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Introduction

Parallel strand lumber �PSL� �Fig. 1� is an engineered wood prod-
uct that is used frequently in residential construction and increas-
ingly in commercial and industrial applications. PSL is composed
of long, thin, narrow strands of wood aligned with the longitudi-
nal axis of the member, which are bonded together under high
pressure. It is considered to be an economically and ecologically
advantageous material because it uses wood fiber from plywood
panel production that would otherwise be waste material. The
heterogeneous random composite mesostructure makes the mate-
rial properties of PSL vary spatially in ways that differ substan-
tially from that of solid lumber.

The goals of this study are to measure the variation of elastic
modulus along the length of PSL beams, to develop a probabilis-
tic model for the PSL mesostructure and an accompanying com-
putational model for the elastic mechanics of PSL, and to develop
a probabilistic characterization of the spatially varying elastic
modulus of PSL members.

This work will advance fundamental understanding of the
elastic behavior of PSL, and the computational model developed
has predictive capability that should prove useful in developing
new material designs for structural composite lumber. Further-
more, the analysis, characterization, and modeling of variation of
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elastic properties is an important first step toward a comprehen-
sive model for PSL strength properties. The development of such
a comprehensive model is important to increasingly rational,
probabilistic, design of composite wood structures, and is cur-
rently being undertaken by the writers. Finally, this testing and
modeling also address the variation of elastic properties between
nominally identical members. Characterization of this variation of
elastic properties is important to reliability based design for ser-
viceability, whereas strength variation would be important to de-
sign for safety.

No previous studies have addressed spatial variability of ma-
terial properties of PSL; however, work has been done on solid
wood �Forest Products Laboratory 1999� and dimensional lumber
�Lam and Varoglu 1991a,b; Lam et al. 1994�. The Wood Hand-
book gives typical coefficients of variation of elastic constants of
solid lumber to be 20%. The latter studies proposed stochastic
process models with correlation lengths on the order of 10–100
cm determined from experiments for both strength and stiffness
properties.

Though these models provide a starting point for the modeling
described here, the present model goes further to account for both
variation within a member and between members. Another
achievement of this work is to quantitatively describe how the use
of bending tests to measure elastic modulus distorts estimates of
spatial statistics of the elastic modulus process. This distortion is
caused by volume averaging of the material properties that occurs
when an effective modulus is estimated from a three point bend-
ing test. Such tests can correctly measure the average modulus,
but not the properties of the spatial variation of the modulus.

Some preliminary work has shown connections between me-
sostructure properties and mechanical properties of PSL �Bejo
and Lang 2004�. The mesostructural model described in this study
extends the two dimensional model of Bejo and Lang’s work to a
three dimensional model.

The treatment of the mechanics of PSL described here builds
upon previous work that used nonlinear finite element analysis of
PSL to derive effective cross-sectional properties �Clouston and

Lam 2001,2002; Clouston 2006�. The key advance here is the
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addition of the length dimension to the model to allow investiga-
tion of spatial variability.

Materials and Methods

The initial material specimen �A1� used in this study is southern
yellow pine PSL with length lm=4.88 m and square cross section
of width w=133 mm. After initial bending tests, this specimen
was machined to 9 specimens �B1, B2,…, B9�, each with length
lm=2.44 m, and square cross-sectional width w=39 mm. The
strands composing the PSL have roughly rectangular cross section
with depth ds=5 mm and width ws=13 mm. The long axis of the
strands is roughly aligned with the long axis of the test specimens
and the expected number of strands in each specimen cross sec-
tion is approximately 275 for specimen A1 and 24 for the speci-
mens in Group B. Because the nine B samples are machined from
the single A sample, the testing here does not capture variation of
properties induced by differences in production runs. There is
currently only one manufacturer of PSL, so variation between
manufacturers is not an issue.

To measure the elastic modulus of the PSL specimens edge-
wise bending tests were performed using the setup shown sche-
matically in Fig. 2. The total specimen length is denoted by ls and
the span between test supports is lt. Lacking access to a Cook-
Bolinder type machine capable of making continuous measure-
ment of the stiffness, an approach was adopted in which the test
specimen was moved through the test apparatus in discrete incre-
ments of length lp, and load and deflection were measured after
each increment of movement.

