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Abstract: Measurement of the compressive strength of parallel strand lumber !PSL" is conducted on specimens of varying size with
nominally identical mesostructure. The mean of the compressive strength is found to vary inversely with the specimen size, and the
coefficient of variation of the strength is found to decrease with increasing specimen size, and to be smaller than the coefficient of
variation of strength for solid lumber. The correlation length of the compressive strength is approximately 0.5 m, and this correlation
length leads to significant specimen-to-specimen variation in mean strength. A computational model is developed that includes the
following properties of the PSL mesostructure: the strand length, the grain angle, the elastic constants, and the parameters of the Tsai-Hill
failure surface. The computational model predicts the mean strength and coefficient of variation reasonably well, and predicts the correct
form of correlation decay, but overpredicts the correlation length for compressive strength, likely because of sensitivity to the distribution
of strand length used in the model. The estimates of the statistics of the PSL compressive strength are useful for reliability analysis of PSL
structures, and the computational model, although still in need of further development, can be used in evaluating the effect of mesos-
tructural parameters on PSL compressive strength.
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Introduction

Structural composite lumber !SCL" is becoming an increasingly
important building material as builders strive for sustainability,
and as wood structures must provide adequate performance at
larger scales in more challenging structural environments. The
challenging design problems currently being addressed by timber
design engineers were recently described in a series of articles
and reports in Structural Engineering International !International
Association of Bridge and Structural Engineers 2008", and the
design of such high performance wood structures demands a more
detailed examination of the mechanics of SCL. This paper de-
scribes tests conducted at the Univ. of Massachusetts, Amherst
that characterize the compressive strength of parallel strand lum-
ber !PSL", a type of SCL, and its variability. Attention is also
given to determine whether the strength of PSL depends on the
size of the member, and how the compressive strength varies
spatially in a PSL member. A stochastic computational model
based on a parallel system treatment and using the Tsai-Hill fail-

ure surface is also developed to predict the compressive strength
of PSL.

PSL is a type of SCL that is composed of long narrow strands
of wood that are often a by-product of the process of manufac-
turing plywood. The strands are adhesively bonded under high
pressure, and the resulting material has a highly distinctive me-
sostructure !see Fig. 6 which is referenced again during descrip-
tion of the computational model", and very favorable mechanical
properties, particularly a lower variability of both elastic modulus
and strength. Although properties vary substantially between
strands, the composite nature of the PSL mesostructure works to
reduce levels of variability of the strength and elastic modulus to
levels much lower than typically observed in solid wood.

One of the features of structural wood members is that they
exhibit significant, correlated, variation of mechanical properties
within members, in addition to between nominally identical mem-
bers. Many standard reliability-based methods for assessing the
safety of steel and concrete structural members do not account for
this within-member variation, which strongly affects the reliabil-
ity of wood structural members. Much of the previous research
into variability of wood mechanical properties has focused on
solid lumber, and is summarized in a very useful form in the
Wood Handbook !Forest Products Laboratory 1999", which gives
coefficients of variation for strength and modulus of about 20%.
Spatial variation of both stiffness and strength of solid lumber has
been observed experimentally, and stochastic models for this spa-
tially correlated variation have been proposed. !Lam and Varoglu
1991a,b; Lam et al. 1994". Correlation lengths on the order of
10–100 cm were found in these studies. These studies provide an
extremely useful framework for understanding the variability of
PSL strength.

The computational model builds upon previous efforts by one
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of the writers !Clouston and Lam 2001, 2002; Clouston 2006" to
develop finite-element models of SCL mesostructures that capture
the variation in properties between strands and incorporate a rea-
sonable model for the failure surface of the strands. Although
stochastic models have been proposed for the mechanics of the
PSL cross section !Bejo and Lang 2004", this is the first attempt
to model the lengthwise features of the mesostructure. This paper
also builds directly upon the writers’ previous investigation of the
variation of elastic modulus in PSL !Arwade et al. 2009".

