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Abstract

A class of stationary non-Gaussian processes, referred to as the class of mixtures of translation processes, is defined by their finite

dimensional distributions consisting of mixtures of finite dimensional distributions of translation processes. The class of mixtures of

translation processes includes translation processes and is useful for both Monte Carlo simulation and analytical studies. As for

translation processes, the mixture of translation processes can have a wide range of marginal distributions and correlation functions.

Moreover, these processes can match a broader range of second order correlation functions than translation processes. The paper also

develops an algorithm for generating samples of any non-Gaussian process in the class of mixtures of translation processes. The

algorithm is based on the sampling representation theorem for stochastic processes and properties of the conditional distributions.

Examples are presented to illustrate the proposed Monte Carlo algorithm and compare features of translation processes and mixture of

translation processes.
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1. Introduction

Current models for non-Gaussian processes can be

divided in three classes: (1) memoryless transformations

of Rd-valued stationary Gaussian processes referred to as

translation processes, (2) conditional Gaussian processes,

for example, Gaussian processes with randomized

spectral density [6] (3) diffusion and filtered Poisson

processes, which represent states of non-linear and linear

filters driven by Gaussian and Poisson white noise input.

Conceptual simplicity and the ability to match any

marginal distribution and a broad range of correlation

functions are the main features of translation processes.

A limitation of these models is their inability to capture

higher order correlation functions [4]. Conditional

Gaussian processes have useful properties in some

applications [6]. Diffusion processes are difficult to

calibrate to a specified marginal distribution and

correlation function except for the case of the exponen-

tial correlation function [1,5]. Filtered Poisson processes

can match any correlation function but cannot be

calibrated to an arbitrary marginal distribution [5].

The objectives of this paper are to (1) define a class of

stationary non-Gaussian processes X with continuous

samples and finite second moment, which can match a

broad class of finite dimensional distributions, and (2)

develop a Monte Carlo simulation algorithm for generating

samples of this process. A first difficulty in achieving these

objectives is the limited availability of non-Gaussian

multivariate distributions satisfying Kolmogorov’s consist-

ency and symmetry conditions. It is shown that a mixture of

distributions derived from translation processes satisfies the

Kolmogorov conditions. A second difficulty is numerical in

nature. There are no efficient numerical algorithms for

generating samples of non-Gaussian processes specified by

their finite dimensional distributions. An algorithm is

proposed for generating samples of the proposed non-

Gaussian process. The algorithm is based on the sampling

theorem for stochastic processes and properties of con-

ditional distributions.

Two numerical examples are presented. The first

example evaluates the feasibility and the accuracy of the

proposed Monte Carlo simulation algorithm. The second

example shows that, in addition to matching a wide range of

marginal distributions and correlation functions, the pro-

posed model can also represent a broader class of second

order correlation functions than the translation models.
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2. Mixtures of distributions

There are very few multivariate distributions that can be

used to define stochastic processes [10]. This section

develops a class of multivariate distributions satisfying

the consistency and symmetry conditions so that it can be

used to define stochastic processes. These distributions are

mixtures of finite dimensional distributions of translation

processes.

Let {FkðxÞ; x [ Rd}, k ¼ 1;…;m; be a family of

multivariate distributions. Denote by fk the density of Fk.

The mixtures of these distributions and densities are

FðxÞ ¼
Xm
k¼1

pkFkðxÞ ð1Þ

and

f ðxÞ ¼
Xm
k¼1

pkfkðxÞ; ð2Þ

respectively, where pk $ 0 and
Pm

k¼1 pk ¼ 1: The mixtures

in Eqs. (1) and (2) with m . 1 are said to be non-degenerate

if the probabilities pk satisfy the condition pk , 1 for all

k ¼ 1;…;m: The moments of the mixture in Eqs. (1) and (2)

relate to the moments of its constituents by

mðq1;…; qdÞ ¼
ð
Rd

Yd

i¼1

x
qi

i dFðxÞ

¼
Xm
k¼1

pk

ð
Rd

Yd

i¼1

x
qi

i dFkðxÞ ¼
Xm
k¼1

pkmkðq1;…; qdÞ; ð3Þ

where qi $ 0 are integers, mðq1;…; qdÞ is a moment of order

q ¼
Pd

i¼1 qi of F; and mkðq1;…; qdÞ denotes the correspond-

ing moment of Fk: If distributions Fk; k ¼ 1;…;m; have

finite moments of order q; the mixture of distributions F in

Eq. (1) has the same property.