The test dimensions �Table 1� conform to ASTM D198-05
�ASTM 2005� to ensure bending dominated behavior of the test

Fig. 1. PSL mesostructure �left� and idealization of PSL mesostruc-
ture used in the computational model

p,dt

ls
lt

p,dt
lp

Fig. 2. Bending test setup schematic showing passage of test speci-
men through loading and support apparatus for sequential modulus of
elasticity measurements
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specimens. All testing was conducted well within the elastic
range.

The tests were conducted in the Wood Mechanics lab at the
University of Massachusetts, Amherst using a universal material
testing system operating in displacement control at a displace-
ment rate of 2.54 mm/min in accordance with the ASTM stan-
dard. The applied displacement rate ensures that rate-dependent
and viscous effects were negligible during the test �ASTM 2005�.
During testing, the load was recorded using a 147 KN load cell,
and displacement at midspan of the test length was measured by a
linear variable displacement transducer placed at the centerline of
the test specimen directly under the point of load application.

The tests, designed to measure the bending elastic modulus of
the PSL samples, deliver time series d�t� of the midspan displace-
ment and p�t� applied load. With the time acting as a parameter,
the load can be expressed as

pi�d, E�x�, w�, x � �xi −
lt

2
, xi +

lt

2
� �1�

where xi , i=1, . . . , nt is a position along the length of the speci-
men at which load is applied; E�x��randomly fluctuating effec-
tive elastic modulus of the specimen cross section at longitudinal
position x; and pi�load applied at position xi during testing.

This experiment can capture variation of effective elastic
modulus along the length of the member, but not within the cross
section. Eq. �1� can be rearranged to the form

di = �� � m�p,u�
E�u�I

dudu�
u=lt/2

plus boundary conditions

�2�

where u=dummy variable that is equal to 0 at one support and lt

at the other; m�p ,u�=bending moment resulting from load p; and
I=w4 /12=moment of inertia, constant over the length of the
specimen. The elastic modulus E�u� is the unknown in this equa-
tion, yet cannot be solved for uniquely.

Introducing the notation Ēi= �E�x�� , x� �xi−
lt

2 ,xi+
lt

2
� allows

the solution of Eq. �2� to give

Ēi =
plt

3

48dI
�3�

in which p and d are observed at the same time, but the time

argument has been dropped for compactness. The overbar on Ēi

indicates that it is averaged over the volume of material between
the supports of the bending test, but it is not an arithmetic average
since the value of the modulus at different points in the test span

contributes differently to the midspan displacement. The value Ēi

is therefore an average weighted by the mechanics of the bending
test and Eq. �2�. Any noise in the measurements of d and p is

Table 1. Bending Test Geometry Parameters

Group
w

�mm�
lm

�m�
lp

�mm�
lt

�m�
p

�KN�

A 133 4.87 152 2.44 2.2

B 39 2.44 76 0.38 1.3
neglected.
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Experimental Results

The bending tests measure the cross-sectional elastic modulus at
16 points along the length of specimen A1, and at 27 points along
the length of each of the Group B specimens, a total of 259 elastic
modulus measurements.

Fig. 3 shows the load-displacement response of the test
samples with the quantity 48dI / lt

3 replacing the displacement d.
This substitution allows the effective cross-section elastic modu-
lus ēi to be read directly as the slope of the curve �p , 48dI / lt

3�.
Note that ēi is written in lower case to indicate that this is a

realization of the observation Ēi of the underlying random process

Ē�x�. A small nonlinearity at the beginning of each test reflects
seating of the specimen and fixture rather than the actual PSL
mechanics. The linear portion of each test curve was selected
manually and the effective cross-section elastic modulus was cal-
culated using the parts of the curve between about 0.45 and 1.1
KN for the B specimens and between about 0.45 and 1.8 KN for
the A specimen.

The statistics of the tests are shown in Table 2. The main
comparison is between the mean and standard deviation of sample
A1 and the aggregate statistics for the B samples. The B samples,
with smaller cross section and shorter test span length show a
moderately lower mean elastic modulus and a dramatically higher
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Fig. 3. Load-displacement curves from bending tests normalized to
show material stiffness

Table 2. Bending Test Result Statistics

Sample
Mean
�GPa�

Standard
deviation

�GPa� Skewness Kurtosis

A1 12.2 0.172 — —

B1 12.1 0.758 — —

B2 12.6 0.896 — —

B3 11.2 0.689 — —

B4 12.0 0.565 — —

B5 11.5 0.655 — —

B6 10.7 0.524 — —

B7 11.8 0.579 — —

B8 10.3 0.758 — —

B9 10.0 0.620 — —

B ensemble 11.4 1.03 0.038 2.80

B means — 0.876 — —

B standard deviations 0.676 — — —
JOURNAL
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standard deviation of the elastic modulus. Specifically, the co-
efficient of variation of Ē for the A sample is 1.4% and for the B
samples is 9.1%.

