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a b s t r a c t

The objective of this paper is to provide and verify a new design method for the in-plane compressive
strength of steel sandwich panels comprised of steel face sheets and foamed steel cores. Foamed steel,
literally steel with internal voids, provides enhanced bending rigidity, exceptional energy dissipation,
and the potential to mitigate local instability. In this work, Winter’s effective width expression is
generalized to the case of steel foam sandwich panels. The generalization requires modification of the
elastic buckling expressions to account for panel non-composite bending rigidity and shear deforma-
tions. In addition, an equivalent yield stress is introduced to provide a single parameter description of
the yielding behavior of the steel face sheets and steel foam core. The provided analytical expressions
are verified with finite element simulations employing three-dimensional continuum elements and
calibrated constitutive models specific to metallic foams. The developed closed-form design expres-
sions are employed to conduct parametric studies of steel foam sandwich panels, which
(a) demonstrate the significant strength improvements possible when compared with solid steel, and
(b) provide insights on the optimal balance between steel face sheet thickness and density of the
foamed steel core. This work is part of a larger effort to help develop steel foam as a material with
relevance to civil engineering applications.

& 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Foamed steel intentionally introduces internal voids in steel,
e.g., Fig. 1. A variety of manufacturing methods are used to
introduce the voids from powder metallurgy and sintering of
hollow spheres to gasification [2]. Steel foams are largely still
under development, e.g., [7]; however steel foam sandwich panels
have been utilized in a demonstration project as a parking garage
slab [8]. Mass production of aluminum foam sandwich panels
(Fig. 2, [3]) as well as successful aluminum foam sandwich panel
applications in aerospace [3], automotive [4,5], and manufactur-
ing [9] demonstrate the basic potential. In general, metal foams
have high effective bending stiffness and energy absorption. In
addition, metal foams have improved thermal conductivity [9],
enhanced fire resistance [10,11], better noise attenuation [2,6],
and provide improved electromagnetic and radiation shielding
[12,13] when compared with solid metals.

The overall objective of this study is to develop a design
method for the determination of the in-plane compressive

strength of steel foam sandwich panels comprised of solid steel
face sheets and foamed steel cores. The design method develop-
ment requires: (a) determination of the effective bending rigidity,
including shear deformations, and the resulting local buckling
stress, (b) determination of the yield strength for the composite
(solid and foamed steel) panel, and (c) application and verifica-
tion/calibration of Winter’s effective width expression (originally
from [1]) suitably modified by (a) and (b). Validation of the
developed bending rigidity and design expressions is provided
through continuum finite element solutions of steel foam sand-
wich panels.

2. Basic steel foam material properties

2.1. Uniaxial stress–strain behavior

A typical compressive stress–strain curve for the steel foam of
Fig. 1 is provided in Fig. 3. This commercially available steel foam,
manufactured by the Fraunhofer Institute in Germany, employs
sintered hollow steel spheres and has a relative density r¼0.18.
The authors are involved in a wider experimental program for
complete materials characterization of this foam. For a typical
sample the initial compression modulus, Efc is approximately
450 MPa, the yield stress in compression fyf is approximately
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6 MPa, and the compressive strain before the onset of densifica-
tion of the steel foam walls is nearly 100%. In tension the initial
modulus and yield stress are similar but tensile strain capacity

is only on the order of 2%. These properties are utilized through-
out this paper as representative of an available low density steel
foam Fig. 4.

Fig. 1. Steel hollow sphere foam 18% relative density: (A) interior foam morphology through cut section, (B) contact between spheres as shown in cross-section, and
(C) sphere walls are not fully dense.

Fig. 2. Aluminum foam sandwich panels (a) on pallet, (b) in section [3]. (Photo credit: J Banhart).
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Fig. 3. Uniaxial compression test for calibration of D–F plasticity.
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2.2. Plate bending rigidity and local plate buckling stress

The bending rigidity of a steel foam plate exceeds that of a
solid plate. This is not immediately obvious when one considers
that the foaming process itself decreases the apparent modulus.
Consider a plate with initial thickness tini, if the entire plate is
foamed, the thickness tf is:

tf ¼ tini=r ð1Þ

where r is the relative density of the foamed steel (r¼1 is a solid
steel plate). Based on the work of [2] the foamed steel modulus,
Ef is related to the solid steel modulus, Es, by:

EfpEsr2 ð2Þ

Substituting these relations into the standard expression for
plate bending rigidity (and assuming no change in Poisson’s ratio,
n, for the foamed steel):

Df ¼
Ef t

3
f

12ð1%u2Þ
p

ðEr2Þðtini=rÞ3
12ð1%u2Þ

p
1
r

Et3ini
12ð1%u2Þ

p
1
rDsolid ð3Þ

Thus, by virtue of the strong role that thickness plays in plate
bending rigidity, a foamed steel plate has a higher plate bending
rigidity than a solid plate.

