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a b s t r a c t

This paper applies the Sobol’ decomposition of a function of many random variables to a problem in
structural mechanics, namely the collapse of a two story two bay frame under gravity load. Prior to
introduction of this example application, the Sobol’ decomposition itself is reviewed and extended to
cover the case in which the input random variables have Gaussian distribution. Then, an illustrative
example is given for a polynomial function of 3 random variables.
In the structural example, the Sobol’ decomposition is used to decompose the variance of the response,

the collapse load, into contributions from the individual input variables. This decomposition reveals
the relative importance of the individual member yield stresses in determining the collapse load of the
frame. In applying the Sobol’ decomposition to this structural problem the following issues are addressed:
Calculation of the components of the Sobol’ decomposition byMonte Carlo simulation; the effect of input
distribution on the Sobol’ decomposition; convergence of estimates of the Sobol’ decomposition with
sample size using various sampling schemes; the possibility of model reduction guided by the results of
the Sobol’ decomposition.

© 2009 Elsevier Ltd. All rights reserved.
1. Introduction

One of the challenging issues in modern civil engineering anal-
ysis is the typically large number of random quantities defining
the input and systemparameters. This challenge arises in problems
involving large structures such as tall buildings and those involv-
ing random and heterogeneousmaterials. One approach tomaking
such problems tractable is to identify the most important sources
of uncertainty and focus attention only on those dimensions of the
input space.
Such a method is proposed here that uses the Sobol’ de-

composition [1], a global sensitivity analysis method. Sudret [2]
demonstrated global sensitivity analysis using polynomial chaos
expansion. Ghanem et al. [3] used stochastic model reduction for
chaos representations, and, moreover, used stochastic model re-
duction by constructing a coarse-scale from a specified fine-scale
whose probabilistic structure can be accurately determined [4].
Furthermore, one of the authors has applied dimension reduction
techniques to problems in micromechanics [5–7].
Generally, there are two types of sensitivity analyses: regre-

ssion-based methods and variance-based methods. Regression-
based methods use a regression of the output on the input vector
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and variance-basedmethods decompose the variance of the output
as a sum of contributions of each input variable. The variance-
based techniques are sometimes called ANOVA techniques for
ANalysis Of VAriance. The Sobol’ decomposition is one of the family
of ANOVA techniques. In this study the Sobol’ decomposition
is applied to two example response functions, one an analytic
function used to demonstrate the calculations and to provide
a template for interpreting the results, the second a realistic
structural problem, in which the decomposition is used to analyze
uncertainty in the collapse load of a building frame in which the
individual members have random yield stress.
Before developing the example applications, the Sobol’ decom-

position and its properties are defined for the case when the in-
put variables are uniform. This results in the simplest expressions
for the terms of the decomposition. Section 2 presents the formal
extension of the decomposition to the case in which the input
variables are Gaussian. Following these introductory materials the
paper proceeds to the two examples. Finally, it is shown that in
addition to being a powerful tool for variance decomposition and
sensitivity analysis, the Sobol’ decomposition canprovide guidance
in model reduction procedures.

2. The Sobol’ decomposition

This section presents the formulation of the Sobol’ decomposi-
tion and its properties to make the current paper as self-contained
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as possible. More details about the assumptions and theory can
be found in the original publications [1,2,8,9]. The Sobol’ decom-
position was originally developed for the analysis of functions of
uniform random variables. Here the decomposition is extended
and used for functions of Gaussian input variables. It should be
noted that the Sobol’ decomposition can be used for functions of
variables with any distribution, however, uniform and Gaussian
variables result in the most compact calculations. Use of uniform
input variables results in simple calculations because the pdf is
constant, anduse of Gaussian input variables simplifies the calcula-
tions because the integrals of the Sobol’ decomposition become ex-
pectations that are easily converted to the moments of a Gaussian
variable, for which the numerical values are known. These expec-
tations would not be so easy to calculate exactly if the inputs had,
for example, beta or exponential distribution. After presenting the
outline of the Sobol’ decomposition for the uniformly distributed
input variables, the formulation for the Gaussian case is presented.

2.1. Input variables with uniform distribution

Let the random vector X ∈ K n contain the random input and
system parameters that are used to generate a response function
F(X). Here, X is restricted to contain independent components and
have a joint density that is uniform on K n = {X : 0 ≤ Xi ≤
1, i = 1, . . . , n}, the unit hypercube, and F(X) is scalar. The Sobol’
decomposition of F(X) is given by

F(X) = F0 +
∑
1≤i≤n

Fi(Xi)+
∑

1≤i<j≤n

Fij(Xi, Xj)+ · · ·

+ F12...n(X1, . . . , Xn) (1)

which is a type of ANOVA-decomposition. In this expansion, the
individual terms, called the Sobol’ functions, can be calculated by
integrating F(X) according to

F0 =
∫
Kn
F(x)dx (2)

Fi(Xi) =
∫
Kn−1

F(x∼i, Xi)dx∼i − F0 (3)