The lower mean elastic modulus of the B samples is not
readily explained, but the difference is small, approximately 7%,
and could be an artifact of the availability of only a single A
sample. The difference in coefficient of variation, however, is
expected, and can be logically attributed to the smaller cross-
sectional area, shorter test span length, and lower test load level.
The smaller cross-sectional area of the B samples results in fewer
strands being included in the cross section. The smaller cross
section and shorter test span decrease the volume of material in
which elastic modulus averaging is taking place, and tends to

increase the variability of the estimate of Ē.
The results of Table 2 show that the total variability of ēi is a

combination of specimen-to-specimen variation and within-
specimen variation. The total standard deviation of all B specimen
measurements is 1.03 GPa, and these measurements have skew-
ness close to zero and kurtosis near 3. The total standard deviation
corresponds to a coefficient of variation of approximately 9%,
which is substantially lower than typical 20% coefficients of
variation for solid lumber. The standard deviation of the mean
value of ēi for each of the nine test specimens, 0.876 GPa, quan-
tifies the specimen-to-specimen variability of the effective elastic
modulus. The mean value of the standard deviations of the 27
measurements taken within each sample is 0.676 GPa and quan-
tifies the within-specimen variability of the effective elastic
modulus. Based on these test data, 63% of the total variance is
attributable to specimen-to-specimen variability, and 37% to
within-specimen variability.

Fig. 4 both illustrates the dramatically smaller variability of
the A sample and the within-member and across member variation
of the B sample elastic moduli. Specifically, the B sample curves
have different mean values, indicating the member-to-member
variation. Each B sample curve, in turn, shows fluctuations about
its own mean, indicating within-member variation. The sample
plots also suggest that the elastic modulus process is stationary in
its mean, which has not been observed in solid lumber �Lam et al.
1994�.

The experimental tests provide realizations of observations
ei= ē�xi� of the random process Ē�x�. This random process is
assumed to be stationary based on the experimental results of
Fig. 4 and the known manufacturing process of PSL. The assump-
tion of ergodicity of the random process seems reasonable, yet
any approximate test of ergodicity would require extremely long
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Fig. 4. Experimental observations of cross-sectional elastic modulus

random process Ē�x�
samples of many tens or hundreds of meters, which cannot be
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obtained or tested. The data shown in Fig. 4 show that using the
assumption of ergodicity to estimate statistics of Ē�x� would lead
to incorrect conclusions. Specifically, the mean of any one of the
B samples is not equal to the ensemble mean of the B samples.

The simplest characterization of the spatial variation of a sta-
tionary random process Y�x� is the autocovariance function,
which, in its scaled form, is

���x� =
��Y�x� − �Y�x����Y�x + �x� − �Y�x + �x����

�Y
2 �4�

where �x=separation distance and �Y =standard deviation of
Y�x�. Sample and ensemble estimates of the scaled autocovari-
ance will differ substantially if the process is not ergodic, or if
samples of insufficient length are used in the sample estimation.

Consider a weakly stationary process Y�x� for which sample
observations yij =yi�xj� are available at points xj, j=1, . . . , mo

for samples yi�x�, i=1, . . . , ms. The first subscript indicates the
sample number and the second subscript the position at which the
observation is made. Assume that the observations are evenly
spaced. The sample estimate of the scaled autocovariance for
�=k�xj+1−xj� with k an integer is given, for sample yi�x� by

���x� 	
1

mo − k 

j=1

mo−k �yij −
1

mo


j=1

mo

yij��yij+k −
1

mo


j=1

mo

yij� �5�

The ensemble estimate of the scaled autocovariance is given by

���x� 	
1

ms�mo − k�
i=1

ms



j=1

mo−k �yij − 

i=1

ms



j=1

mo

yij��yij+k − 

i=1

ms



j=1

mo

yij�
�6�

These expressions show that not only does ensemble estimation
tend to be based on a much larger number of observations, but
also uses an estimate of the mean of the process that differs quali-
tatively from that used in sample estimation when the process is
nonergodic or the individual samples are short. Ensemble esti-
mates of the scaled covariance function will therefore tend to
indicate a much slower decay of the covariance than will an es-
timate based on a single short sample.