Materials and Methods

The experiments consist of compression tests on stocky PSL
specimens machined from larger PSL members. Two sets of
specimens with different cross sectional area were tested to iden-
tify how cross section size affects strength variability. Fig. 1
shows schematically how the compression specimens were ex-
tracted from the larger PSL members.

Two groups of specimens, all with square cross sections with
side length w, whose dimensions are shown in Table 1, were
prepared and tested in this study. The symbol ns denotes the ap-
proximate number of strands in each specimen. The A specimens
are roughly one-half the cross-sectional area of the B specimens,
and both sets of specimens have height h chosen in accordance
with the compression testing requirements of ASTM standard D
143 !ASTM 2007". The constituent strands of the PSL are roughly
aligned with the x1 axis and have roughly 5 mm!13 mm rect-
angular cross section. The specimens are identified as Aijk and Bijk
where the indices denote the position of the specimen in the origi-
nal PSL member. For example, B0921 was located at position i
=9, j=2, and k=1 in the original member, and specimens B0921
and B1611 were separated by seven increments of 127 mm in the
x1 direction, by one increment of 39 mm in the x2 direction and
were located along the same x3 specimen line. Note that the i
index has two digits allocated to it. The A and B specimens were
machined from members included in different shipments from the
same manufacturer, Weyerhaeuser Company, Wash. All speci-

mens were conditioned to the ambient room environment over
several weeks in the Wood Mechanics Laboratory.

One issue that deserves discussion is the appropriate size for a
representative volume element !RVE" for SCL. The A series
specimens have a cross section that, although small, is slightly
larger than that of secondary method specimens outlined in
ASTM D 143 !25 mm!25 mm". Based on this, the size was
deemed adequate to fulfill the requirements of an RVE. Typical
failure mechanisms for wood in compression were observed !i.e.,
crushing, wedge spilt, shearing, etc." affirming the choice of A
series specimen size.

Compression tests on all 64 A specimens and 162 B specimens
were conducted in the Wood Mechanics Laboratory at the Uni-
versity of Massachusetts, Amherst using a universal material test-
ing system operating in displacement control at a displacement
rate of 0.25 mm/min to ensure test completion within 5–15 min.
During testing the load was recorded digitally using a 147-kN
load cell. Strains were measured using a digital extensometer with
25-mm gauge length. Each test was stopped when the postpeak
load decreased to approximately 90% of the peak load.

These compression tests provide strength measurements de-
pendent on specimen size. In the analysis of the experimental
results it is assumed that the strength of each specimen represents
the strength of the original member at the centroid of the com-
pression specimen. For example, the measured strength of speci-
men A0732 provides a measurement of the strength of the
original member at position x1=536 mm, x2=70 mm, and x3
=42 mm.

The original experimental design called for the measurement
of both elastic modulus and strength of the PSL specimens. Test-
ing revealed, however, that the inhomogeneity of PSL renders the
measurement of elastic modulus through compression testing im-
practical; variation in properties led to localization of strain as
measured by the extensometer. A reliable measurement of the
average strain is required to estimate the elastic modulus of the
specimen. If multiple extensometers were used in the experiment
a better estimate of the average strain could be obtained, but this
approach is cumbersome given the ease with which elastic modu-
lus can be estimated using simple bending tests !Arwade et al.
2009".

Experimental Results

This section describes the results of the compression tests in the
form of one and two point statistics of the specimen strength, and
probability distributions for the specimen strengths. Fig. 2 shows
typical stress-strain curves for the Group A and Group B tests.
The curves for both groups illustrate strain variation due to the
local nature of the strain measurement provided by the extensom-
eter. This problem is also evident in the large scatter of slopes of
the stress-strain curves in the elastic region and also the strain
reversal that occurs near the end of the some of the traces. This
strain reversal seemed to occur when a strand at the outer surface
of the specimen began to split perpendicular to the grain, and then

Table 1. Specimen Parameters

Group w !mm" h !mm" ns i range j range k range

A 28 82.5 12 1–8 1–4 1–2
B 39 127 24 1–18 1–3 1–3

Fig. 1. Schematic illustration of compression specimen arrangement
within larger PSL member. Arrangement shown is for A specimens,
and the photograph of the PSL cross section is superimposed to in-
dicate the orientation of the strands within the member.