Fij(Xi, Xj) =
∫
Kn−2

F(x∼ij, Xi, Xj)dx∼ij − Fi(Xi)− Fj(Xj)− F0 (4)

where x∼i is the vector of dummy variables corresponding to all
but the component Xi of the input random vector X , dx∼i means
integration with respect to all variables except Xi and F0 is the
mean value of the response function. Similarly, higher order Sobol’
functions can be calculated.
The decomposition depends on individual Sobol’ functions

being orthogonal in the sense that∫
Kn
Fi1,i2,...is(xi1 , xi2 , . . . xis)Fj1,j2,...jt (xj1 , xj2 , . . . xjt )dx = 0 (5)

when at least one of the subscripts on the two functions composing
the integrand differs.
The variance of F(X), denoted by D = var[F(X)] =

∫
Kn F

2

(X)dX − F 20 can be decomposed according to

D =
∑
1≤i≤n

Di +
∑

1≤i<j≤n

Dij + · · · + D12...n (6)

Di =
∫
K1
F 2i (xi)dxi (7)

Dij =
∫
K2
F 2ij (xi, xj)dxidxj. (8)
Following the above definition of the partial variances, the Sobol’
indices are defined as

Si =
Di
D

(9)

Sij =
Dij
D
. (10)

Higher order Sobol’ indices can be calculated with a similar
approach. A property of the Sobol’ indices is∑
1≤i≤n

Si +
∑

1≤i<j≤n

Sij + · · · + S12...n = 1. (11)

2.2. Input variables with Gaussian distribution

The expressions of the previous subsection can be applied only
when the input variables are uniform on the unit hypercube. In
order to extend the definition to cases in which the input variables
are non-uniform a new definition of the orthogonality of the Sobol’
functions is required. This new definition comes from∫

R1
Fi1,i2,...,is(xi1 , xi2 , . . . , xis)φ1(xk)dxk = 0

for k = i1, i2, . . . , is (12)

where φ1(xk) is the Gaussian pdf. Due to Eq. (12), the summands
have this notion of orthogonality to each other according to∫

Rn
Fi1,i2,...,is(xi1 , xi2 , . . . , xis)

× Fj1,j2,...,jt (xj1 , xj2 , . . . , xjt )φn(x)dx = 0 (13)

inwhichφn(X) is the n-dimensional Gaussian pdf. Then the follow-
ing relationships are obtained using the Sobol’ decomposition and
the above conditions∫

Rn
F(x)φn(x)dx = F0 (14)∫

Rn−1
F(x∼i, Xi)φn−1(x∼i)dx∼i = (F0 + Fi(Xi)) φ1(xi) (15)∫

Rn−2
F(x∼ij, Xi, Xj)φn−2(x∼ij)dx∼ij = (F0 + Fi(Xi)+ Fj(Xj)

+ Fij(Xi, Xj))φ2(xi, xj). (16)

The Sobol’ functions can therefore be calculated by the following,

F0 =
∫

Rn
F(x)φn(x)dx (17)

Fi(xi) =

∫
Rn−1 F(x∼i, Xi)φn−1(x∼i)dx∼i

φ1(xi)
− F0 (18)

Fij(xi, xj) =

∫
Rn−2 F(x∼ij, Xi, Xj)φn−2(x∼ij)dx∼ij

φ2(xi, xj)
− F0 − Fi(Xi)− Fj(Xj). (19)

The second moments of the Sobol’ functions are calculated by
squaring the Sobol’ decomposition equation and multiplying the
squared formula by the joint density function and integrating it
with respect to all the variables as follows,∫

Rn
F2(x)φ(x)dx

=

∫
Rn

F0 + n∑
s=1

∑
i1<i2<···<is

Fi1,i−2,...,is (xi1 , xi2 , . . . , xis )

2 φn(x)dx. (20)
After expanding the right-hand side of Eq. (20) and considering
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orthogonality, the expressions become∫
Rn
F 2(x)φn(x)dx− F 20 =

∫
R1
F 21 (x1)φ1(x1)dx1 +

∫
R1
F 22 (x2)

×φ1(x2)dx2 + · · · +
∫

R2
F 21,2(x1, x2)φ2(x1, x2)dx1dx2 + · · · , (21)

thereby splitting Eq. (20) into variance terms

D = D1 + D2 + · · · + D12 + · · ·D12...n. (22)