Fig. 5 shows the sample estimates of the scaled covariance for
sample A1 and each of the B samples. Also shown is the en-
semble estimate of the scaled covariance for the B samples. For
increased clarity Fig. 6 shows the A sample estimate, the B en-
semble estimate, and the average of all the B sample estimates.
While acknowledging that the single A sample available is fun-
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Fig. 5. Scaled covariance functions for A and B samples estimated
by sample and ensemble methods for B samples and sample method
for the A sample
damentally insufficient to provide a valid estimate of the scaled
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covariance for a PSL member with a 133 mm square cross sec-
tion, some important interpretations of the spatial variability of
elastic properties in PSL members remain possible. Note that in
both figures the abscissa is truncated at only 508 mm because at
longer separations estimation error becomes dominant.

There is enormous scatter in the sample estimates of ���x� for
the B samples, a signature of the shortness of the sample length
relative to the correlation length of the process. The ensemble
estimate of the B sample scaled covariances shows substantially
slower decay than all but one of the sample estimates. This ob-
servation is in agreement with the preceding analysis, and with
the statistics of Table 2, which show substantial variability in the
sample estimates of the mean elastic modulus obtained from the
nine B samples. Finally, the sample estimate of the scaled cova-
riance for the A sample shows slower decay than that for all but
one of the B samples, but more rapid decay than the ensemble
estimate for the B samples.

If the correlation length lc is defined by

lc = arg max
�x

���x�:����x�� � exp�− 1�� �7�

then Fig. 6 shows that, assuming that sample estimates yield
shorter correlation lengths than ensemble estimates, the correla-

tion length of the filtered, elastic modulus process Ē�x� is greater
than 508 mm for both the A and B samples.

Computational Model

Mesostructural Geometry

In the mesostructural idealization used here �Fig. 1� a reference
coordinate system is established relative to the specimen geom-
etry and the following assumptions are made:
1. All strands are rectangular prisms with long edge aligned

with the long edge of the test specimen.
2. Strand cross-sectional dimensions are deterministic.
3. No voids exist in the PSL.
4. Resin properties are not considered in the model.
5. Grain orientation is defined by the single random angle �.

The length of the strands is modeled as a random variable

Ls = 0.610 + 1.82Z �8�

in which Z=�-distributed random variable on the interval �0,1�
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Fig. 6. Summary of scaled covariance functions for A and B samples
estimated by sample and ensemble methods for B samples and
sample method for the A sample showing for the B samples the mean
plus and minus one standard deviation of the sample covariances
with parameters � and 	. The strands have length distributed in
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the interval �0.610 m, 2.43 m� in with an expected value in meters
of �Ls�=0.610+1.82�	 /	+��, which is consistent with known
manufacturing processes. The strand length is modeled as a ran-
dom variable because one of the goals of this research is to in-
vestigate variation of PSL properties along the member length,
and a major source of this variation is the set of discontinuities
introduced into the mesostructure by strand ends.

Strand Mechanics

Each strand is assumed to be orthotropic elastic with one of the
principal material axes aligned with the reference z-coordinate,
and the orientation of the other two, orthogonal principal material
axes is determined by the grain angle �. The assumptions made
about the strand geometry and orientation of the strands relative
to the reference coordinate system allow use of the 2D plane
stress assumption for the response of each strand. Under plane
stress assumptions the constitutive matrix C of each strand is
defined by two elastic moduli Ex�, and Ey�, a Poisson’s ratio 
x�y�,
and a shear modulus Gx�y�. Here the x� axis is defined relative to
the reference x axis by the grain orientation angle �. The con-
stants are modeled as independent Gaussian random variables
truncated at zero to avoid negative values. The constitutive matrix
C is assumed to be constant within a given strand.

Cross-Sectional Mechanics

A simple rule of mixtures model �Jones 1975� is used to approxi-
mate the cross-sectional elastic modulus at position x by

E�x� =
1

ns


i=1

ns

Ex�C��i�� �9�

where Ex�C��i��=effective material stiffness in the global
x-direction of strand i with grain orientation �i and ns=number of
strands in the cross section. C��� is the stiffness matrix in the
strand coordinate system, which is transformed to the principal
material coordinate system to obtain Ex and then averaged to
produce the effective elastic modulus process. Although the indi-
vidual strands are orthotropic, anisotropy of the PSL member is
not addressed since only the longitudinal modulus Ex is consid-
ered. Transverse material stiffnesses are not considered, but
would differ from the longitudinal modulus due to strand orthot-
ropy. Note that there are two sources of uncertainty in the consti-
tutive matrix C, the random grain angle and uncertainty of the
individual elastic constants at a fixed grain angle.