3. The class of mixtures of translation processes

Consider a collection of independent translation

processes,

XkðtÞ ¼ G21
k +FðYkðtÞÞ ¼ hkðYkðtÞÞ; k ¼ 1;…;m; ð4Þ

where Yk are stationary Gaussian processes with mean

zero, variance one, correlation function rkðtÞ ¼

E½YkðtÞYkðt þ tÞ�; and spectral density skðnÞ; F denotes

the distribution of a standard Gaussian variable, and Gk

is a continuous distribution with density gk; mean zero,

and variance one. The correlation function of Xk can be

calculated from

jkðtÞ ¼ E½XkðtÞXkðt þ tÞ�

¼
ð
R2

hkðaÞhkðbÞfða;b; rkðtÞÞda db; ð5Þ

where fð·; ·; rkðtÞÞ is the joint density of a standard bivariate

Gaussian vector with correlation coefficient rkðtÞ [4].

Let t1;…; td be arbitrary times. The joint distribution and

density of the vector ðXkðt1Þ;…;XkðtdÞÞ are

Fkðx1;…; xd; t1;…; tdÞ ¼ P
\d
i¼1

{YðtiÞ # yi}

 !

¼ Fðy1;…; yd;rkÞ ð6Þ

and

fkðx1;…; xd; t1;…; tdÞ

¼ ½ð2pÞd detðrkÞ�
21=2

Yd

i¼1

gkðxiÞ

fðyiÞ
exp 2

1

2
yTrky

� 	
; ð7Þ

where rk ¼ {rkðti 2 tjÞ}; i; j ¼ 1;…; d; is the covariance

matrix of ðYðt1Þ;…;YðtdÞÞ; Fð·;…; ·; rkÞ is the joint distri-

bution of this vector, and yi ¼ F21+GkðxiÞ; i ¼ 1;…; d: The

functions in Eqs. (6) and (7) are referred to as multivariate

translation distribution and density functions, respectively.

Let

Fðx1;…; xd; t1;…; tdÞ ¼
Xm
k¼1

pkFðy1;…; yd; rkÞ ð8Þ

and

f ðx1;…; xd; t1;…; tdÞ ¼
Xm
k¼1

pk½ð2pÞ
d detðrkÞ�

21=2
Yd

i¼1

gkðxiÞ

fðyiÞ

� exp 2
1

2
yTrky

� 	
; ð9Þ

be the mixtures of distributions and densities in Eqs. (1) and

(2), respectively, with Fk and fk in Eqs. (6) and (7). The

multivariate distribution and density in Eqs. (8) and (9) are

referred to as mixtures of translation distribution and density

functions, respectively.

Let X denote the collection of stochastic processes

defined by the finite dimensional distributions and densities

in Eqs. (8) and (9). A member X of X is called a mixture of

translation processes. Since the finite dimensional distri-

butions Fk; k ¼ 1;…;m; define translation processes, they

satisfy the symmetry and consistency conditions [2]. Hence,

the finite dimensional distributions in Eq. (8) satisfy the

same conditions so that the class of processes X is well

defined. The processes in X and their distributions have the

following properties.