After calculating the variances, the Sobol’ indices can be calculated
by the same approach presented in the previous subsection. The
above derivations show that it is possible to apply the Sobol’ de-
composition to a system in which the input variables are Gaussian,
rather thanuniform. The key to extending thedecomposition to the
Gaussian case is a modified version of the orthogonality condition
for the Sobol’ functions, given in Eq. (13). The only difference be-
tween the orthogonality condition of Eq. (13) and that used when
the input variables are uniform is that the Gaussian pdf φn(x) ap-
pears explicitly in the condition.
Therefore, by adopting a slightly altered formof the orthogonal-

ity condition it is possible to use this decomposition for response
functions of Gaussian as well as uniform input variables.
The developments above show that the Sobol’ decomposition

can be applied to systems in which the input variables have Gaus-
sian, rather than uniform distribution. Importantly, the calcula-
tions necessary to develop the decomposition do not become
cumbersome when Gaussian input variables are considered be-
cause of the ease with which moments of the Gaussian distri-
bution are calculated. In order to consider systems in which the
input variables have non-uniform and non-Gaussian distribution
all that is required is to replace the n-dimensional Gaussian pdfs
φn(x) with the corresponding non-Gaussian pdfs. Although it is
simple to adapt the formulation introduced above to the case
where the input variables are non-uniform and non-Gaussian, ex-
act calculations will in general be more difficult since the conve-
nience of the easily obtainedmoments of the Gaussian distribution
is lost. Furthermore, it is still required that the input variables be
independent. If, however, the input variables are not independent,
the required orthogonality condition, similar to that shown in
Eq. (13), is not valid, and the decomposition cannot be constructed.
One possibility to overcome this admittedly significant restriction
would be to decorrelate, by an appropriate transformation, the vec-
tor of input variables, and then perform the decomposition on the
decorrelated variables. This approach, however, may significantly
distort the resulting Sobol’ indices, and the Sobol’ functions that
depend on the decorrelated variables may not have any physical
meaning. At this time, therefore, the conclusion is that the method
cannot be applied with confidence to systems with correlated in-
put variables.

2.3. Application of the Sobol’ decomposition

After calculation of the Sobol’ indices, the variables which
have greater contribution to the variance of the response can be
identified by ranking the Sobol’ indices. The series expansion can
be truncated by eliminating those functions with correspondingly
small Sobol’ indices. This truncation results in a reduced order
description of the response function. In general the integrals of
the preceding sections cannot be calculated exactly, but must be
estimated by numerical integration of the response function, often
byMonte Carlo simulation. In this case the estimation of the higher
order functions requires significantly more samples. It is therefore
wise to first estimate the first order Sobol’ functions and indices. If
n∑
i=1

Si ≈ 1 (23)
then it can be concluded that the higher order terms of the series
have negligible contribution to the total variance, and can be
neglected.

3. Classical gradient sensitivity analysis

The Sobol’ decomposition has been introduced as a method for
global sensitivity analysis. The emphasis here is on the global na-
ture of the results obtained from the Sobol’ decomposition, mean-
ing that the Sobol’ indices give a description of the importance of
the individual input variables over their entire domain. The global
sensitivity analysis provided by the Sobol’ decomposition contrasts
with point sensitivity analysis that provides a quantification of the
importance of input variables at a single point in the input domain.
The standard formulation of a point sensitivity analysis is

R = ∇F(X) (24)

with componentwise approximations

Ri ≈
F(X (0) + I(i)ε)− F(X (0) − I(i)ε)

2ε
(25)

where X (0) is a vector often taken to be the mean value, but which
in principle can be any point, and I(i) is a vector with components

I(i)k =
{
0, k 6= i
1, k = i , (26)

and ε is a small increment. One important distinction between
Sobol’ and classical sensitivity is that the Sobol’ decomposition
detects interactions of input variables through the second and
higher order terms, while classical sensitivity methods give only
derivatives with respect to single variables.

4. Analytic example

This section presents a set of example calculations using the
Sobol’ decomposition in a casewhere an exact formof the response
function is available. In engineering practice this will not often
be the case, but here such an example is presented to clarify the
method of calculation and application of the decomposition.
Let the response function be defined by polynomial

F(X1, X2, X3) = X21 + X
4
2 + X1X2 + X2X

4
3 (27)

with X1, X2 and X3 independent and identically distributed vari-
ables defined by the standard normal distribution. It is emphasized
at this point that this function is not meant to represent a physical
system, but rather is chosen arbitrarily as an illustrative example.
A second version of this response function is defined to be

F(Y1, Y2, Y3) = Y 21 + Y
4
2 + Y1Y2 + Y2Y

4
3 (28)

inwhich Y1, Y2 and Y3 are independent and equal to 8Z1−4, 8Z2−4
and 8Z3 − 4 respectively with Z ∼ U(0, 1). The result of this
transformation is that the variables Yi are defined in [−4, 4]. This
range is chosen so that the domain of the uniform input variables
corresponds to the domain containing nearly the entire probability
mass of the Gaussian input variables Xi.
Tables 1 and 2 show the Sobol’ functions and Sobol’ indices for

the response functions given in Eqs. (27) and (28).
Many of the results presented in the tables can be interpreted

by direct inspection of the response function itself. For example,
X3 and Y3 do not appear in the response function in isolation, and
therefore the first order Sobol’ functions associated with these
variables are zero. Furthermore, that S2 is larger than S1 is indica-
tive of the higher order power on the variables X2 and Y2 in the
response function. Finally, the nonzero values associated with S12
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Fig. 1. Geometry, loading, and structural shapes of the UP36H frame used in the structural example [10].
Table 1
Sobol’ functions derived from a polynomial response function with Gaussian and
uniform input variables.