Bending Test Simulations

Eq. �9� can be used to calculate the corresponding realization e�x�
of the cross-section elastic modulus process. Specifically, at every
position x along the length of the specimen with simulated meso-
structure, Eq. �9� is used to average the effective elastic modulus
of the constituent strands to obtain e�x�. The realization of e�x� is
piecewise constant, with discontinuities and a change in effective
cross-section modulus at each strand end since properties are as-
sumed constant within a strand. To obtain the corresponding re-
alization of the filtered cross-sectional elastic modulus process

requires the solution of
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di = �� � m�p,u�
e�u�I

dudu�
u=lt/2

plus boundary conditions

�10�

which is a version of Eq. �2� after substitution of the realization
e�x� of E�x�. Once di is calculated, substitution into Eq. �3� yields
a realization ēi of Ēi the filtered cross-sectional elastic modulus.
Eq. �10� is solved using a finite difference approach.

Model Validation

The validation exercise of this section compares simulated elastic
modulus processes to those obtained from testing. The parameters
described in “Bending test simulations” are set to match those of
the tests described in “Computational model.” The geometric pa-
rameters are set as defined in Table 1, and the number of strands
in the cross section is fixed at 275 for simulation of the A sample,
and 24 for simulation of the B samples. Strand cross-sectional
dimensions are fixed at 5 mm�13 mm, giving a total cross-
sectional area for the simulated A samples of 17,800 mm2, and
for the simulated B samples of 1 ,550 mm2.

The random parameters used to define the PSL mesostructure
are those of the distributions of the strand length, strand elastic
constants, and grain angle. Published values for the mean and
standard deviation of the elastic constants are used, choice of the
parameters of the � distribution for strand length is made based
on the known strand manufacturing process, and the grain angle
distribution is adopted from a previous, experimental result.

The parameters of the � distribution for the strand length are
	=5, �=2 giving a mean strand length of 1.9 m, and a distribu-
tion in which most of the probability mass is concentrated near
the upper end of the interval �0.610, 2.43� m. The parameters of
the Gaussian distributions used as models for the strand elastic
constants are given in Table 3 and are taken from the Wood Hand-
book �Forest Products Laboratory 1999�. These represent 20%
coefficient of variation on the elastic and shear modulus, and no
variation of Poisson’s ratio.

The measurement of grain angles is a topic of current investi-
gation and an automated method for measuring grain angle from
x-ray imaging has recently been reported �Ekevad 2004�. Here, a
previously reported empirical probability mass function �pmf� for
grain angle is employed �Fig. 7� �Clouston 2006�. This empirical
pmf �Fig. 7� was compiled from manual measurements of grain
angle obtained by serial sectioning of a PSL specimen. For the
purposes of the validation study this pmf is assumed to be char-
acteristic of PSL and is assumed to be symmetric about zero. The
empirical pmf has most of its mass near �=0, indicating that
strands in PSL are typically well aligned with the geometry of the
member. Grain angle �=90° is used to represent a strand with a
knot defect. Knots are not explicitly considered in the current
model, except that assigning �=90° significantly softens it due to

Table 3. Statistics of Strand Elastic Constants

Constant Mean
Standard
deviation

Ex� 13 GPa 2.60 GPa

Ey� 0.820 GPa 0.164 GPa


x�y� 0.022 0

Gx�y� 0.882 GPa 0.176 GPa
the characteristics of the strand orthotropic constitutive matrix.
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Validation of the computational model involves generation of
250 independent realizations each of virtual A and B samples,
performing virtual bending tests using finite difference calcula-
tions on these samples, and estimating statistics of the resulting
simulated filtered elastic modulus processes. A convergence
study, the details of which are not shown here, demonstrates that
with 250 samples the estimation error associated with simulated
elastic modulus process statistics is negligible.