If instead of foaming the entire plate, only a central fraction of
the core, a (0rar1) is foamed, thus creating an all steel
sandwich panel, the increase in plate bending rigidity can be
even more pronounced. Assuming now the relative density, r,
applies only to the foamed core, then the core thickness, tc,
increased from the initial solid plate thickness tini, is:

tc ¼
atini
r ð4Þ

The remaining portion of the initial solid sheet is split evenly
between two face sheets of thickness, ts:

ts ¼
1%a
2

tini ð5Þ

The plate bending rigidity, again assuming constant n, is:

Dp ¼
Esðtcþ2tsÞ3%ðEs%Ef Þt3c

12ð1%u2Þ
ð6Þ

which after substitution of Eqs. (1), (4) and (5) results in:

Dp ¼
1
r3

ðð1%aÞrþaÞ3þa3ðr2%1Þ
h i Et3ini

12ð1%u2Þ
ð7Þ

Graphical representation of Eq. (7) (Fig. 3) shows that foaming
(i.e., a) between 30 and 90% of the initial solid sheet (tini) results
not only in improved bending rigidity above the solid plate, but
improved bending rigidity above foaming the entire plate (a¼1,
1.0tini foamed plate). Thus, foamed steel sandwich panels have the
potential for greatly improved stiffness and local buckling stress
under in-plane load.

3. Local buckling of foamed steel sandwich panels

For the foamed steel sandwich panel introduced in the
previous section the in-plane elastic local plate buckling stress,
fcr, is proportional to the plate bending rigidity:

f cr ¼ k
p2Dp

b2ðtcþ2tsÞ
ð8Þ

where k is the plate buckling coefficient, b is the plate width, and
all other variables are previously defined. Thus, the improved
plate bending rigidity (Eq. (7)) also provides plates with higher in-
plane elastic local buckling stress.

However, if fcr of Eq. (8), utilizing Eq. (7) for the plate bending
rigidity is employed the predicted local buckling stress is often
higher than the actual local buckling stress due to shear deforma-
tions in the low density core and lack of composite action
between the core and face sheets resulting in local bending of
the face sheets in isolation. This problem has seen significant
study in the literature [14–18]. In particular, Kardomates in [18]
found that Allen’s solutions of [14] were in best agreement with
rigorous continuum mechanics solutions. Thus, Allen’s approach
has been adopted for further study here.

The approach of Allen, for incorporation of shear and face
sheet bending, is to (a) simplify the bending rigidity, and
(b) smear the rest of the effects into the plate buckling coefficient,
k. The plate bending rigidity, Dp, is reduced (and simplified) by
ignoring the stiffness of the core, i.e., Ef of Eq. (6) is set to zero,
resulting in:

Dp ¼
EstsðtcþtsÞ2

2ð1%n2s Þ
ð9Þ

For low density foam cores (e.g., r¼18% for the foam of Fig. 1)
and utilizing Eq. (2) it is found the contribution of the foamed
core to the plate bending rigidity is less than 1%. Thus, the simpler
expression of Eq. (9) is justified even without considering shear
deformations.

For a simply supported plate of length a, width b, uniformly
compressed on the sides with width b, the plate buckling
coefficient, k, of Allen, including shear deformation is as follows:

k¼
mb
a

þ
n2a
mb

! "2
1

1þrðm2b2=a2þn2Þ
þ

ts2

3ðtcþtsÞ2

( )

ð10Þ

where the first term in the parentheses is the classic isotropic
plate solution (and converges to k¼4 as a/b-N), m is the
number of transverse buckling half-waves, n is the number of
longitudinal (in the direction of loading) buckling half-waves, and
r accounts for shear deformation as given by:

r¼
p2

b2
Dp

GcðtcþtsÞ2=tc
¼

p2

2ð1%n2c Þ
Es
Gc

tstc

b2
ð11Þ

where Gc is the shear modulus of the foam in the core. Note, if the
core is isotropic unfoamed steel r depends on n and the ratio of
tstc/b

2, and for typical b/t, r is less than 0.1. If the core is
completely rigid in shear r¼0.