(1) Translation distributions are degenerate versions of

mixtures of translation distributions. Take m ¼ 2 in Eqs. (8)
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and (9). Suppose that f in Eq. (8) is not degenerate and that

the translation densities fk of order two satisfy the condition

fkðx1; x2Þ ¼ f ð1Þk ðx1Þf
ð1Þ
k ðx2Þ; where f ð1Þk denote probability

density functions, k ¼ 1; 2: Hence, the mixture f ¼

pf1 þ ð1 2 pÞf2; p [ ð0; 1Þ; in Eq. (9) has uncorrelated

coordinates. If f is a translation density, then

pf1ðx1; x2Þ þ ð1 2 pÞf2ðx1; x2Þ

¼ ðpf ð1Þ1 ðx1Þ þ ð1 2 pÞf ð1Þ2 ðx1ÞÞðpf ð1Þ1 ðx2Þ þ ð1 2 pÞf ð1Þ2 ðx2ÞÞ

since uncorrelated translation variables are independent.

The above equality gives

ðf ð1Þ1 ðx1Þ2 f ð1Þ2 ðx1ÞÞðf
ð1Þ
1 ðx2Þ2 f ð1Þ2 ðx2ÞÞ ¼ 0

for all ðx1; x2Þ [ R2: This implies that f ð1Þ1 coincides with f ð1Þ2

so that the mixture is degenerate in contradiction with the

initial assumption.

(2) The multivariate distribution and density functions in

Eqs. (8) and (9) define a stationary stochastic process X. It

has already been shown that the class of processes X is well

defined. The members of X are stationary processes since

the distributions Fk; k ¼ 1;…;m; are invariant to a time shift.

(3) The moments of any order of X are

mðq1;…; qd; t1;…; tdÞ ¼ E
Yd

i¼1

XðtiÞ
qi

" #

¼
ð
Rd

Yd

i¼1

x
qi

i dFðxÞ ¼
Xm
k¼1

pk

ð
Rd

Yd

i¼1

x
qi

i dFkðxÞ

¼
Xm
k¼1

pkE
Yd

i¼1

XkðtiÞ
qi

" #

¼
Xm
k¼1

pkmkðq1;…; qd; t1;…; tdÞ; ð10Þ

where mkðq1;…; qd; t1;…; tdÞ ¼ E½
Qd

i¼1 XkðtiÞ
qi� is the

moment of process XkðtÞ: The definition of the moments of

a random vector and Eqs. (8) and (9) yield Eq. (10). Because

the translation processes Xk are stationary, the moments

E½
Qd

i¼1 XkðtiÞ
qi� are invariant to a time shift so that the

moments mðq1;…; qd; t1;…; tdÞ depend only on the time lags

ðt2 2 t1;…; td 2 t1Þ rather than the times ðt1;…; tdÞ: For d ¼

2 and q1 ¼ q2 ¼ 1; Eq. (10) gives

mð1; 1; t1; t2Þ ¼
Xm
k¼1

pkmkð1; 1; t2 2 t1Þ; ð11Þ

(4) The marginal distribution of X is

Fð1ÞðxÞ ¼
Xm
k¼1

pkFð1Þ
k ðxÞ ¼

Xm
k¼1

pkGkðxÞ: ð12Þ

The first equality holds since the distributions Fk satisfy the

consistency condition. The second equality is just a notation

(Eq. (4)).

(5) The finite dimensional density of X in Eq. (9)

degenerates into a one-dimensional distribution with

probability mass on a line equally inclined relative to the

coordinates of Rd as ðt1;…; tdÞ! t: This property must be

satisfied by the finite dimensional distributions of any

process X since the random variables Xðt1Þ;…;XðtdÞ

coincide in the limit as ðt1;…; tdÞ! t: In particular, it is

satisfied by the translation distributions. Eq. (8) implies that

the mixture of translation distributions has the same

property.