The most direct comparison between simulated and experi-
mental results is made between the ensemble statistics for the B
samples shown in Tables 4 and 2. The simulations underpredict
the mean elastic modulus by 4.3% and underpredict the standard
deviation of the elastic modulus by 18%. For a material with the
inherent variability and environmental sensitivity of wood, the
agreement between the predicted and measured ensemble means
is good. That the variability of the elastic modulus is underpre-
dicted by the computational model is expected, and can likely be
traced to the omission from the model of voids and within-strand
variation of the orthotropic elastic constants. An additional source
of variability in the experimental measurements is experimental
error which is not quantified here. The skewness and kurtosis
values also agree well.

The sample estimates of the simulated B sample test statistics
agree with the test data in that the average sample standard de-
viation is substantially less than the ensemble standard deviation.
For the experiments, the mean sample variance is 71% of the
ensemble variance, whereas for the simulations the mean sample
variance is 29% of the ensemble variance. That the simulations
show a mean sample variance lower than the ensemble variance
confirms that the individual samples are insufficiently long to
capture the spatial variability of PSL. The lower percentage of the
ensemble variance that is attributable to within-sample variation
in the simulations is likely caused by the omission of the uncer-
tainty and error sources described above.

With only a single A sample available for testing, extensive
comparison of the simulation statistics to the experimentally de-
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Fig. 7. Probability mass function for grain angle adapted from Clous-
ton �2006�

Table 4. Bending Test Simulation Statistics

A samples B samples

Ensemble Mean �GPa� 10.8 10.8

Standard deviation �GPa� 0.227 0.848

Skewness 0.1 0.04

Kurtosis 3.0 3.3

Sample Mean of standard deviations �GPa� 0.110 0.462

Standard deviation of means �GPa� 0.186 0.683
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termined statistics is not possible. It suffices to say that the en-
semble average mean value of the simulations, 10.8 GPa, and the
mean of the simulated sample standard deviations, 0.110 GPa, are
not inconsistent with the experimental values of 12.2 GPa and
0.172 GPa. For the simulated A samples, the within-sample vari-
ance accounts for 24% of the total variance. This percentage is
comparable to that obtained for the simulated B samples, and
again reflects that the simulated A samples are insufficiently long
to capture the relevant spatial statistics.

Estimates of point statistics of the filtered elastic modulus pro-
cess obtained from computational simulations agree well with
those obtained from experiments, and indicate that the computa-
tional model provides a valid prediction of PSL elastic behavior.

Estimates of the scaled autocovariance functions defined in
Eqs. �5� and �6� are also obtained from the simulations. Fig. 8
shows the mean plus or minus one standard deviation of the
sample scaled autocovariance functions for the 250 simulated A
samples along with the ensemble scaled autocovariance function
and the single sample scaled autocovariance obtained from ex-
periment. The agreement between the single experimental scaled
autocovariance and the simulation results is quite good. At small
separation lengths �x the experimental values are smaller than
those obtained from simulation. This is consistent with the obser-
vation made from the point statistics that the simulations under-
estimate elastic modulus uncertainty.

Fig. 9 allows comparison between the simulated and experi-
mental sample and ensemble scaled autocovariance functions for
the B samples. As for the A samples, the overall agreement is
quite good, with the simulated scaled autocovariances exhibiting
slower decay than those obtained experimentally. The difference
between the experimental and simulated scaled autocovariances is
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Fig. 8. Experimental and simulated scaled autocovariance functions
for A samples estimated by ensemble and sample methods
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Fig. 9. Experimental and simulated scaled autocovariance functions
for B samples estimated by ensemble and sample methods
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consistent with the difference between those functions for a pro-
cess with and without an additive white noise term. It is beyond
the scope of this paper to specifically address the magnitude of
the noise, or additional uncertainty, present in measurements of
the PSL bending elastic modulus, but at this point it suffices to
observe that the point statistics and scaled autocovariances ob-
tained from simulated PSL bending tests are consistent with those
obtained experimentally.

Simulation Results

Having validated the computational model, simulation is now be
used to characterize the elastic modulus process. The computa-
tional model allows the direct determination of the elastic modu-
lus process underlying the elastic modulus process filtered by
bending tests. First, simulations of A and B samples are used to
show the statistical differences between the unfiltered modulus
process E�x� and the filtered process Ē�x�. The filtered process is
calculated from the simulated unfiltered process by performing
virtual bending tests using Eqs. �10� and �3�. The result is a
weighted averaging of realizations e�x� into realizations of the
filtered process ē�x�, which is continuous, in contrast to the piece-
wise constant process e�x�.