As illustrated in Fig. 5, in classic isotropic theory the minimum
k occur at a/b¼ integer and converge to 4 as a/b-N. However, for

Allen

Fig. 5. Plate buckling coefficient, k, as a function of plate aspect ratio (a/b)
comparing classical local buckling (Kirchoff) theory with the solution of Allen
for r¼0.3 and ts/(tcþts)¼0.1.
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k of Eq. (10) the minima no longer occur at integer values and
instead occur at a/b¼wmin where wmin is a function of r and ts/
(tcþts). Allen proposed that iteration be used, i.e., for a given a/b
iterate on m and n until the minimal k is determined.

To expedite the use of Allen’s solution a closed-form solution
to the a/b at which k is a minimum is derived. First, noting n¼1
always generates a minima, Eq. (10) is simplified and re-written
in a form more amenable to analytical manipulation:

k¼ sþ2þ
1
s

! "
1

1þrðsþ1Þ
þ

1
3
x2

# $

s¼
mb
a

! "2

, x¼
ts

tcþts
ð12Þ

Differentiation with respect to s and setting to 0 to find the
minima provides:

1
s2

%1

! "
1

1þrðsþ1Þ
þ

1
3
x2

# $
þ

ðsþ2þ1=sÞr
ðrðsþ1Þþ1Þ2

¼ 0 ð13Þ

Which has four solutions, however only one of the solutions is
positive, thus:

smin ¼
4=9rþ1=9r2þ1=x2r%1=x2r2þ4=9

b
þb%

x2r2þ2x2r
3x2r2

ð14Þ

The auxiliary variables employed to simplify the expression for
smin are:

b¼ ð
ffiffiffiffiffiffia1

p
þa2Þ1=3 ð15Þ

a1 ¼
8=9

x2r2
þ

20=9

x2r3
þ

2

x2r4
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1=3

x4r2
þ
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x2r5
þ

10=3

x4r3
þ

1=9

x2r6
þ

4
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þ
4=3

x4r5
%

1

x6r3
þ

2=3

x4r6
þ

3

x6r4
%

3

x6r5
þ

1

x6r6
ð16Þ

a2 ¼
4
9r

þ
2
9r2

þ
1

27r3
þ

1

x2r
þ

1

x2r2
þ

1

x2þr3
þ

4
27

ð17Þ

From the preceding the aspect ratio at which a given number
of half-waves, m, reaches a minimum is:

a
b

& '

min
¼ wminm¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=smin

p
m ð18Þ

wmin ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=smin

p
can also be estimated from Fig. 6 for known r

and x.
The overall potential impact of shear deformation and non-

composite face sheet bending on the local buckling solution is
illustrated in Fig. 7. As shear deformations increase, i.e., as r
increases, the plate buckling coefficient decreases. The local plate

bending (captured in the ratio of the face sheet thickness to the
sum of face sheet and core thickness, ts/(tcþts)) also influences the
solution, but to a far lesser extent. Note, as a/b-0 the inclusion of
shear deformation, r, in Eq. (10) causes k to converge to a finite
value instead of infinity, as in the case of an isotropic plate.

4. Computational modeling of steel foam sandwich panels

To further explore the predicted behavior for steel foam
sandwich panels and provide predictions of the ultimate strength
of in-plane loaded steel foam sandwich panels a series of finite
element models was constructed. The models were completed in
LS-DYNA [24]. Brick elements (500,000 to 1000,000 type 164
solids [24]) were used throughout: 150 to 200 transverse
elements, and six elements through the thickness, as shown in
Fig. 8a were typical, but element aspect ratios were maintained
from 1 for b/t¼50, up to 2 for b/t¼200. Thin steel plates (0.3 mm)
along the panel perimeter were employed to eliminate the sharp
load application to the continuum representation (Fig. 8a). The
steel face sheets were modeled with a standard J-2 plasticity
formulation and isotropic hardening. The steel properties:
Es¼203,000 MPa, fy¼385 MPa, and complete strain hardening
regime were obtained from coupon tests [25] of steel sheet. In
addition, tensile failure in the face sheet was simulated via
element deletion at an accumulated plastic strain of 18%.