Sobol’ functions Uniform distributed input Gaussian distributed input

F0 56.53 4
F1 Y 21 − 5.33 X21 − 1
F2 Y 42 + 51.2Y2 − 51.2 X42 + 3X2 − 3
F3 0 0
F12 Y1Y2 X1X2
F13 0 0
F23 Y2Y 43 − 51.2Y2 X2X43 − 3X2
F123 0 0

Table 2
Sobol’ indices derived from a polynomial response function with Gaussian and
uniform input variables.

Sobol’ indices Uniform distributed input Gaussian distributed input

S1 0.0098 0.0005
S2 0.5147 0.4281
S3 0.0000 0.0000
S12 0.0049 0.0007
S13 0.0000 0.0000
S23 0.4706 0.5708
S123 0.0000 0.0000

and S23 capture the terms in the polynomial that involve products
of more than one variable.
Despite overall similarity in the Sobol’ indices obtained for

Gaussian and uniform input variables, there are differences that
highlight that the Sobol’ decomposition not only captures global
sensitivity, but also captures information about the probability
density of the input variables. Specifically, S2 is substantially
higher for Gaussian than uniform input. This can be explained
by observing that the variables X2 and Y2 appear in the response
to the 4th power. Since the uniform variable Y2 has significantly
more probability mass at the extremes of its domain than does
the Gaussian variable X2 the importance of this 4th power term
is accentuated and the corresponding Sobol’ index is higher.
As discussed previously, one of the advantages of using

the Sobol’ decomposition is obtaining guidance in reducing the
dimension of the domain of the response function. In this problem,
according to Sobol’ index values, the summation of S2 and S23
is equal to 0.983 and 0.999 for uniform and Gaussian input
respectively. This indicates that nearly all of the variance of the
response can be represented by a function containing only X2 and
the combination (X2, X3) or, for the uniform case, the variable Y2
and the variable pair (Y2, Y3). Such a function can be obtained by
truncating the Sobol’ series representation of the response to be

F(X1, X2, X3) ≈ F(X2, X3) = F0 + F2(X2)+ F23(X2, X3) (29)

in which the appropriate Sobol’ function should be used for
the uniform and Gaussian cases. In the example application
presented next, the accuracy of such a reduced dimension version
of the response is investigated. This following example, for a
practical problem of structural collapse, also illustrates the need
for numerical integration by Monte Carlo simulation to obtain the
Sobol’ decomposition when an exact form of the response is not
available.

5. Structural example

This section presents the application of the Sobol’ decomposi-
tion to a practical problem in structural engineering, the collapse
of amoment frame. The frame chosen for study here has been used
extensively in previous studies of structural collapse [10] and relia-
bility analysis [11]. In keepingwith the nomenclature used in these
previous studies, the frame is here called UP36H, and is shown in
Fig. 1 with dimensions, element numbering, and the gravity load
applied to the frame.
This frame is interesting for several reasons that make it

suitable for an example application of the Sobol’ decomposition.
It is not symmetric so it fails in a lateral sideswaymode evenwhen
only gravity loads are applied. Moreover the failure mode and load
is sensitive to even small changes in the yield stress of individual
members. This feature of the response has already been observed
in reliability studies of the frame [11].
In this problem the geometry and loading of the frame are

constant, and uncertainty is introduced through the yield stresses
of the individual members. These yield stresses are contained in a
vector of input variables FY in which component FYi is the yield
stress of element i. The response is taken to be the load factor at
collapse, that is, the multiplier applied to the loads shown in Fig. 1
to obtain the failure load. This load factor at collapse is denoted
by S.
To obtain the response of the subject frame, a nonlinear collapse

analysis is performed. Due to the asymmetry of the frame collapse
occurs in a sideswaymode even under gravity load. The horizontal
displacement of joint A, as labeled in the figure, is used to define
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Fig. 2. Load–displacement traces for the collapse of the frame when the yield
stress of the structural elements is random and independent with 10% coefficient
of variation.

Fig. 3. Hinge sequence during the collapse of frame when all elements have yield
stress of 248 MPa.

collapse of the structure. Fig. 2 shows load displacement traces for
several realizations of frame UP36H. These traces show that lateral
collapse is the failuremode, and that variation of the element yield
stress does lead to significant qualitative and quantitative variation
in the collapse mechanism. The uncertainty in the simulations
shown in Fig. 2 is due to themember yield stresses FYi being drawn
from a uniform distribution on the interval (205, 291) MPa. More
details about themodeling of input uncertainty is given in the next
subsection.
When the yield stress in all members is set to the mean value

of 248 MPa, plastic hinges form in the sequence shown in Fig. 3. As
will be shown in the Sobol’ analysis, there is a relationship between
the locations of plastic hinging and the magnitude of the Sobol’
indices.