406 / JOURNAL OF ENGINEERING MECHANICS © ASCE / APRIL 2010

Downloaded 20 Mar 2010 to 128.119.168.112. Redistribution subject to ASCE license or copyright; see http://pubs.asce.org/copyright



bow outward from the surface. This outward bowing led to local
curvature of the surface and the observed strain reversal. Local
damage near the surface occurred postpeak in many of the speci-
mens, and tended to occur due to perpendicular-to-grain splitting
rather than delamination at a strand interface. Many of these local
failures were initiated near strand ends, at which point localized
stress concentrations develop from the need to transfer load be-
tween strands. From here forward, only the peak stress, deter-
mined by dividing the peak load by the cross-sectional area of
each specimen, is taken from the compression tests.

Fig. 3 shows histograms of the ultimate stress for the Groups
A and B specimens, with the corresponding one-point statistics
given in Table 2. The one-point statistics show that the strength of
PSL has a lower coefficient of variation than does solid sawn
lumber. The coefficients of variation are 15% for Group A and
12% for Group B, compared to 18% for solid sawn lumber !For-
est Products Laboratory 1999". Furthermore, the standard devia-
tion and coefficient of variation are both smaller for the Group B
specimens than for the Group A specimens, although the 95%
confidence intervals for the standard deviations !7.0, 9.3" and
!6.7, 8.0" do overlap significantly.

The possible reduction in strength variance for the larger
samples can be explained by the invocation of the central limit
theorem since the constituent strands are ductile in compression
so that the PSL strength is essentially the sum of the strand
strengths. The difference in mean strength is 10 MPa with a 95%
confidence interval of !7.75, 12.25" MPa, indicating that the mean
strength of the A and B specimens are different with high likeli-
hood. This difference has several possible explanations. The two
specimen groups were extracted from members that were shipped
several months apart, and would have been taken from different
manufacturing runs. The results may also indicate a reverse size

effect in small samples of SCL loaded in compression. The idea
of reverse size effect is at this stage purely conjectural since no
physical mechanism is proposed. Although most pronounced in
tensile failure modes for wood, modest size effects have been
observed for wood in compression !Madsen 1990". The difference
in the mean strengths between the specimen groups is likely due
to their being extracted from different PSL structural members
and is not inconsistent with normal variability of wood properties.

Finally, Kolmogorov-Smirnov tests cannot reject the hypoth-
eses that the strengths are Gaussian, even at only 25% confidence
levels. This result is in agreement with the skewness and kurtosis
values being nearly 0 and 3. The best fit Gaussian densities are
shown overlaid on the histograms in Fig. 3, and show general
agreement with the data, although the number of specimens is too
small to match very closely the exact density.

To investigate the spatial structure of PSL strength variability
requires treating the compressive strength as a random field
whose properties can then be estimated from the experiments. Let
the compressive strength of the PSL member be denoted by
S!x ,y ,z". The compression tests cannot provide measurement of
the strength at a point of infinitesimal dimension because the
specimens must have a finite physical size to undergo mechanical
testing. The measurement of strength by the testing of finite size
specimens introduces spatial averaging of the properties so that
the experiments provide measurements not of S!x ,y ,z" but rather
of S̄!x ,y ,z", which represents the strength field filtered through
the averaging operation of the compression tests. Furthermore,
experimental determination of strength also introduces noise, or
experimental error, into the measurements. Therefore, what is ac-

tually obtained by the experiments is a set of observations Ŝ̄ijk

= Ŝ̄!xi ,yj ,zk", where the hat represents the presence of noise in the
observations. Simulations not described in detail here indicate
that the spatial averaging effect is small, and analysis of the ex-
perimental results indicates that the experimental noise is small
relative to the actual fluctuations of the strength. Henceforth,
therefore, we denote the measured strengths by S.