Modeling the steel foam core requires a more sophisticated
approach than standard J-2 plasticity. Steel foam is still compres-
sible after its yield and in the plastic regime n is typically
less than 0.3, as opposed to solid steel, which is practically
incompressible and thus n¼0.5. For steel foam, the yield and
subsequent plastic surface evolution depend not only on
deviatoric stress invariant J2 but also on the trace of the stress
tensor I1. Miller et al. [26], and later Deshpande and Fleck (D–F)
[27] introduced a generalized von Mises–Huber plasticity, which
accounts for pressure dependence. Reyes [28] and Hansen et al.
[29] enhanced D–F plasticity with tensile fracture criteria based
on the major principal stress and D–F plasticity with the fracture
criteria is implemented in LS-DYNA [24]. The D–F formulation
must be calibrated against a uniaxial material test, and the low
density hollow sphere foam of Fig. 1 as tested and reported in
Fig. 3 is used for that purpose here.

A simple demonstration of the efficacy of the developed model
is summarized in Fig. 9, where the model has been exercised with
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a central out-of-plane pressure load. In Fig. 9, assuming 30% of the
initial thickness (a¼0.3) is foamed, the resulting plate rigidity is
plotted against the relative density of the foamed core. Young
modulus of the foamed core was obtained from Eq. (2). The foam
at a relative density of 20% and the resulting rigidity is just below
that of Kirchhoff thin plate theory (i.e., Eq. (7)). For lower density
the deviation from thin plate theory is even greater. The results
demonstrate that the developed finite element model can account
for shear deformations, and bending in the face sheets.

Eigenbuckling analysis, Fig. 8b, was performed on the devel-
oped finite element model to explore the accuracy of Allen’s
elastic buckling solution (Eqs. (8)–(10)). For the eigenbuckling
models, based on a tini¼1 mm, 30% of the solid sheet was foamed
to 18% relative density (i.e., the foam of Fig. 1) resulting in
ts¼0.35 mm and tc¼1.67 mm. Panel width b was varied from
50 to 200 to explore a wide range of b/t ratios. Fig. 10 shows that
Allen’s elastic buckling solution works well for steel foam sand-
wich panels over a large variation in b/t ratios (and shear
deformation ratio, r).

5. Strength of in-plane loaded sandwich panels

Prediction of the compressive strength of a steel foam sand-
wich panel loaded in-plane is the ultimate goal of the work
presented herein. In this section Winter’s effective width

approximation is modified for steel foam sandwich panels and
then compared against nonlinear collapse simulations in LS-DYNA.

5.1. Squash load and equivalent yield stress

The squash load is the compressive load at which the section is
fully yielded. In the case of steel foam sandwich panels this is
modified to the compressive load at which the steel face sheets
are fully yielded. The equivalent yield stress for the sandwich
panel, fyp, may then be found from simple force balance:

f yp ¼
2tsf ysþtcUminðf yc ,Ecðf ys=EsÞÞ

2tsþtc
ð19Þ

where the yield stress of the face sheets, fy, is explicitly denoted
here as fys, and the yield stress and modulus in the foamed core
are denoted as fyc and Ec. Typically, the core is still elastic when
the face sheets yield, thus the second term of the minimum in
Eq. (20) usually controls. Alternatively fyp may be expressed
explicitly in terms of the foaming parameters a and r:

f yp ¼
ð1%aÞf ysþað1=rÞUminðf yc ,Ecðf yf =EsÞÞ

ð1%aÞþa=r ð20Þ

Also note, per [2]: fycpfysr1.5, and this approximation com-
bined with Eq. (2): EcpEsr2 may be used to provide an approx-
imate expression for fyp that is only dependent on the foaming
parameters.

Fig. 8. Finite element model of a simply supported steel foam sandwich panel plate (steel face sheet and steel foam core are modeled with brick elements in LS-DYNA)
under in-plane compression. (a) typical mesh, inset provides details of simply supported boundary condition implementation and (b) typical buckling mode for a shear
deformable core (r¼1.45), inset highlights shear deformation (mm).

core foam relative density, ρ
0.00.10.20.30.40.50.60.70.80.91.0

0.
3 

t in
i p

an
el

 s
tif

fn
es

s,
 k

 / 
k so

lid

0

5

10

15

20

25

30

Kirchhoff plate theory
Numerical simulation (brick elements)

Fig. 9. Effect of core foaming on bending rigidity of sandwich panels
200&200 mm panel. a¼0.3 of tini¼2 mm mild steel dense sheet foamed from
r¼1.0–0.05.

width b [mm]
0 100 200 300 400

N
cr

 [k
N

/m
m

]

0

100

200

300

400

500

600

Analytical elastic panel buckling
Numerical eigen-buckling

r = 0.0

r = 0.3

r = 1.0

r = 5.0

(1) 22

2

2 b
tt

G
Er cs

c

s

sν
π
−

=

Ratio of bending to shear rigidities: 

Fig. 10. Comparison of Allen’s elastic buckling solution with numerical plate
buckling model (dashed lines provide a means to understand the impact of shear
deformation on solution).