5.1. Monte Carlo simulations

As mentioned above, the frame is analyzed for the two cases of
uniform and Gaussian yield stress. In both cases, the yield stresses
of the members are independent and identically distributed. For
both cases, the mean value of the yield stress is assumed to be
E[FYi] = 248 MPa, and the coefficient of variation to be 0.10,
consistent with the probability models used in previous reliability
studies of the frame [11]. The probability models for the yield
stress can therefore be compactly described by FYi ∼ U(205, 291)
MPa for the uniform case, and FYi ∼ N(248, 24.8) MPa for the
Gaussian case. The Gaussian model more closely represents the
reality of property variation in structures, whereas the uniform
model allows for simpler calculation of the Sobol’ decomposition.
Note that for formal calculations the Gaussian distribution should
be truncated at 0+ so that non-physical negative yield stresses are
not permitted. With the prescribed coefficient of variation of 0.10,
however, the generation of negative yield stress does not occur in
practice.
In addition to the two different probability models used for the

yield stresses, two sampling schemes are used to generate realiza-
tions for use in theMonte Carlo simulation. A brute force (BF) sam-
pling scheme is implemented for both the Gaussian and uniform
models, and a Latin Hypercube (LH) scheme is implemented for
the uniformmodel [12]. For the current example, with a 10 dimen-
sional input space, and a response function that can be numerically
evaluated for a given sample in a few seconds on a desktop com-
puter, BF sampling is tractable and effective. As the dimension of
the input space grows or the time required for individual function
evaluations grows, however, BF samplingmay become prohibitive.
The LH sampling scheme is demonstrated here to show that it can
provide accurate estimate of the components of the Sobol’ decom-
position with significantly less computational expense than with a
BF scheme.

5.2. Sobol’ parameters evaluation

While the so-called curse of dimensionality applies to the size
of the input domain, it also affects the estimation of the Sobol’
functions from Monte Carlo simulations. If the number of samples
required for an accurate estimate of the response function over its
entire ni-dimensional domain is ns,total then the number of samples
required for accurate estimation of a Sobol’ function of order p
is approximately

p
ni
√
ns,total. Thus, the number of samples needed

for estimation of a Sobol’ function grows rapidly with increasing
order of the function. Recall that the order of the Sobol’ function
is the number of input variables upon which the Sobol’ function
depends, and should not be confused with, for example, the order
of a polynomial. For example, the Sobol’ function F13(x1, x3) is a
second order function, regardless of what the actual form of the
function is.
In practice, therefore, it is convenient to estimate all the first

order Sobol’ functions and indices from Monte Carlo simulations
and calculate the sum

S(1) =
ni∑
i=1

Si. (30)

If S(1), the sum of all the first order Sobol’ indices, satisfies the
condition 1 − S(1) < ε, where ε is some small number, perhaps
0.10, then all the higher order Sobol’ indicesmust be negligible, and
the set of first order Sobol’ functions provides a nearly complete
representation of the response.
Estimation of a first order Sobol’ function from simulation data

can be made by the following procedure that effectively involves
projection of the simulation data onto one of the input coordinate
axes. Denote by {I(j)} a set of intervals that completely covers the
domain of Xi, one of the input variables. Let the center of each of
these intervals be denoted by X (j), and let {X (j,k)} be the set of input
vectors that satisfy Xi ∈ I(j), that is, whose i th component is in the j
th interval dividing the input domain. This set of notations amounts
to a binning of the Monte Carlo data according to the value of a
single input variable. An estimate of the first order Sobol’ function
fi(Xi) is then obtained by the averaging operation

fi(X (j)) =

mij∑
k=1
F(X (j,k))

mij
(31)

where mij is the number of input vectors satisfying Xi ∈ I(j) and
F(X (j,k)) is a response evaluation at input point X (j,k).
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Fig. 4. Sobol’ functions derived from BF simulation of the collapse of frame UP36H for uniform yield stresses.
Fig. 4 shows the ten first order Sobol’ functions derived by BF
sampling of the uniform input set FYi ∼ U(205, 291). Note that
the x-axis values in the figure have been scaled to be in the interval
[0, 1], but that here Xi = 0 corresponds to FYi = 205 MPa and
Xi = 1 corresponds to FYi = 291 MPa. If the variation of a Sobol’
function surrounding its mean value is large then the influence of
that variable on the response function is correspondingly large. For
example, variation of F8 surrounding its mean value is larger than
that of F1. Therefore, S8 should be larger than S1which is confirmed
by checking the results shown in Table 3. The first order Sobol’
functions derived by LH sampling of the uniform input space and
BF sampling of the Gaussian input space are qualitatively similar
to those shown in Fig. 4, and are omitted for the sake of brevity.
Table 3 presents the comparison of the first order Sobol’ indices

for three kinds of analysis in this study. The results shown are
based on 10000 BF random samples of the uniform and Gaussian
input spaces, and 800 LH samples of the uniform input space.
The comparison is made to 10000 BF samples because, based on
the convergence study presented earlier, this number of samples
provides very good estimates of the Sobol’ indices. It should not
be interpreted that 800 LH are equivalent to 10000 BF samples,
rather, LH sampling may give a substantially greater increase in
simulation efficiency.
Table 3
Sobol’ indices for the frameUP36H for three cases of input uncertainty and sampling
method. (1) Uniform yield stresses and brute force Monte Carlo, (2) Uniform yield
stresses and Latin Hypercube sampling, and (3) Gaussian yield stresses and brute
force Monte Carlo.