(6) If the processes in the mixture are type A ergodic,

then X is ergodic of type A. For example, suppose that all

processes Xk have mean zero and are ergodic in the mean,

that is, the estimator

Xk;t ¼
1

2t

ðt

2t
XkðsÞds

of the mean of Xk has the properties E½Xk;t� ¼ E½XkðtÞ� ¼ 0

and Var½Xk;t�! 0 as t!1: The corresponding estimator,

Xt ¼
1

2t

ðt

2t
XðsÞds;

of the mean of X is unbiased and its variance approaches

zero as t increases indefinitely since

E½Xt� ¼
1

2t

ðt

2t
E½XðsÞ�ds ¼

1

2t

ðt

2t

ð
R

u dFð1ÞðuÞ

� 	

¼
Xm
k¼1

pkE½Xk;t� ¼ 0

Var½Xt� ¼
1

4t2

ðt

2t

ðt

2t
E½XðsÞXðtÞ�ds dt

¼
1

4t2

ðt

2t

ðt

2t

ð
R2

uv dFðu; v; s; tÞ

� 	
ds dt

¼
Xm
k¼1

pk Var½Xk;t�! 0

t!1:

Similar considerations can be used to prove other types of

ergodicity.

(7) The process X is completely defined by the

probabilities p1;…; pm21; the marginal distributions

G1;…;Gm; and the correlation functions r1;…; rm: The

defining parameters can be estimated from a record of the

target process following these steps. First, the method in

Ref. [8] can be applied to select a mixture
Pm

k¼1 pkGk for

the marginal distribution of X based on estimates of the

marginal moments of the record. This step defines

the marginal distributions Gk and their weights pk: Second,

estimates ĵ and ẑ of the first and second order correlation

functions j ¼ E½XðtÞXðt þ tÞ� and z ¼ E½XðtÞXðt þ tÞXðt þ

sÞ� of the record can be used to select optimal functional

forms for the correlation functions rk such that the

difference between the estimates ĵ and ẑ and the first and
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second order correlation functions j and z of X be

minimized in some sense.

4. Time domain representation of processes in XX

Let {xðtÞ; t [ R} be a deterministic function whose

Fourier transform is zero outside a bounded frequency range

ð2n0; n0Þ; 0 , n0 , 1: The sampling theorem gives the

representation [3]

xðtÞ ¼ lim
m!1

Xm
k¼2m

xðktÞakðtÞ; ð13Þ

where t ¼ p=n0; times kt are called nodes, and

akðtÞ ¼
sinðpðt=t2 kÞÞ

pðt=t2 kÞ
: ð14Þ

Hence, x is completely defined by its values at kt; k ¼

0;^1;^2;…; that is, it is sufficient to sample x at a rate

equal to half of its shortest period. The sampling theorem

has been used to represent stationary Gaussian processes

and develop an algorithm for generating samples of these

processes [3,4]. These developments are now extended to

the class of stationary non-Gaussian processes defined in

Section 3.

Let X [ X be a stationary non-Gaussian process with

finite dimensional distributions in Eq. (8). If the spectral

density of X is zero outside a frequency band ð2n0; n0Þ; then

almost all samples of this process can be represented by

harmonics with frequencies in the range ð2n0; n0Þ so that

Eqs. (13) and (14) yield

Xðt;vÞ ¼ lim
m!1

Xm
k¼2m

Xðkt;vÞakðtÞ ð15Þ

for almost all vs; where v is an element of the sample space.

If the spectral density functions of the translation processes

Xk in the definition of X [ X are zero outside the frequency

bands ð2nk;0; nk;0Þ; k ¼ 1;…;m; then the spectral density of

X is zero in ð2max1#k#m {nk;0}; max1#k#m {nk;0}Þc: Hence,

the sampling theorem can be applied to represent almost all

samples of X:

The exact representation of X in Eq. (15) cannot be used

in calculations since it involves an infinite number of terms

and random variables. Consider the approximation

Xnðt;vÞ ¼
Xntþnþ1

k¼nt2n

Xðkt;vÞakðtÞ ð16Þ

of X; where nt ¼ ½t=t� is the largest integer smaller than t=t

and the integer n . 0 gives the number of nodes right and

left of the cell ½ntt; ðnt þ 1Þt� containing the current time

(Fig. 1). This approximation depends on the values of X at

2ðn þ 1Þ nodes, and has the property Xnðkt;vÞ ¼ Xðkt;vÞ

for k ¼ nt 2 n;…; nt þ n þ 1; since akðltÞ ¼ 1 for k ¼ l and

akðltÞ ¼ 0 for k – l: A Monte Carlo simulation algorithm

for generating samples of Xn is presented in Section 5.