S. Szyniszewski et al. / Thin-Walled Structures 59 (2012) 11–19 15



Author's personal copy

5.2. Winter’s design method

For thin solid steel plates the most widely accepted engineer-
ing approach to predicting their in-plane compressive strength is
Winter’s effective width approach [1] or some variant thereof.
Winter’s approach (see [19] for a full summary) is predicated on
the early test observations of [20] and the semi-empirical deriva-
tion of von Karman in [21]. Winter conducted his own tests in [1]
which lead to empirical corrections to von Karman’s work to
account for imperfections. Ultimately, modern specifications [23]
have led to further small modifications. As implemented [23],
Winter’s approach provides the reduced width of the plate, be,
that is effective in carrying the maximum stress, fy, per:

be ¼
b if f crZ2:2f y

b 1%0:22
ffiffiffiffiffiffiffiffiffiffiffiffiffi
f cr=f y

q& ' ffiffiffiffiffiffiffiffiffiffiffiffiffi
f cr=f y

q
if f cro2:2f y

8
<

: ð21Þ

where b is the plate width, fcr is the local plate buckling stress, and
fy is the plate material yield stress. The method results in a
predicted compressive strength, Pn, for the plate of

Pn ¼ betf y ð22Þ

Here we explore the generalization of this design approach
where fy is replaced with fyp of Eq. (20) and fcr includes Allen’s
reductions for shear deformation and face sheet bending: Eqs.
(8)–(10) as well as utilize the closed-form expression of Eq. (18)
to determine the minimum fcr for a given plate.

5.3. Sandwich panel collapse simulations and comparisons

The LS-DYNA brick element model, employing J-2 plasticity for
the face sheets and the triaxial stress dependent D–F model for
the foamed steel core as described in Section 4, is employed here
to conduct material and geometric nonlinear collapse analysis of
simply supported steel foam sandwich panels loaded under in-
plane compression. Geometric imperfections in the shape of the
first eigenmode with magnitudes of 0.1t and 0.34t (see [22])
where t is the total thickness, were employed. As in the eigen-
buckling analysis of Section 4: tini¼1 mm, a¼30%, r¼ 18% (i.e.,
the foam of Fig. 1) which results in ts¼0.35 mm and tc¼1.67 mm.
Panel width b was varied from 50 to 200.

The force at collapse in the models (normalized by the solid
sheet squash load Py¼btinifys) is provided as a function of the
panel width-to-thickness ratio in Fig. 11. The figure also provides
the strength prediction based on Winter’s method, Eq. (22). Three

curves are provided for Winter’s method: solid steel (unfoamed)
sheet; sandwich panel – ignoring shear effects, and; sandwich
panel – including shear effects. The results indicate that shear
effects must be included in the solution, but if they are included
(and the yield stress suitably modified to fyp) Winter’s method
provides an accurate prediction of strength. Further, even grant-
ing the small loss in capacity due to shear deformations, the
foamed panel outperforms the solid steel sheet for a large range
of b/t ratios.

The collapse simulations also provide further insight into how
the sandwich panel carries load, and to a limited extent an
explanation as to why Winter’s method continues to work in this
case. Consider the b/tini¼50 model at peak strength; the long-
itudinal stress contours are provided in Fig. 12. The variation in
stress along the length, in the face sheets, increases and decreases
(though in net compression) as it follows the buckling waves. The
stress at the center, in the foamed steel, is essentially zero. This is
in stark contrast to a solid steel sheet, which has high net
compression in the center. This can all be observed in greater
detail for a transverse cut of the longitudinal stress: consider
the section called out in Fig. 12 and provided in Fig. 13B. If the
longitudinal stress at the same section is integrated through the
thickness, then divided by the total thickness (tcþ2ts) to provide an
equivalent stress, the result is Fig. 13A. The distribution of Fig. 13A
is readily recognized as similar to the classic stress distribution
that motivated the effective width expressions of von Karman and
later Winter. Interestingly, as shown in the figure, the maximum
stress at failure is approximately fyp (i.e., 117 MPa).