Sobol’
indices

Uniform dist.
input (BF)

Uniform dist.
input (LH)

Gaussian dist.
input (BF)

S1 0.002 0.008 0.003
S2 0.203 0.196 0.162
S3 0.003 0.010 0.004
S4 0.001 0.018 0.001
S5 0.016 0.037 0.021
S6 0.069 0.068 0.058
S7 0.013 0.015 0.009
S8 0.463 0.458 0.423
S9 0.001 0.020 0.003
S10 0.104 0.107 0.154

Sum = 0.874 0.937 0.837

The results obtained by the three simulation schemes are
generally similar to one another. Specifically, the rank ordering of
the Sobol’ indices is the same for all three cases, indicating that
the yield stress of elements 8, 2, 10 and 6 are most important
in determining the strength of the frame. Note that these are all
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Fig. 5. Convergence of Sobol’ indices S6 and S8 with increase in number of samples
using brute force Monte Carlo on uniform and Gaussian input spaces.

elements in which hinges form in the collapse mechanism shown
in Fig. 3. The total fraction of the variance captured by the first
order functions is also similar, varying between 0.84 and 0.94. This
indicates that for this problem higher order contributions to the
Sobol’ series are relatively small. From here forward the analysis
focusses entirely on the first order functions.
Despite the overall similarity of the results, there are differences

between the three sets of results. Differences between the BF
and LH sampling of the uniform input space are simply a result
of sampling uncertainty. Differences between the results for the
uniform and Gaussian input spaces, however, show how the Sobol’
decomposition captures information about input uncertainty in
ways not possible with standard sensitivity analysis. For the
Gaussian inputs, for example,members 2 and10makenearly equal
contributions to the response uncertainty.
Particularly interesting are the cases in which the first order

Sobol’ functions show a nonlinear relationship between the input
variable and the response. In such cases is where the results of
a global sensitivity analysis will vary substantially from those
of a classical sensitivity analysis. In this example, F10 and, to a
lesser degree, F8 show nonlinearity. The nonlinearity in F10 can
be explained by reference to Fig. 3 which shows that the hinge at
the middle of element 10 is one of the last to form. Therefore, at
some value of the yield stress element 10 will stop participating
in the collapse mechanism of the frame, and the corresponding
Sobol’ function will flatten, as is seen in Fig. 4. This change in the
collapse mechanism has been verified by simulation of the failure
of the frame with the yield stress of element 10 set to a high value.
This simulation, which is not shown here for brevity, shows that
element 10 ceases to be part of the collapse mechanism when its
yield stress is highly elevated.

5.3. Convergence of the Sobol’ functions and indices

In the previous section an example Sobol’ decomposition was
shown that used BF sampling with 10,000 samples, and LH
sampling with 800 samples. In this section it is shown that in
both cases the number of samples used is sufficient to provide
convergence of the results. The convergence study is performed
on the Sobol’ functions F6 and F8 and their corresponding indices
S6 and S8. Fig. 5 shows the convergence of these Sobol’ indices for
BF sampling of the uniform and Gaussian input spaces. After 3000
samples convergence of the indices is observed.
One can immediately note that the convergence of the Sobol’

indices for the Gaussian input space is not smooth, with seeming
discontinuities in the estimated value of the Sobol’ indices between
about 1500 and 2500 samples. These anomalies in the convergence
curves are caused by a phenomenon seen in Fig. 6 and Table 4.
Concentrating on interval I(1), one can see from the table that,
when the number of samples is 1500 and 2000, no sample points
occur within this bin. This means that a correct estimate of the
value of the Sobol’ function F8 is impossible in this interval, and
results in the anomalous behavior observed in the top two frames
of Fig. 6, where the Sobol’ function itself has a large discontinuity
near the left end of its domain. As soon as a single sample point
is placed in I(i), however, which occurs between the 2000th and
2500th sample for F8, the estimate of the Sobol’ function improves
dramatically as shown in the lower two frames of Fig. 6, and the
corresponding Sobol’ index converges rapidly to its correct value.
A similar explanation is valid for the convergence behavior of S6 in
the Gaussian space, though the details are omitted here for brevity.
This series of observations points to one of the shortcomings of
performing numerical integration using BF samples in a Gaussian
space, and indicates that estimation of the Sobol’ functions could be
dramatically improved by the implementation of more intelligent
sampling techniques.
The reason for using the LH method is to achieve accurate

estimation of the Sobol’ functions using fewer samples than
Fig. 6. Convergence of Sobol’ function F8 with increasing number of samples from a Gaussian input space.
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Table 4
Number of samples in each interval I(i) for the calculation of S8 from a Gaussian input space.