The accuracy of the approximate representation Xn

depends on the size n of the window used in the definition

of Xn (Eq. (16)). Let

UnðtÞ ¼ XðtÞ2 XnðtÞ ð17Þ

be the approximation error at a time t [ ½ntt; ðnt þ 1Þt�:

Several measures can be used to quantify this error. For

example, the probabilities Pðmaxt[½ntt;ðntþ1Þt� lUnðtÞl . eÞ or

PðlUnððnt þ 1=2ÞtÞl . eÞ; where e . 0 is a small number. A

heuristic justification for evaluating the error at the cell

midpoint is that Xn coincides with X at the nodes so that the

error is likely to increase with the distance from the nodes.

The calculation of these probabilities can be very difficult. A

simpler measure, the mean square error e ¼ E½Unððnt þ

1=2ÞtÞ2�; is considered in the following example.

Example 1. Let Y be a stationary Gaussian process with

mean zero, unit variance, one-sided spectral density of

intensity 1=n0 in the frequency band ð0; n0Þ and zero outside

it, and correlation function rðsÞ ¼ sinðn0tÞ=ðn0tÞ: The

translation process XðtÞ ¼ YðtÞ3=
ffiffiffi
15

p
has mean zero, unit

variance and covariance function jðtÞ ¼ rðtÞð3 þ 2rðtÞ2Þ=5

[4]. In this case it is possible to obtain an explicit formula for

the mean square error e.

The Gaussian vector

Y ¼ ½Yððnt 2 nÞtÞ;…;YðnttÞ; Yððnt þ 1=2ÞtÞ;Yððnt

þ 1ÞtÞ;…; Yððnt þ n þ 1ÞtÞ�

has dimension 2n þ 3; mean zero, and covariance matrix

r ¼ {rððk 2 lÞtÞ}; k; l ¼ nt 2 n;…; nt; nt þ 1=2; nt þ

1…; nt þ n þ 1: The corresponding vector

X ¼ ½Xððnt 2 nÞtÞ;…;XðnttÞ;Xððnt þ 1=2ÞtÞ;Xððnt

þ 1ÞtÞ;…;Xððnt þ n þ 1ÞtÞ�

has also mean zero and covariance matrix j ¼ {jððk 2

lÞtÞ}; k; l ¼ nt 2 n;…; nt þ 1=2;…; nt þ n þ 1: The mean

square error is

e ¼ E Xððnt þ 1=2ÞtÞ2
Xntþnþ1

k¼nt2n

XðktÞakððnt þ 1=2ÞtÞ

0
@

1
A22

4
3
5

¼ bTjb;

ð18Þ

where b is a column vector with dimension 2n þ 3

and coordinates ðb1 ¼ 2ant2nððnt þ 1=2ÞtÞ;…;bnþ2 ¼

1;…;b2nþ3 ¼ 2antþnþ1ððnt þ 1=2ÞÞ: Fig. 2 shows the vari-

ation of the mean square error in Eq. (18) with the windowFig. 1. Approximate representation of X:
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size n for a band limited Gaussian white noise process with

unit variance and bounding frequency nb ¼ 5 and a nodal

spacing t ¼ p=ð3nbÞ: As expected the approximate

representation improves as n increases. The figure also

shows the exact correlation function j and its approxi-

mations for n ¼ 1; 5; and 10: The correlation function of Xn

with n ¼ 10 nearly coincides with the correlation function j

of X:

There are two sources of error in the approximation Xn:

First, the spectral density sðnÞ is replaced by the spectral

density ~sðnÞ ¼ 1ð2n0;n0Þ
ðnÞsðnÞ for some n0 . 0: Since the

processes in X have finite variance, the integral
Ð1
21 sðnÞdn

is finite so that
Ð
ð2n0;n0Þ

c sðnÞdn! 0 as n0 !1: Hence, any

process X [ X can be approximated by a process with a

bounded frequency range, that is, a process with spectral

density ~sðnÞ ¼ 1ð2n0;n0Þ
ðnÞ; n [ ð21;1Þ; provided that n0 is

sufficiently large. Second, the algorithm for generating

samples of X outlined in Section 5 uses only a finite number

of values of this process determined by the value of the

parameter n in Eq. (16). Extensive calculations show that

accurate representations of X result for n . 3–5 [7].