Each compression test is considered to provide an observation
of S!x ,y ,z" at the centroid of the specimen. Making reference to
the coordinate system defined in Fig. 1 the compression test of
specimen Aijk gives a measurement of Sijk=S#!h /2"+ !i
−1"h , !w /2"+ !j−1"w , !w /2"+ !k−1"w$. Fixing the j and k in-
dices provides observations sjk!x" of the random process Sjk!x".
These observations are shown in Fig. 4. One observation that can
be made, particularly with respect to Group A specimens, is that
these specimens are not long enough to capture long period varia-
tions in the strength process. Another way of stating this obser-
vation is that the means of the individual specimens are not
identical. If the specimens are long compared to the longest pe-
riod component of the random process, and if the underlying pro-
cess is ergodic, then the sample means should converge to the true
mean of the process. Furthermore, and what is more important for
strength analysis, the minimum strength in each specimen is dif-

Table 2. One-Point Statistics of PSL Compressive Strength

Group
Mean
!MPa"

Standard
deviation

!MPa" Skewness Kurtosis

A 52 8.0 0.34 2.9
B 62 7.3 0.045 2.3
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Fig. 2. Typical stress-strain curves for !a" Group A specimens; !B"
Group B specimens
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Group B specimens. Histograms based on 64 Group A specimens and
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ferent, again because of the relatively short length of the speci-
mens.

Table 3 shows statistics for each of the experimentally ob-
tained samples of S!x". For both the A and B specimens the
sample standard deviations are substantially lower than the en-
semble standard deviation, indicating again that the specimens are
of insufficient length to fully capture strength variation. Quanti-
tatively, the sample standard deviations for the A specimens con-
tribute only approximately 28% of the total ensemble variation,
whereas for the B specimens the contribution is approximately
27%. The similarity of these percentages indicates that the corre-
lation length for the two specimens, despite their different cross-
sectional dimensions, is similar.

The final element of the second moment characterization of
the strength process consists of the spatial correlation or covari-
ance functions. Assuming that the strength process is at least
weakly stationary, the scaled autocovariance is defined by

"!#x" =
!S!x" − E#S$"!S!x + #x" − E#S$"

$S
2 !1"

where E# · $=expectation operator; #x=separation distance; and
$S

2=variance of S!x".
The scaled autocovariance takes values in the interval #%1,1$

and can be estimated from data by estimating the expectations
either by ensemble averaging or spatial averaging. In the case
where the process is ergodic, the sample and ensemble estimates
converge to the exact autocovariance. Fig. 5 shows the sample
and ensemble estimates of the scaled autocovariance of the A and

B specimens, and illustrates the difference between the sample
and ensemble estimates that is characteristic of estimates made
from a suite of samples that is short relative to the correlation
length of the stochastic process.

Assuming an exponential form "!#x"=exp!−&#x" for the
decay of covariance with #x specified in millimeters, least-
squares fitting gives the parameters shown in Table 4, namely the
decay parameter & and the correlation length Lc. The results show
a somewhat longer correlation length for the larger B specimens,
and correlation lengths between 0.4 and 0.6 m. These correlation
lengths are shorter than those found for the elastic modulus,
which were found in a previous study !Arwade et al. 2009" to be
approximately 1 m. That the strength stochastic process should
have shorter correlation length than the elastic modulus process is
consistent with the increased sensitivity of strength to random
defects in the PSL mesostructure.

The experimental results described earlier provide a full char-
acterization of the compressive strength stochastic process S!x",
which is estimated to be Gaussian with mean, variance, and
scaled autocovariance as described earlier. The characterization
can be used to generate samples using any of the standard meth-
ods for simulation of Gaussian stochastic processes, and these
samples can be used in Monte Carlo simulation of the response of
PSL structures.

