationary translation will be shown through practical

examples.

2.2. Parametrization of marginal cdfs

In the above description of the properties of non-

stationary processes, the correlation distortion function

depends on the correlation value xg of the underlying

Gaussian random process Y(t) and two time arguments t and

s. For generation of long samples, such a definition requires
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extensive computation, in that Eq. (5) must be solved

inversely, usually by numerical approximation, for the

range of values xg2[K1, 1] and t, s2[0, tf] if the process

starts at tZ0 and ends at tZtf. If the marginal cdfs of Z(t)

depend upon a finite set of parameters, which themselves are

defined over a finite range, the calibration of the correlation

function can be simplified significantly. Let F(z, t)Z
F(z, l(t)), where l(t) is an n-dimensional vector containing

the parameters of the distribution. An example would be the

upper and lower bounds of a uniform distribution. If the

marginal cdfs can be so parametrized, then the correlation

distortion function can be written as

hðxg; t; sÞ Z hðxg; lðtÞ; lðsÞÞ: (16)

The correlation distortion function can thus be defined on

the 2nC1 dimensional space in which the coordinate axes

are the scaled covariance xg(t, s), and the components of l(t)

and l(s). If this space is finite, then a finite number of nodal

points can be defined at which Eq. (5) is evaluated. Provided

a fine enough discretization, the correlation distortion

function can be approximated by interpolation of these

nodal values. Since the correlation distortion function is in

general quite smooth, a fairly coarse discretization of the

(xg, l(t), l(s)) space will often provide satisfactory results.

Calibration of the correlation function xg(t, s) of Y(t) can

then be carried out as follows:

1. Discretize the (t, s) space on which xg(t, s) is defined

with a set of nodal points;

2. For each nodal point (ti, sj), find l(ti) and l(sj);

3. Given the known target value of x, perform a multi-

dimensional table lookup and interpolation to find the

correct value of xg.
3. Monte Carlo simulation

If F(z, t), and x(t, s) are the marginal distribution and

scaled covariance function of the process Z(t) that is to be

modeled by a non-stationary translation process, the

definitions above provide a straightforward method for

generating realizations of Z(t) on the interval [0, tf].

The first step is to determine the underlying Gaussian

correlation function xg(t, s). In rare cases, it may be possible

to solve Eq. (5), an inverse equation, analytically. In most

cases, however, xg(t, s) must be determined numerically.

One possible procedure is to define an n!m grid of points

{ti, sj}, iZ1,.,n, jZ1,.,m in the space [0, tf]
2, and a set of

correlation values {rk}, kZ1,.,l in the range [K1, 1] and

evaluate all xkijZx(rk, ti, sj)Zh(rk, ti, sj). An approximate,

discretized version of xg(t, s) can be obtained by

interpolating the values xkij. This interpolation can be

accomplished rapidly using, for example, the built-in

MATLAB function interp2.
Once the correlation function of the underlying Gaussian

process is determined generation of samples of Z(t) requires

only the generation of samples of Y(t), the underlying

Gaussian process. These samples can be generated in a

variety of ways ([2–5] and [6]). Two alternative methods

rely on the definition of a set of nodes ti iZ1,.,n, ti2[0, tf]

that are ordered so that ti!tiC1. The process Y(t) is

approximated by its nodal values YiZY(ti).

If the sample to be generated is not very long, and can be

represented with sufficient accuracy by a few thousand

nodal points, then the nodal values {Yi} can be arranged into

a vector Y whose components are the nodal values of the

process. This mean zero, unit variance, Gaussian random

vector, has correlation matrix xg whose components are

defined by xg,ijZxg(ti, tj). Samples of this Gaussian vector

can be generated efficiently using the Cholesky decompo-

sition b(xg) by the matrix operation YZbZ, where Z is a

mean zero, unit variance, Gaussian random vector with

uncorrelated components [24]. Alternatively, the Modal

decomposition J(xg) by the matrix operation YZJZ,

where J contains the eigenvectors of xg, can also be used

[25]. Either approach can be implemented as long as the

number of nodal points is not too large. On a typical desktop

computer, vectors of several thousand components can be

efficiently simulated using this method.