5. Monte Carlo simulation algorithm

Suppose a sample Xnðt;vÞ of Xn has been generated for

t # ðnt þ 1Þt: The objective is to extend this sample into the

next cell, that is, the time interval ½ðnt þ 1Þt; ðnt þ 2Þt�: This

extension requires a sample of the process at the node nt þ

n þ 2; that is, a sample of the conditional random variable

Xððnt þ n þ 2ÞtÞlðXððnt þ n þ 1ÞtÞ ¼ Xððnt þ n þ 1Þt;vÞ;

Xððnt þ nÞtÞ ¼ Xððnt þ nÞt;vÞ;…Þ:

ð19Þ

This exact formulation is not practical because it requires

conditioning on the entire past history, that is, a vector of

increasing size as time progresses. Moreover, the contri-

bution of values of X at nodes far away from the cell

containing the current time is likely to be negligible. It is

proposed to approximate the conditional random variable in

Eq. (19) by [3,7].

X̂ððnt þ n þ 2ÞtÞ ¼ Xððnt þ n þ 2ÞtÞlXððnt þ n þ 1ÞtÞ

¼ Xððnt þ n þ 1Þt;vÞ;

Xððnt þ nÞtÞ ¼ Xððnt þ nÞt;vÞ;…;Xððnt 2 n þ 1ÞtÞ

¼ Xððnt 2 nÞt;vÞÞ;

ð20Þ

that is, by the random variable Xððnt þ n þ 2ÞtÞ conditioned

on the values of X at the past 2ðn þ 1Þ nodes. Hence, the past

history is represented in this approximation by a vector with

the same dimension at all times.

The generation of samples of X̂ððnt þ n þ 2ÞtÞ is very

simple for stationary Gaussian processes since the second

moment properties of the vector ðXððnt þ n þ

2ÞtÞ;…;Xððnt 2 nÞtÞ are time invariant and define comple-

tely its probability law. The generation of samples of

X̂ððnt þ n þ 2ÞtÞ is much more complicated if X is a

stationary non-Gaussian process.

Let f ð2nþ2Þ and f ð2nþ3Þ be the joint density functions of

ðXððnt 2 nÞtÞ;…;Xððnt þ n þ 1ÞtÞÞ and ðXððnt 2nÞtÞ;…;

Xððnt þnþ1ÞtÞ;Xððnt þnþ2ÞtÞÞ; respectively. Let ðXððnt 2

nÞt;vÞ ¼ z1;…;Xððnt þnþ1Þt;vÞ ¼ z2nþ2Þ be a sample of

the first vector. The density of the conditional vector in

Eq. (20) is

f̂ðxlzÞ ¼
f ð2nþ3Þðz;xÞ

f ð2nþ2ÞðzÞ
; ð21Þ

where z¼ ðz1;…;z2nþ2Þ: There is no simple and efficient

way to generate samples from the density f̂ðxlzÞ since the

vector z changes in time. The following algorithm has been

used in this paper. Let u be a sample of a random variable

uniformly distributed in ð0;1Þ and denote by ða;bÞ the

range of f̂ð·lzÞ used for numerical calculations. If u# 0:5;

integrate the conditional density from the left to find x such

that
Ðx

a f̂ðalzÞda¼ u: If u. 0:5; integrate from the right to

find x satisfying the condition
Ðb

x f̂ðalzÞda¼ 12u: The

solution x is a sample of f̂ð·lzÞ: This algorithm has been used

for Monte Carlo simulation. The following three steps can

Fig. 2. Mean square error of the approximation Xn and correlation functions of Xn for several values of n:
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be followed to produce a sample of the approximation Xn of

X in a time interval ½0;~t�:

Step 1

Generate a sample z1 of Xð0Þ. Use this sample to generate a

sample z2 of XðtÞlðXð0Þ ¼ z1Þ: Then generate a sample z2 of

Xð2tÞlðXð0Þ ¼ z1;XðtÞ ¼ z2Þ: Continue this generation to

obtain a vector ðz1;…;z2nþ2Þ: The generation of the samples

z2;…;z2nþ2 is based on conditional densities of the type in

Eq. (21).