Table 3. Specimen-by-Specimen Statistics of PSL Strength Random Process

Specimen
Mean
!MPa"

Standard
deviation

!MPa" Specimen
Mean
!MPa"

Standard
deviation

!MPa"

A1 48 4.8 B1 71 3.9
A2 46 7.8 B2 69 4.3
A3 52 3.4 B3 60 4.8
A4 50 2.5 B4 68 3.4
A5 58 3.6 B5 63 4.1
A6 67 2.4 B6 56 4.1
A7 51 3.5 B7 59 3.6
A8 47 6.6 B8 57 2.4

B9 51 3.6

Means — 7.7 Means — 6.6
Standard deviations 4.3 — Standard deviations 3.8 —

Fig. 4. Experimental observations of the strength random processes
Sjk!x" for !a" Group A specimens; !b" Group B specimens
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Computational Model

Mesostructural Geometry

Fig. 6 shows a photograph of a short length of a typical Group A
specimen and the idealized strand mesotructural geometry used in
generating the computational model described here. A reference
coordinate system is established relative to the specimen geom-
etry. The key assumptions made in developing the idealized me-
sostructural geometry are that:
1. All strands are rectangular prisms with long edge aligned

with the long edge of the test specimen;
2. Strand cross section dimensions are deterministic and con-

stant giving a strand cross-sectional area As;
3. No voids exist in the PSL;
4. The interfaces between the strands are perfectly bonded, and

have zero thickness; and
5. Grain orientation is defined by the single random angle '.

In this mesostructural model each strand has two geometric
variables associated with it, its length and grain angle. These will
both be treated as random variables according to models de-
scribed in the next section.

Strand Mechanics

The strands are assumed to have an orthotropic elastic constitu-
tive matrix with one of the principal material axes aligned with
the reference x3 coordinate, and the orientation of the other two,
orthogonal principal material axes determined by the grain angle
'. The assumptions made about the strand geometry and orien-
tation of the strands relative to the reference coordinate system
allow use of the 2D plane stress assumption for the response of
each strand. Under plane stress assumptions the constitutive ma-
trix C of each strand is defined by two elastic moduli E1! and E2!,
a Poisson’s ratio (1!2!, and a shear modulus G1!2!. Here the x1!
axis is defined relative to the reference x1 axis by the grain ori-
entation angle '. The constants are modeled as independent
Gaussian random variables truncated at zero to avoid negative
values. The constitutive matrix C is assumed to be constant within
a given strand.

The postelastic response of the strands is assumed to be per-
fectly plastic with no strain hardening. The Tsai-Hill failure sur-
face is a commonly accepted model for wood and is used here.
The failure surface is given in strand coordinates by

%$11!

F1!
&2

+ %$22!

F2!
&2

− %$11! $22!

F1!
2 & + %$12!

S12!
&2

= 1 !2"

In the preceding expressions Fi is the uniaxial failure stress in the
xi direction and Sij is the shear failure stress. Note that the primes
on the quantities in the preceding expressions indicate that the
quantities are expressed in the strand coordinate system. There-
fore, checking whether a given strand has failed under a given
compressive stress requires transformation of the stress tensor to
the strand coordinate system.

The material model for each strand, assuming two dimensional
behavior, contains four parameters for the elastic response, E1!,
E2!, (1!2!, and G1!2!, and three parameters defining the yield sur-
face F1!

! , F2!
! , and S1!2!

! . Each of these parameters, expressed in
the strand coordinate system, is treated as a random variable ac-
cording to models described in the following section.

Cross Section Mechanics

A simple method can be used to predict the compressive strength
of a PSL cross section composed of strands with varying grain
angles, deterministic cross sectional area, orthotropic elastic re-
sponse, and perfectly plastic postelastic response with yielding
determined using the Tsai-Hill criterion. The prediction method
treats the strands as parallel elements in a system that fails only
when all elements in the system have failed. The key assumptions
in this predictive model are that:
1. The state of strain is uniaxial and identical in all strands; and
2. All strands are sufficiently ductile that cross section failure

occurs only when all strands have reached their limiting load.
Given the PSL mesostructural model described earlier a cross

section is defined by a number of constituent strands ns, the de-
terministic strand cross sectional area As, the random grain angles
'i, the random elastic constitutive matrices Ci, and the random
vectors Di= #F1!