No. of sim. 1 2 3 4 5 6 7 8 9 10 11 12 13 14

1500 0 10 20 64 128 245 290 282 219 140 59 29 8 5
2000 0 11 26 96 171 337 386 384 276 185 74 37 9 6
2500 1 13 32 114 228 416 489 472 360 222 88 45 10 8
3000 2 14 42 138 274 498 587 574 427 269 104 51 10 8
Fig. 7. Comparison of convergence of Sobol’ indices S6 and S8 using brute force and
Latin hypercube sampling on a uniform input space.

Table 5
Comparison between Sobol’ global sensitivity indices and classical gradient sensi-
tivities for frame UP36H.

Element Sobol’ indices Sobol’ index Sensitivity Normalized
sensitivity

1 S1 0.002 0.30 0.008
2 S2 0.203 11.93 0.316
3 S3 0.003 0.00 0.000
4 S4 0.001 0.00 0.000
5 S5 0.016 0.19 0.005
6 S6 0.069 7.01 0.185
7 S7 0.013 2.57 0.068
8 S8 0.463 14.19 0.0375
9 S9 0.001 0.31 0.008
10 S10 0.104 1.30 0.034

required by the BF sampling method. In order to see how LH
sampling is effective in this example, the convergence of Sobol’
indices S6 and S8 is examined in the uniform input space using
both BF and LH sampling. Fig. 7 shows this convergence and
that LH sampling achieves an accurate result with roughly 400
samples as opposed to the approximately 2000 samples required
for convergence using BF sampling.

5.4. Comparison between Sobol’ analysis and classical sensitivity
analysis

This section compares the global sensitivities obtained in the
analysis described above to the results of a classical, gradient-
based, sensitivity analysis in which the gradients of the response
with respect to each of the input variables is computed using
a finite difference approximation centered at the mean point of
the input space. The comparison in this section is made for the
uniform input space. A central finite difference approximation
with each evaluation made by a nonlinear collapse analysis is
used to obtain the gradient sensitivities. The comparison between
the Sobol’ global sensitivity and the gradient sensitivity results
is shown in Table 5, in which the entries of the fifth column are
the sensitivities normalized so that they sum to one. Although
this normalization does not have a well-founded mathematical
or physical justification, it allows easier comparison between the
magnitude of the sensitivity and themagnitude of the Sobol’ index.
The two approaches to sensitivity analysis give many similar
results in this example, for example suggesting that the strength
of elements 8 and 2 have significant effect on the collapse load,
and that the strength of elements 3 and 4 are not important
in determining the frame strength. One significant difference,
however, is apparent in the result for element 10. The Sobol’ global
sensitivity analysis ranks the yield stress of element 10 as the
fourth most important variable in determining the collapse load,
and S10 = 0.10 is roughly 25% of the maximum sensitivity S8 =
0.46. The point sensitivity results, however, rank the yield stress
of element 10 as the fifth most important variable in determining
the collapse load, and, more significantly, R10 = 1.3 is only 9% of
the maximum sensitivity R8 = 14.19. An analyst could reasonably
conclude from the point sensitivity analysis that the yield stress
of element 10 does not significantly affect the strength of the
frame,whereas the Sobol’ global sensitivity analysis shows that the
strength can be significantly affected by the strength of element
10. It should be noted that the point sensitivity analysis could
capture the significance of element 10 if a different point were
chosen aboutwhich to center the estimate of the sensitivity. It may
not be always possible to rationally choose the point at which to
estimate sensitivity, and often the mean point of the input vector
is used.While the Sobol’ decomposition can detect the significance
of element 10 in this case, estimation of the Sobol’ indices requires
a far greater number of samples than the point sensitivity analysis.
The difference in the global and point sensitivity results regard-

ing element 10 stems from the nonlinear nature of the dependence
of the frame strength on the strength of element 10. Fig. 4 shows
this nonlinearity, and one can see that the variation over the entire
domain of the function is much greater than would be concluded
from observation of the gradient at the mean point of the input
domain.
Despite this difference in the results, it should be noted that

sensitivity analysis requires very few evaluations of the response
function, and that theremay also be times when it is advantageous
to have an estimate of the sensitivity at a point rather than across
thewhole domain and that the point sensitivities can be computed
with very few function evaluations.