Step 2

Use the conditional density in Eq. (21) to generate a sample

of Xððnt þnþ2ÞtÞ given the values of X at the previous

2nþ2 nodes. This new value of X allows advancement of

the simulation from cell ½ntt; ðnt þ1Þt� to cell ½ðnt þ

1Þt;ðnt þ2Þt�: Repeat this step to produce a sample of X

at all nodes in ½0;~t�:

Step 3

Calculate the corresponding sample of Xn from Eq. (16).

It has been shown that processes defined by finite

dimensional distributions in Eq. (8) are not necessarily

translation processes, provided that these distributions are

not degenerate. The following examples demonstrate two

features of the class of mixtures of translation processes

defined in this paper. These processes exhibit intermittent

behavior and can describe second order correlation

functions that cannot be matched by translation pro-

cesses. These feature of the mixtures of translation

processes can be very useful in some applications. For

example, if the available information on a time series

consists of the marginal distribution and the first and

second order correlation functions [9], translation pro-

cesses can be inadequate.

Example 2. Let m ¼ 2 in Eqs. (6)–(9) and let XkðtÞ ¼

FU+FðYkðtÞÞ; k ¼ 1; 2; where Y1 and Y2 are stationary

Gaussian processes with mean zero and covariance func-

tions

r1ðaÞ ¼ e2llal ð22Þ

r2ðaÞ ¼
sinððnb 2 naa=2Þcosððnb þ naa=2Þ

ðnb 2 naÞa=2
;

0 # na , nb:

The processes Y1 and Y2 are independent of each other. The

distribution in the definition of the processes Xk is FUðxÞ ¼

ð1=2Þðx þ 1Þ1½21;1�ðxÞ þ 1½1;1ÞðxÞ; that is, the random vari-

ables XkðtÞ are uniformly distributed in ½21; 1� at each time

t $ 0: The function 1½a;b�ðxÞ is 1 for x [ ½a; b� and 0

otherwise.

Fig. 3 shows five samples of X with finite dimensional

distributions in Eq. (8) corresponding to p1 ¼ 0; 1=4; 1=2;

Fig. 3. Five samples of XðtÞ corresponding to p1 ¼ 0; 1=4; 1=2; 3=4; and 1:
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3=4; and 1: Numerical results are for l ¼ 0:1; na ¼ 1; and

nb ¼ 2: The samples have been generated by the Monte

Carlo algorithm in this section using a nodal spacing t ¼

0:25 and a window size n ¼ 5: The samples of X coincide

with the samples of X1 and X2 for p1 ¼ 0 and p1 ¼ 1;

respectively. For other values of p1 the samples of X

incorporate features of both X1 and X2: The sample of X for

p1 ¼ 1=4 appears to be alternately dominated by the sample

properties of X1 and X2:

The samples in Fig. 3 suggest that the processes in X can

model intermittent behavior. Such behavior can be observed

in some applications, for example, the wind speed process

can alternate between two patterns of behavior correspond-

ing to smooth and turbulent flow. The variation of soil

properties with depth in geological deposits with randomly

alternating soil layers characterized by random properties

can also exhibit intermittent behavior. The sample in Fig. 3

have features that are consistent with property 6 in Section 4

defining the class of processes X. For example, if the

constituent translation processes Xk are ergodic in the

marginal distribution and the correlation function, the

corresponding process X [ X is also ergodic in the

marginal distribution and correlation function. Hence, the

values and the frequency content of each sample of X have

to reflect the corresponding features of the constituent

processes Xk; and these features have to be incorporated in

the proportion pk:

Example 3. Let m ¼ 2 in Eqs. (6)–(9) and let

XkðtÞ ¼
eYkðtÞ 2 e1=2ffiffiffiffiffiffiffiffi

e2 2 e
p ; k ¼ 1; 2; ð23Þ

in Eq. (4), where Yk are stationary Gaussian processes

with mean zero and covariance functions in Eq. (22).