! ,F2!
! ,S1!2!

! $T that contain the parameters of the 2D
Tsai-Hill failure surface for each strand expressed in strand coor-
dinates. The grain angle and orthotropic elastic constitutive ma-
trix can be used to calculate the effective elastic modulus

Ē1 = f#C!'"$ !3"

in the x1 direction. Using the effective modulus shown earlier and
the Tsai-Hill failure surface, the value of uniaxial strain at which
a strand fails can be calculated. Denote this strain as )y. To simu-
late the compression tests performed in the experimental part of
this project, a simulated loading )1=)1!t" is applied. Here, t
should not be interpreted as real time, but simply as an index for
the incremental application of strain during the nonlinear analysis
of the strand cross section.

The cross section analysis procedure is as follows:
1. For each strand, calculate the effective elastic modulus Ē1,i;
2. For each strand, calculate the applied uniaxial strain )y,i at

which the strand reaches the Tsai-Hill failure surface;
3. Sort the yield strains so that )y,i*)y,i+1;
4. At each point )y,i in the applied strain history, calculate for

each strand the x1 directed normal stress $11,ij , j=1, . . . ,ns by

$11,ij = min'E1,j)y,i,E1,j)y,j( !4"

Table 4. Parameters of Exponential Autocovariance Functions for A and
B Specimens

Specimen
group &

Lc
!mm"

A 0.0026 390
B 0.0017 600

Fig. 6. Actual and idealized PSL mesostructure
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5. At each point )y,i in the applied strain history calculate the
average cross section stress

$̄11,i =
1
ns

)
j=1

ns

$11,ij !5"

6. Construct the cross section stress-strain curve by starting
from the origin and linearly interpolating the points
!)y,i , $̄11,i".

Note in the preceding procedure that the Tsai-Hill failure sur-
face is expressed in strand coordinates so that the stresses result-
ing from the applied strain must be transformed into the strand
coordinate system before checking for failure to determine )y,i.
The preceding procedure gives the nonlinear stress-strain curve
for the cross section. If only the strength, or ultimate stress of the
cross section is desired this can be calculated directly by

$̄u = )
j=1

ns

Ē1,j)y,j = max
i=1,. . .,ns

'$̄11,i( !6"

Model Validation

To validate the computational model described earlier a series of
simulations were made that were designed to replicate as closely
as possible the physical experiments. The simulations use geo-
metric parameters chosen to match those used in the physical
tests, and models for the random geometric, elastic, and strength
parameters that are based on published quantification of param-
eter uncertainty in wood.

Specimen Geometry and Sample Sizes

The validation simulations are divided into two groups, labeled
A! and B! to correspond to the A and B experimental specimen
groups. The A! specimens are square in cross section with side
length of 28 mm and length of 660 mm, are composed of 12
strands of dimension 13 mm by 5 mm. The B! specimens also
have square cross section but are larger, with side length of 39
mm and length of 2.286 m, and are composed of 24 strands of
dimension 13 mm by 5 mm. Ten independent realizations of A!
and B! specimens are generated using the mesostructural model
described earlier, and, using the proposed computational model,
the strength of each cross section in each specimen is calculated.
The ten realizations used in the simulation are similar to the num-
ber of specimens used in the experimental program. This proce-
dure provides realizations of the strength random process S!x".
For validation purposes, these realizations are compared statisti-
cally to the experimentally obtained realizations of Sjk!x". Here, it
is assumed that the effect of spatial averaging of the strength,
indicated by the overbar on S, is negligible.

Probabilistic Models for Random Parameters

The computational model for PSL strength contains nine random
parameters for each strand, the grain angle and length, four elastic
constants, and three strength constants. The grain angle is treated
as a random variable drawn from the probability mass function
!pmf" shown in Fig. 7. This experimentally determined pmf for
the grain angle indicates that the grain of most strands is well
aligned with the longitudinal axis of the PSL member.