5.5. Approximate response functions by truncation of the Sobol’ series

In this section, another application of the Sobol’ decomposition,
dimension reduction, is presented. This dimension, or model,
reduction is accomplished by truncating the Sobol’ series in such a
way that an approximation to the response function is constructed
that depends on a reduced set of input variables. The truncation of
the Sobol’ series is guided by the values of the Sobol’ indices, with
only variables appearing in Sobol’ indices above a threshold value
being retained in the reduced model.
In the current example, an obvious truncation would include

only the input variables corresponding to the yield stress of
elements 2, 6, 8, and 10, which account, in only their first order
forms, for 84% of the total response variance. This truncationwould
be applicable to the response function for both the uniform and
Gaussian input spaces.
Figs. 8 and 9 show the Sobol’ functions whose Sobol’ indices

exceed 0.05, namely F2, F6, F8 and F10, for uniform and Gaussian
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Fig. 8. Best bilinear fits to Sobol’ functions derived from a uniform input space.
Fig. 9. Best bilinear fits to Sobol’ functions derived from a Gaussian input space.
inputs respectively. The points in the figure are obtained by
applying Eq. (31) to 10000 BF simulations. The solid lines are linear
or bilinear regressions to these data that are used to construct
approximate analytic response functions.
Tables 6 and 7 show the slope and intercept of the lines in re-

gression for uniform and Gaussian inputs respectively. An approx-
imate response function is

F ≈ F0 + F2 + F6 + F8 + F10. (32)

The accuracy of the response function depends both on the
truncation chosen and the regressions chosen to represent the in-
dividual Sobol’ functions. To quantify the accuracy of the approxi-
mate response function, the normalized standard deviation (NSD),

NSD =

√√√√√√√√
10 000∑
i=1

(Fresponse − Fpredict)2

10 000∑
i=1

(Fresponse)− (mean(Fpredict))2
(33)

is used. The NSD should be interpreted as a combination of regres-
sion and truncation error. To investigate the relative magnitude
Table 6
Parameters of best bilinear fits to Sobol’ functions derived from a uniform input
space with F0 = 1.419.

Line specification F2 F6 F8 F10

First line slope 0.125 0.060 0.156 0.228
First line intercept −0.058 −0.030 −0.079 −0.062
Second line slope 0.034 0.060 0.156 0.022
Second line intercept 0.004 −0.030 −0.079 −0.002

Table 7
Parameters of best bilinear fits to Sobol’ functions derived from a Gaussian input
space with F0 = 1.417.

Line specification F2 F6 F8 F10

First line slope 0.043 0.016 0.114 0.123
First line intercept 0.010 −0.008 0.095 0.142
Second line slope 0.001 0.016 0.034 0.002
Second line intercept 0.026 −0.008 0.005 0.009

of the regression and truncation errors, the NSD can be compared
with the Sobol’ truncation error defined by

Sobol’ Error = 1−
m∑
i=1

Ski (34)
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Fig. 10. Reduction in normalized standard deviation error with inclusion of
additional terms in the truncated Sobol’ decomposition of the uniform input space.

Fig. 11. Reduction in normalized standard deviation error with inclusion of
additional terms in the truncated Sobol’ decomposition of the Gaussian input space.

in whichm is the number of variables retained in the approximate
response function and {Ski} are the indices of the included vari-
ables. The NSD is comparable to the Sobol’ error because both of
them are based on the standard deviation, but the Sobol’ error rep-
resents only the truncation error. Therefore the difference between
the Sobol’ error and the NSD represents the regression error.
The NSD and the Sobol’ error are calculated for an approximate

response function with 1 to 6 variables retained in order of
descending Sobol’ index. Figs. 10 and 11 show the NSD and Sobol’
errors in terms of number of variables for uniform and Gaussian
inputs respectively. They show that the accuracy increases only
moderately after the inclusion of the fourth variable. The Sobol’
error shown in the figure is an approximation of the true truncation
error since the Sobol’ error in this example is obtained from
BF simulation rather than exact calculations. This example study
demonstrates that a reasonable characterization of the response of
this frame could be obtained by a function depending on only four
of the ten input variables.
6. Conclusion

As a preliminary to the example applications, the Sobol’ decom-
position of a function of many random variables is introduced and
it is shown how it can be applied to functions with non-uniform
input variables.
Two example applications, one for an exact response function

and one for the problem of the collapse of a structural frame are
presented. In each case, the Sobol’ decomposition is used to de-
compose the variance of the response into components stemming
from uncertainty in individual input variables. In the structural ex-
ample the collapse load is the response considered and the yield
stresses of the 10 individual members are the input variables. For
the structural example Monte Carlo simulation is used to compute
the components of the Sobol’ decomposition and it is shown that
significant increase in the rate of convergence of the estimates of
the Sobol’ functions can be obtained by implementing appropriate
sampling algorithms such as Latin Hypercube sampling.
Through the examples it is demonstrated that the distribution

of the input variables can have subtle but important effects on
the variance decomposition and that the Sobol’ decomposition, a
global sensitivity analysis method, can provide insight into uncer-
tainty not available from standard sensitivity analysis. Finally, it is
shown how the Sobol’ indices provide information that can lead
to a model reduction procedure that delivers an approximate re-
sponse function that retains reasonably predictive accuracy while
substantially reducing the dimension of the domain on which the
response function is defined.
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