At some number of nodal points the calculation of the

matrix b (or J) becomes overly time consuming. If the

desired sample length is too long, or requires too many

nodal points to allow for simulation by the above method, a

simulation method based on conditional random vectors

can be used. The nodal value Zi is treated as the conditional

random variable ZijZiKmZziKm,.,ZiK1ZziK1 where m is

the window size and should satisfy mDtRlc where DtZ
jtiKtiK1j is the nodal spacing and lc is the correlation

length of the Z(t). Generation of this conditional Gaussian

variable can be accomplished by using directly the

properties of Gaussian random vectors [26]. In all

examples shown in this paper, sample generation is

accomplished using the Cholesky or Modal decomposition

method described above.
4. Example

In order to demonstrate the technique described in the

previous section, three non-stationary examples will be

provided here: a uniformly distributed process, a lognor-

mally distributed process and a binary process. In all cases,

the non-stationarity is manifested by the time dependence of

the marginal pdf f(z, t) that can be parametrized.

4.1. Non-stationary uniformly distributed process

Let Z(t) be a non-stationary uniformly distributed process.

The parameters of the distribution F(z, l(t)), contained in l(t),

are the upper and lower range values b(t) and a(t) of Z(t).
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Fig. 2. Correlation distortion function for a translation process with

uniformly distributed CDF, calculated numerically from Eq. (18).
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The translation process of Eq. (1) is then written as:

ZðtÞ Z gðYðtÞ; tÞ Z aðtÞC ðbðtÞKaðtÞÞFðYðtÞÞ (17)

The correlation distortion function described in Eq. (5) can

therefore be simplified to:

x Z hðxg; t; sÞ

Z 12

ðN

KN

ðN

KN
FðuÞFðvÞfðu; v; xgðt; sÞÞdu dv K3 (18)

For which a closed form solution has been derived by [27],

and used in [28] for rank-based simulation:

x Z hðxg; t; sÞ Z
6

p
arcsin

xgðt; sÞ

2

� �
(19)

Note that, for this particular non-stationary translation,

h($, t, s) is independent of the parameters l(t) and l(s). Also, it

can be easily shown that the upper and lower bounds of

Eqs. (9) and (11) correspond to xmin(t, s)ZK1 and xmax(t, s)Z
1 for all points t, s, indicating that all values of x within the

range [K1, 1] match one-to-one xg values. Both properties are

connected to the fact that the uniform pdf belongs to the group

of distributions that can be reduced to a standard form (where

aZ0, bZ1)through a linear transformation [29]. Another

significant feature of Eq. (18) is the considerably small
Table 1

Target and ensemble correlation values for a uniformly distributed translation pr

k, l Target (xT
kl) Gaussian (xg;kl ZhK1ðxT

klÞ)

1, 2 0.200 0.209

1, 3 K0.400 K0.416

2, 3 0.500 0.518
correlation distortion observed along the range K1!x(xg)!
1, as shown in Fig. 2. For simulation purposes, this low

distortion also provides a quick and efficient way to generate a

vector with any mean and standard deviation as input

information.

As an example, assume the process Z(t) discretized to

three points Z1, Z2, Z3 with the means and standard

deviations m1, s1Z(0.5, 1.5), m2, s2Z(2, 0.5) and m3,

s3Z(4, 1), and with the target correlation coefficients of

xT
12 Z0:2, xT

13 ZK0:4 and xT
23 Z0:5. Following the above

discussion, all values of correlation between the rangeK1%
xT

kl %1 for k, lZ1–3 and ksl, can be achieved through

Zi ZFK1
i ðFðYiÞÞ, where Fi corresponds to the marginal

uniform cdf of Z of component i. Therefore, the components

of Z will be perfectly correlated when the underlying

Gaussian components are perfectly correlated.