The strand length is a critical parameter in defining the PSL
mesostructural model because the end of individual strands deter-
mines when the properties of the cross section change. This is
because the current model neglects spatial variation of the elastic
constants, grain angle, and yield surface constants within a strand.
Here, the strand length is modeled as a random variable

Ls = 0.610 + 1.82Z !7"

in which Z=+-distributed random variable with parameters + and
,. The strands have length distributed in the interval !0.610 m,
2.43 m" in with an expected value in meters of *Ls+=0.610
+1.82#, / !,++"$. This is consistent with the manufacturing pro-
cess of the strands in which the strands are generated during the
processing of logs into 2.44-m-long sheets of plywood.

The elastic constants and parameters of the yield surface are
modeled as Gaussian random variables with mean values and
coefficients of variation based on published measurements of
strength and elastic properties of solid dimensioned lumber. The
parameters of these models are given in Table 5 and represent
approximately 20% variation of most of the elastic and strength
properties.

Table 5. Probability Model Parameters for Strand Elastic Properties and
Strength

Property Mean value
Coefficient
of variation

E1! 13 GPa 0.20
E2! 0.82 GPa 0.20
(1!2! 0.02 0
G1!2! 0.88 GPa 0.20

F1!
! 57 MPa 0.20

F2!
! 10 MPa 0.20

S1!2!
! 12 MPa 0.20

Table 6. One-Point Statistics of PSL Compressive Strength for Valida-
tion Sets

Group
Mean
!MPa"

Standard
deviation

!MPa" Skewness Kurtosis

A! 54 5.6 0.10 2.1
B! 55 3.7 %0.08 2.6

0 5 10 20 30 40 50 60 70 80 90
0

0.1

0.2

0.3

0.4

0.5

0.6

grain angle (deg)

pr
ob

ab
ili

ty
m

as
s

Fig. 7. Probability mass function for grain angle adopted from
!Clouston 2006". Grain angle of 90° corresponds to a knot defect.
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Validation Results

The validation sets A! and B! have point statistics !Table 6" that
agree reasonably well with the experimental statistics !Table 2".
Notable differences between the experimental and validation data
are that in the experiments, the B set has a higher mean strength
than the A set and that the standard deviations of strength are
lower in the simulated A! and B! sets than in the experimental
sets. The higher standard deviation observed in the experimental
strengths is not unexpected since the computational model in its
current state does not consider the effect of voids and knot defects
in the specimen. Furthermore, the adhesive phase that bonds the
strand interfaces is not modeled, and the interfaces are assumed to
be perfectly bonded. If deformation occurs at the strand interfaces
unequal strain distribution could arise in the composite, thereby
increasing the variability of the cross section strength. Efforts to
include these effects are ongoing by the writers. On the whole, the
accuracy of the predictions of the mean value of the compressive
strength is satisfactory given the large natural variation in wood
mechanical properties. The predictions of standard deviation are
lower than observed experimentally, and the standard deviation of
strength is inversely related to the cross-sectional size. The dif-
ference between the standard deviations of the A! and B! samples
is statistically significant using the 95% confidence intervals !4.9,
6.5" and !3.4, 4.1", respectively.

Although the predictions of the standard deviation of the com-
pressive strength are lower than those found from the experiment,
the computational model does predict to a reasonable degree of
accuracy the reduction in standard deviation of strength induced
by the increase in cross section size and number of constituent
strands from the A to B and A! to B! specimens.

Fig. 8 shows the ensemble and mean sample scaled autocova-
riance functions for the simulated A! and B! specimens. A com-
parison with Fig. 5 shows that the computational model generates
sample PSL mesostructures with substantially slower correlation
decay. This finding points to the absence of some sources of spa-
tial fluctuation of strength in the computational model. The most
likely explanation of the more rapid decay of autocovariance in
the experimental specimens is that the strands are shorter than
what has been assumed in the validation specimens.