6. Steel foam sandwich panel optimization

To illustrate the performance that is possible with steel foam
sandwich panels the strength predicted by the suitably modified
and validated Winter’s method (Eq. (22)) is compared to a solid
plate (thickness¼tini) of the same weight for a variety of different
foamed depths. The commercially available steel foam of Fig. 1
(r¼18%) is again used for the core density, and the depth of
foaming, a, is varied from 0.1 to 0.6 (i.e., the initial portion of the
plate that is foamed varies from 0.1tini to 0.6tini). The plate width is
varied and the resulting strength prediction is provided in Fig. 14.

b/tini

0 100 200 300 400

P u /
 P

Y

0.0

0.2

0.4

0.6

0.8

1.0

1.2
Winter - solid sheet
Winter - panel, ignore shear
Winter - panel with shear (proposed) 
LS-DYNA (0.34*t imperf)
LS-DYNA (0.10*t imperf)

Fig. 11. Comparison of finite element collapse simulations of steel foam sandwich
panels with predicted strength based on modified version of Winter’s method.

 c
on

ve
x 

fa
ce

 

co
nc

av
e 

fa
ce

Fig. 12. In-plane stress distribution in a panel: (A) top face (steel plate), (B) mid-
plane (foam plate), (C) top face (steel plate) and (D) cross-section (top steel – steel
foam – bottom steel face).
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Fundamentally, foaming decreases fy (to fyp via Eq. (20)) and
increases the local buckling stress fcr (through an enhanced plate
rigidity appropriately reduced for shear deformations and face
bending Eqs. (8)–(10)). Thus, as shown in Fig. 14A for stocky
plates (low b/tini) the sandwich panel has a reduced capacity
when compared to a solid plate of the same weight, but as
slenderness increases the sandwich panel capacity exceeds that
of the solid plate. In striking the balance between reduced fy and
enhanced fcr it is shown that a foamed depth of 0.3tini (a¼0.3)
provides the biggest improvements over the solid plate, over the
widest range of b/tini, Fig. 14B. In the studied case strength gains
above the solid plate between 150% and 200% are realized for
b/tin4100.

7. Discussion

This work provides a basic building block in the development
of steel foams for structural engineering. Strength predictions of
steel in-plane compression, and appropriate reductions for local
buckling, are fundamental to the creation of thin-walled members
comprised of steel foam. It is somewhat remarkable that Winter’s
equation once again can be utilized to predict capacity. It is worth
noting that the final form of Winter’s expression and its mod-
ifications should be based on tests, not just the simulations
provided here; however, the work here provides confidence that
the basic approach can be realized, though additional calibration
will no doubt be required.

This study elucidates the potential stiffness and strength
gains of steel foam sandwich panels, but does not explore energy
absorption and ductility. Even for the cases where the squash load
is reduced (i.e., the ‘‘Gain’’ in Fig. 14B is o1.0) the compressive
deformation capacity in these sandwich panels will be greatly
increased. Design procedures for prediction of the deformation
capacity (and thus ductility and energy dissipation) are a logical
next step for this work. Significant effort remains at all levels to
develop steel foam as a structural material; nonetheless, work
such as that provided herein is intended to aid and encourage that
development.

8. Conclusions

Steel foam is emerging as a new structural material with
intriguing properties: high stiffness-to-weight ratio, high energy
absorption, and other advantages. Foaming steel increases bend-
ing rigidity, but decreases the effective modulus and yield stress.
A steel foam sandwich panel, consisting of solid steel faces and an
interior of foamed steel further increases the bending rigidity, and
limits the loss in effective modulus and yield stress. However,
depending on the density of the foamed steel core, shear defor-
mations and non-composite bending of the face sheets, must be
accounted for in the behavior of steel foam sandwich panels. It is
found that the approximation of Allen [14] effectively captures
these phenomena in the prediction of the elastic local buckling
stress for a steel foam sandwich panel. This observation is
verified, by detailed continuum finite element models of a steel
foam sandwich panel with brick elements. Allen’s elastic local
buckling prediction is extended and a closed-formed solution
provided. The ultimate strength of steel foam sandwich panels is
explored with the detailed finite element model and it is found
that Winter’s classic effective width method suitably modified for
the effective yield stress (derivations provided herein) and local
buckling stress (based on Allen’s method) is an excellent predictor
of steel foam sandwich panels over a wide slenderness range.
Further, exploration of the developed expressions utilizing one

commercially available steel foam demonstrates that foaming the
middle 30% of a solid steel plate leads to optimal strength gains,
which can be in excess of 200% of the strength of the solid steel
sheet of the same mass. Significant work and experimental
validation remain, but the work presented herein shows that a
basic buckling block of thin-walled member design: Winter’s
effective width method, can be suitably modified for steel foam
sandwich panels.
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