Since the correlation distortion function in Eq. (18)

depends only on xg, it is straightforward to interpolate the

non-Gaussian target correlation values xT
kl to calculate their

Gaussian equivalents xT
g;kl, which are obtained as

xT
g;12Z0:209, Journal of the Physiological Society of

Japan and xT
g;23 Z0:518. These are the target correlation

values required for the underlying Gaussian vector in order

to obtain the target non-Gaussian correlations defined

above. The distortion is very small in this case, but this

interpolation procedure will also be used in subsequent

examples, where distortion can be significantly higher.

Although not shown, there is very close agreement

between the target marginal pdfs and the histograms of 10,

000 samples of Z1, Z2 and Z3. For comparison, both

Gaussian and non-Gaussian correlation values of the

simulated samples is compared versus their target values

in Table 1. While the difference between target and

simulated values is almost negligible for practical purposes,

interpolation through xg;kl ZhK1ðxT
klÞ provides consistently

lower absolute errors (x0.3%) when compared to samples

generated where distortion is not considered (i.e. xg;klZxT
kl)

where the error obtained is around 3.0%.

This example demonstrates the application of sets of

random variables to non-stationary, non-Gaussian trans-

lation processes. In this case, the degree of correlation

distortion found after using the translation in Eq. (17) is

small, as is the number of random variables. The extension

of the technique to non-stationary processes with significant

correlation distortion and larger numbers of sampling points

is straightforward and will be shown in the next two

examples.
ocess

Ensemble (xkl) Gaussian (xg;kl ZxT
kl) Ensemble (xkl)

0.200 0.200 0.210

K0.403 K0.400 K0.421

0.497 0.500 0.511
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4.2. Non-stationary lognormal distributed process

This example highlights the application of non-stationary

translation processes to simulation of random processes

with a higher level of correlation distortion. Assume the

following form of the translation for Eq. (1):

ZðtÞ Z gðYðtÞ; tÞ Z expðmðtÞCsðtÞYðtÞÞ (20)

In this case, m(t) and s(t) are the time-varying mean

and standard deviation of log(z). For such a translation,

the marginal cdf at each step t corresponds to a lognormal

cdf:

FtðtÞ Z Fðz; tÞ Z F
logðzÞKmðtÞ

sðtÞ

� �
(21)

where log($) is the natural logarithmic function. Further-

more, it is important to note that m(t) and s(t) are not the

mean and standard deviation of Z(t) but rather the log

(Z(t)). Hence, in order to prescribe target values with

respect to t in the non-Gaussian domain, it is necessary to

define the relationship (mz(t), sz(t))Zf(m(t), s(t)) that maps

the transformation between both parameters. For lognor-

mal random variables, this relationship is readily available

and can be used in conjunction with the definition of

g(Y(t), t) to find the correlation distortion. Performing this

substitution, it can be shown that the correlation distortion
function is only dependent on the coefficient of variation

cov(t), where cov(t)ZcovtZsz(t)/mz(t) represents the

lognormal coefficient of variation at time instant t.

Hence, Eq. (5) can then be derived in the parametric
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form h(xg; l(t), l(s))Zh(xg; cov(t), cov(s)):

xðt; sÞ Z
expðxg

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
logðcovðtÞ2 C1ÞlogðcovðsÞ2 C1Þ

p
ÞK1

covðtÞcovðsÞ

(22)
In order to visualize the correlation distortion

function, x is plotted against xg for a series of fixed

values of covt and a range of covs, as shown in Fig. 3.

As covt/0 and covs/0 (i.e. deterministic case), no

distortion is observed for the range xgZ[K1,1] since xZ
xg. Furthermore, perfect correlation is always achieved at

h(xgZ1; t, s)Z1 when covtZcovs, i.e. when stationary.

However, unlike the previous example, the simulated

non-Gaussian non-stationary process Z will not always

match perfect correlation (xs1) for xgZ1, nor will it

always match perfectly negative correlation (xsK1) for

xgZK1. This inability to match perfectly negative

correlation is also observed in the stationary case when

ZZexp(Y) [10]. Therefore, the process can only be

simulated if the target values of x are defined within the

limits xmax(t, s) and xmin(t, s) for the domain [covt,

covs]![covt, covs].