Specifically, the mean strand length in the A! and B! speci-
mens is 2.3 m, quite near the upper limit of strand length, and
giving a correlation length for the B! specimens of 0.9 m. If the
mean strand length is reduced to 1.15 m, the correlation length for
specimens of the same cross-sectional size as the B! specimens
become 0.65 m. Although it would be possible to choose param-
eters of the strand length distribution so that the scaled autocova-
riance functions of the simulated specimens more closely match

those found experimentally, a better approach is to determine the
appropriate distribution of strand length by experimental charac-
terization of the material. This work is currently being undertaken
by the writers, but is considered beyond the scope of this paper, in
which the primary aims are the experimental characterization of
the spatial variation of strength and the demonstration that the
proposed computational model captures the salient features of the
mechanics of PSL.

The stochastic computational model introduced here is effec-
tive at predicting the mean value and standard deviation of com-
pressive strength of PSL, although the standard deviation is
somewhat underpredicted due to the absence of voids and defects
from the model. Inclusion of these features is the subject of on-
going research. The stochastic computational model predicts
scaled autocovariance functions of the compressive strength that
exhibit substantially slower decay than observed experimentally.
The most likely source of this discrepancy is the assumed distri-
bution of strand lengths. In the absence of an experimental char-
acterization of this distribution, the subject of ongoing research,
the computational model should not be considered validated for
prediction of longitudinal correlation of strength, although it may
still be useful as a tool for studying the effect of parameter varia-
tion on the spatial variation of PSL strength.

Conclusions

Compression tests on PSL specimens machined from a larger PSL
member are used to characterize the mean value, standard devia-
tion, and spatial variability of the compressive strength of PSL.
By tracking the original location of the test specimens within the
original member the compression tests are used to construct ob-
served samples of the stochastic process representing the com-
pressive strength along the length of a PSL member.

Tests consisted of 64 specimens with 28 mm by 28 mm cross
section and 162 specimens with 39 mm by 39 mm cross section.
The larger specimens are found to have higher strength than the
smaller specimens, and lower standard deviation. The finding of
higher strength in the larger specimens is not easily explained by
current understanding of PSL mechanics, but it must be noted that
the specimens came from different shipments of material, and
were conditioned only to ambient room conditions. Although the
experimental results show a lower standard deviation of strength
for the larger samples the 95% confidence intervals for the esti-
mates of the standard deviations do overlap significantly. A reduc-
tion in strength variability with cross section size is, however,
predicted by computational modeling of PSL mechanics. A
Gaussian model is found to be suitable, according to a
Kolmogorov-Smirnov test, to the strength data. Suitability of a
Gaussian model is unusual for a material strength, but is reason-
able for PSL in compression since material ductility ensure that
the cross section strength is essentially a sum of the strength of
the constituent strands.

There is persistent lengthwise correlation in the strength sto-
chastic process with correlation lengths of roughly 0.5 m. These
correlation lengths are long enough that significant variation
would be expected in the mean strength of nominally identical
PSL members of lengths used in common constructions.

A computational model for the compressive strength of PSL is
introduced in which the strand length, grain angle, orthotropic
elastic constants, and parameters of the Tsai-Hill failure surface
are treated as independent random variables with parameters cali-
brated to known properties of solid wood. The computational
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Fig. 8. Sample and ensemble estimates of the scaled autocovariance
of PSL strength estimated from simulations generated from the pro-
posed computational model: !a" A! specimens; !b" B! specimens
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model treats PSL as a parallel system of strands, and assumes
elastic-perfectly plastic behavior for each strand. The computa-
tional model provides valid predictions of the mean strength and
slightly underpredicts the standard deviation of strength, although
it does predict the reduction in strength variation with increasing
cross section size. The computational model significantly overpre-
dicts the correlation length of compressive strength, but the cor-
relation length is found to be highly sensitive to the distribution of
strand lengths. Nevertheless, the current computational model
should be immediately useful in predicting the mean and standard
deviation of PSL compressive strength for different size members
and members with strands from a variety of species, and the form
of the correlation decay matches that found in the experiments.
The probabilistic characterizations of the PSL strength presented
in this paper provide the necessary data to embark upon thorough
studies of the structural reliability of PSL members and structures
that incorporate spatial variation of the compressive strength of
the material.
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