The marginal distribution and density of the processes Xk

are

FðxÞFðlogðx
ffiffiffiffiffiffiffi
e 2 1

p
þ 1Þ þ 1=2ÞÞ ð24Þ

f ðxÞ ¼

ffiffiffiffiffiffiffi
e 2 1

p

x
ffiffiffiffiffiffiffi
e 2 1

p
þ 1

fðlogðx
ffiffiffiffiffiffiffi
e 2 1

p
þ 1Þ þ 1=2Þ

for x . 2e=
ffiffiffiffiffiffiffiffi
e2 2 e

p
: Let X be a non-Gaussian process in X

with the finite dimensional distributions in Eqs. (6)–(9),

m ¼ 2; and processes Xk; k ¼ 1; 2; with the marginal

distribution and density in Eq. (24).

Fig. 4. Five samples of XðtÞ corresponding to p1 ¼ 0; 1=4; 1=2; 3=4; and 1:

Fig. 5. First order correlation function j of X for p1 ¼ 1=2:
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Fig. 6. Second order correlation functions z and zT of X and XT; respectively.

Fig. 7. Difference z2 zT of the second order correlation functions of X and XT:
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The first and second order correlation functions of the

processes Xk are

jkðaÞ ¼ E½XkðtÞXkðt þ aÞ�
erkðaÞ 2 1

e 2 1
ð25Þ

zkða;sÞ ¼E½XkðtÞXkðtþaÞXkðtþsÞ� ¼
erkðaÞþrkðsÞþrkða2sÞ

ðe21Þ3=2
;

where rk; k ¼ 1;2; are in Eq. (22).

Fig. 4 shows five samples of X for l ¼ 1=5; na ¼ 7; and

nb ¼ 10 corresponding to p1 ¼ 0; 1=4; 1=2; 3=4; and 1: The

samples have been generated by the Monte Carlo algorithm

in this section using a nodal spacing t ¼ 0:1 and a window

size n ¼ 5: The samples illustrate the dependence of the

correlation structure of X on the correlation functions of the

constituent processes Xk and the weights pk of these

processes in the definition of X: Fig. 5 shows the first

order correlation function of X for p1 ¼ 1=2: Consider also a

translation process XT with the marginal distribution F in

Eq. (24) and the covariance function in Fig. 5. Fig. 6 shows

three dimensional views and contour lines of the second

order correlation functions z and zT of X and of

the translation process XT: Fig. 7 shows a three-dimensional

view and contour lines of the difference z2 zT between the

second order correlation functions of X and XT: Figs. 6 and 7

suggest that the translation process XT may be inadequate to

model X if the second order correlation function of this

process needs to be represented accurately in addition to its

marginal distribution and first order correlation functions.

6. Conclusions

A class of stationary non-Gaussian processes, referred to

as the class of mixtures of translation processes, was defined

by its finite dimensional distributions consisting of mixtures

of finite dimensional distributions of translation processes.

The class of mixtures of translation processes includes

translation processes and is useful for both Monte Carlo

simulation and analytical studies. As for translation

processes, the mixture of translation processes can have a

wide range of marginal distributions and correlation

functions. Moreover, these processes can match a broader

range of second order correlation functions than translation

processes. The paper has also developed an algorithm for

generating samples of any non-Gaussian process in the class

of mixtures of translation processes. The algorithm is based

on the sampling representation theorem for stochastic

processes and properties of conditional distributions.

Examples were presented to illustrate the proposed Monte

Carlo algorithm and compare features of translation

processes and mixture of translation processes.
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