As an example, let Z be a discretized non-stationary

random vector with components Zi, iZ1,.,200 obtained

with an exponential translation where the mean and standard

deviation are chosen to vary according to the following
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equations:

mðtÞ Z 2ðetÞ2; sðtÞ Z 8t C
1

2
(23)

where the coordinate t is discretized between 0 and 1. This

will result in a process whose mean increases according to

Eq. (23) from 2 to 14.78, with a linearly varying standard

deviation between 0.5 and 8.5. The correlation between

each component of Z is chosen to vary according to an

exponentially decaying function:

xT ðt; sÞ Z exp
jzðtÞKzðsÞj

t0

� �� 	2

(24)

where t0 is the correlation distance of the process, chosen

in this case to be t0Z0.4. From the target correlation

defined by Eq. (24), interpolation is carried out using a

finite set of numerically computed nodal points h(nijk) for

a range [0,1]![covt, covs]![covt, covs] that includes the

correlation space of Z, in order to find the Gaussian

correlation function xg,ij. Then, 10,000 samples of the
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stationary binary process.
Gaussian vector Yi, iZ1,.,200 are obtained using modal

decomposition. Each vector Yi is then converted to Zi

using the expression in Eq. (20), leading to 10,000

samples of Z. The ensemble mean and ensemble standard

deviation for these samples is shown to match the target

values very closely in Fig. 4. Three samples from these

ensemble are shown in Fig. 5. Also, both target xT and

simulated x correlation functions are compared in Fig. 6,

again with very good agreement. The maximum absolute

difference for the whole domain is around 3.5%. Although

not shown, marginal pdfs for each component of Z show

almost exact agreement with the target lognormal

distributions with mean and standard deviations corre-

sponding to Eq. (23).

4.3. Simulation of statistically inhomogeneous

random media

Many engineering applications require a combination

of material properties that may not be feasible in typical

one-phase materials. In some cases, this combination will
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also depend on the location of a particular component. For

example, the exterior of a turbine blade or engine that is

exposed to high temperatures must be able to shield its

components from the extreme environment, while the
Fig. 9. Region of achievable non-Gaussian correlation values x for a non-stationar

lower bounds are defined by xmax(t, s) and xmin(t, s).
interior must provide sufficient structural strength.

Composites with a graded profile in microstructure

and/or composition, titled functionally graded materials

(FGMs), have been studied and developed as possible

solutions for such cases in recent years ([30–33] to name

a few).

Unlike traditional composites, these heterogeneous

materials exhibit a gradual transition between two or more

phases, producing a continuous variation in the physical

characteristics of the composite at the macroscopic or

continuum level. Such gradation can also be observed in

some biological materials, such as bamboo and bone. An

illustration of a two-phase material with locally varying

composition is shown in Fig. 1.

Such a composite can exhibit considerable variation in

material properties due to manufacturing complexity and

statistical inhomogeneity. Therefore, characterization of the

local volume fraction or material properties can be a

particularly attractive application of non-Gaussian, non-

stationary translation processes.
4.3.1. Non-stationary binary distributed process

In order to simulate statistically inhomogeneous two-

phase random media, a non-stationary binary translation is

developed. If the two phases occupy disjoint subdomains

V(1)(t) and V(2)(t) (with V(1)(t)gV(2)(t)ZV and V(1)(t)

hV(2)(t)Z:) in V 2R
n, the material can be represented

by a characteristic function
y binary process for different fixed values of fs and a range of ft. Upper and
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IðtÞ Z
1; t2V ð1ÞðtÞ

0; t;V ð1ÞðtÞ

(
(25)

that is related to the phase volume fraction through the

expectancy of the characteristic function, f(t)ZE[I(t)]. A

memoryless translation is developed with the objective of

matching both marginal probability density function and

second order moment properties for a statistically inhomo-

geneous binary process. This is essentially done through

non-stationary level cuts of Gaussian processes (or fields) as

defined by:

ZiðtÞ Z FK1
i +FðYðtÞÞ Z

1; if YiðtÞOciðtÞ

0; if YiðtÞ%ciðtÞ

(
(26)

where Y is an underlying Gaussian process with mean zero

and standard deviation equal to one. The limit c(t) is related

to the volume fraction by f(t)ZP[Y(t)Oc(t)], where

f1(t)ZV(1)(t)/V and f(2)(t)Z1-f(1)(t). In order to match

the target autocorrelation xT(t, s), Eqs. (5) and (26) are used
Fig. 10. Binary sample for case A, along with corresponding ensemble mean and

density functions at tZ0.25, 0.50 and 0.90 with xA, where t0Z0.03.
to derive the correlation distortion function h(xg, f(t), f(s))

numerically from:

xij Z

ÐN
ci

ÐN
cj

fðu; v; xg;ijÞdu dv Kfifjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fið1 KfiÞ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fjð1 KfjÞ

p (27)

where f(u, v, xg,ij) is the second order joint Gaussian

probability density function. Plots of correlation distortion

for the above equation are shown in Fig. 7, for a fixed value

of fsZ0.75. In the extreme cases when ft/0 and fs/0,

results indicate that a very limited range of correlations can

be obtained for the range [K1,1] of xg. This makes physical

sense in that if a point on the sample has either a value of 0

or 1 with 100% probability, then it has no impact on (or

correlation to) any other value in the microstructure.

Furthermore, note in Fig. 7 that xmaxZ1 at h(1, fs, fs)

and xminZK1 at h(K1, fs, 1Kfs). These observations are

directly reflected by the possible range of correlation values

[xmin, xmax] at each location t, s as shown in Fig. 8, for other

fixed values of fs.
standard deviation plotted against target values (dashed line) and marginal
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As in the previous translation examples, simulation of a

non-stationary binary process is still achievable through

translation within the limiting xmin(t, s) and xmax(t, s) values.

Due to the fact that this limitation is directly connected to

the non-stationarity of the volume fraction, translation

seems particularly suitable for this type of simulation. Using

Eqs. (9) and (11), the lower and upper bounds can be

obtained numerically as shown in Fig. 9.

4.3.2. Simulation of a 1D binary translation process

Let Z be a discretized non-stationary binary process with

components Zi varying along a normalized position t2[0,1]

along the gradation coordinate iZ1,.,200; representing a

two-phase random media graded composite. Using the

model described in the previous section, the mean and

standard deviation depend on the prescribed variation of the

volume fraction, according to:

mðtÞ Z fðtÞ; sðtÞ Z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðtÞð1 KfðtÞÞ

p
(28)

For this particular example f(t) is chosen to vary from 0

to 1, similar to the pattern shown in Fig. 1, according to the

following functional form

fðtÞ Z
ð1 K tÞ1=m; if m!1

1 K tm; if mR1

(
(29)

where m is a constant that controls the volume fraction

variation. Two different types of autocorrelation functions

will be prescribed for Z:

Case A : xAðt; sÞ Z 1 K
jt Ksj

t0

; jtj!t0

0; elsewhere

8<
: (30)

Case B : xBðt; sÞ Z exp K
jt Ksj

t0

� �
(31)

where t0 is the correlation distance of the stochastic process

Z for the correlation functions xA (linear) and xB

(exponential). In this case, the first step for simulation is

to map the xT(t, s) into xT
g ðt; sÞ through the interpolating

technique described previously. An underlying Gaussian

process Y can then be simulated through a variety of

techniques, to be translated into the non-stationary, binary

process Z using Eq. (26).

The main limitation of this approach is that the upper

and lower bounds discussed in the previous section must be

observed by the choice of xT(t, s). This implies that t0 must

be low in order to enforce this condition. From the physical

constraints of the material, very high correlation lengths

along t would also be unrealistic, since this can contradict

the volume fraction variation described by Eq. (28). In

other words, the length scale of the local volume fraction

grading should be at least smaller than the length scale of

the entire system to be physically reasonable. Hence, with

these two conditions in mind, values of t0 are chosen

accordingly, in order to reflect the length scale of the
gradation and to define xT(t, s) within the bounds xmin(t, s)

and xmax(t, s) for each correlation.

Samples and comparison with target values for the

correlation function, marginal probability distributions,

mean and standard deviation are shown in Figs. 10–13 for

correlation functions xA and xB. The target inputs are

matched very closely with the samples exhibiting

gradation along t. The only case that shows slight

discrepancies in the mean and standard deviation is the

one corresponding to the linear correlation (case A). This

is due to the fact that when xA(t, s) is mapped into xg,A(t,

s), its Gaussian counterpart will have a spectral density

function with negative values, as shown in Fig. 14.

Therefore, it must be truncated for effective use in

simulation, which, in turn, causes some small inaccuracies

in the ensemble values.

The form of xmin(t, s) and xmax(t, s) discussed in the

previous section (see Fig. 9) suggests that assuming a non-

stationary target correlation might be more compatible with

the probabilistic information of the stochastic process Z. To

illustrate this approach, assume xT corresponds to the



Fig. 12. Binary sample for case B, along with corresponding ensemble mean and standard deviation plotted against target values (dashed line) and marginal

density functions at tZ0.25, 0.50 and 0.90 with xB, where t0Z0.03.
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translation of a Gaussian exponential correlation xT
g (see Eq.

(31) with t0Z0.4). The contour plots of xT
g;A and xT

A in

Fig. 15 indicate that xT exhibits a considerable non-

stationary pattern when mapped through hðxT
g ; s; tÞ. Note

that smaller values of t0 produce less non-stationarity,

which could then be approximated as stationary if the

resulting discrepancies are within reasonable tolerance.

Sample binary processes with this correlation function

are given in Fig. 16, with 2000 points per sample and based

on t0Z0.05. Three different values of m in Eq. (29) are used

to show the effects of the volume fraction variation pattern.

All three samples in 16 are developed from the underlying

Gaussian process Y.
5. Conclusion

Simulation of non-stationary, non-Gaussian stochastic

vectors is achieved via translation mapping.
The non-stationarity is directly connected to temporally or

spatially varying marginal pdfs that represent a generaliz-

ation of the stationary non-linear mapping of underlying

Gaussian processes. The properties for this translation

method indicate that upper and lower bounds limit the

achievable target correlation values. However, application

examples with different types of correlation functions and

marginal pdfs show that exactly matching prescribed

probabilistic information can be achieved.

An approach to Monte Carlo simulation using an

interpolating technique in order to account for correlation

distortion is discussed. This distortion arises from the

non-linear nature of the transformation and its presented

in a context that takes the temporal dependence into

account. Furthermore, a parametrization of the cdf that

improves the computational efficiency of the discretiza-

tion required for the interpolating algorithm is intro-

duced. The method can be easily implemented with any
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approach that generates accurate underlying Gaussian

input vectors.

Stochastic simulation of statistically inhomogeneous

media is also investigated as a field of potential interest
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Fig. 14. Spectral density functions (SDFs) corresponding to xA and xg,A.
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Fig. 15. Contour lines for (a) target Gaussian correlation xT
g;Aðt; sÞ and (b) its

corresponding target non-Gaussian correlation xT
Aðt; sÞ with t0Z0.4.
for such processes. The non-stationarity present in the first

order moments, which in this case is directly connected to

the volume fraction content of the material, must be clearly

considered by the simulating scheme. A binary translation

based on non-stationary level-cuts of Gaussian processes is

presented. The correlation distortion analysis for this case

indicates that, while the limiting bounds developed by the

theory must be observed, these are also consistent with the

physical constraints of the problem. Resulting samples

match the extreme non-Gaussian nature of the temporally

dependent bimodal marginal pdfs, as well as the target

second moment order properties.



Fig. 16. Samples of Z with an exponential target Gaussian correlation xT
g;A

ðt; sÞ with t0Z0.05 and (a) mZ1, (b) 2 and (c) 0.5.
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