Comparison of Filtered and Unfiltered Elastic
Modulus Processes

Fig. 10 shows one each of a simulated A sample and simulated B

sample of E�x� along with its filtered counterpart Ē�x�. The aver-
aging that takes place during a bending test can be observed in the

smoothed character of the samples of Ē�x�. The samples of E�X�
are piecewise constant due to the assumption that elastic constants
do not vary within the strands. Therefore, at each location in the
PSL member where a strand ends, the cross-sectional modulus
changes abruptly. The spacing between discontinuities in the
sample of E�x� for the A sample is much smaller than for the B
sample. This is because there are many more strands in the A
sample cross section, and so the frequency of strand endpoints is
higher than in the B samples. Finally, The averaging effect is
much stronger in the A sample due to the 2.44 m span of the
bending tests on A samples. This span is much longer than the
0.381 m span used for the B samples, and therefore the averaging
takes place over a much larger volume of material. The figure also
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Fig. 10. Filtered and unfiltered sample modulus processes generated
by simulation for A and B type samples showing increased smoothing
for the A samples due to longer test span
reflects the different lengths of the A and B samples.

JOURNAL

Downloaded 24 Aug 2009 to 128.119.91.13. Redistribution subject to
Fig. 11 shows ensemble scaled autocovariance functions for
the filtered and unfiltered elastic modulus processes for samples
with all geometric parameters as in Table 1 except that the lengths
of the samples are increased to 6.35 m and 5.08 m respectively
for samples with cross section corresponding to the A and B
samples. The samples with longer length are denoted A� and B�
samples. 250 A� and 250 B� samples are generated and analyzed
to obtain better estimates of the second moment properties of the
elastic modulus process.

The two main features of the results shown in Fig. 11 are that
the A� samples show a significant difference between the filtered
and unfiltered scaled autocovariance functions, and that the scaled
autocovariance functions for the unfiltered A� and B� samples are
nearly identical. The bending test span of the A� samples, 2.44 m,
is long enough that significant averaging of the elastic modulus
takes place. This averaging tends to smooth high frequency oscil-
lations in the elastic modulus process, and results in higher cova-
riance values at small separation distances. For a bending test
span of 0.381 m, as used for the B� sample simulations, this
averaging effect becomes negligible. The second feature, that the
scaled autocovariance of the unfiltered A� and B� samples are
nearly identical, arises because the decay of covariance is con-
trolled by the frequency of strand ends. Though the A� samples
have a larger cross section than the B� samples, meaning that the
end of an individual strand will have less effect on the cross-
sectional modulus of an A� sample, the presence of many more
strands in the A� cross section means that strand ends occur more
frequently than in the B� samples. The simulation data indicate
that these effects counteract one another, rendering the scaled
autocovariance of the unfiltered PSL elastic modulus process in-
dependent of the number of strands in the cross section.

These results also indicate that one must be careful in using
bending tests to determine the spatial variation of elastic proper-
ties in PSL members, although the same would be true for dimen-
sional lumber. The experimenter should select a span for the
bending tests that is as short as possible to reduce the averaging
effect, but is not so short as to result in appreciable shear defor-
mation, which would contaminate the test results. For members
with cross sections typical for light-frame construction the aver-
aging effect appears to be minimal, but for members such as those
used in post-and-beam construction, or as primary members in
bridge trusses, the effect can be substantial. Even using a machine
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Fig. 11. Scaled autocovariance functions for filtered and unfiltered
A� and B� type samples obtained by simulation of specimens longer
than those tested experimentally showing independence of covariance
with respect to the cross-sectional size and the increased effect of
spatial averaging in the A samples
with continuous recording ability, as is done in machine stress
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rated lumber, would not mitigate this problem since a sufficient
span must be used to render shear deformations negligible.

Table 5 shows that the one-point statistics of the filtered and
unfiltered elastic modulus processes are nearly identical for both
the A� and B� samples. Filtering through virtual bending tests
results in small reductions in the standard deviation and kurtosis
for both A� and B� samples. The effect is so small as to be diffi-
cult to distinguish from estimation error, but, to the extent it is a
real feature of the data, it is likely caused by the tendency of the
filtering to remove extreme values from the elastic modulus pro-
cess. From this point forward, consideration is restricted to the
unfiltered elastic modulus process as determined by simulation of
the PSL mesostructure and application of the rule of mixtures
�Eq. �9�� at each cross-section.

Probabilistic Model for PSL Elastic Modulus Process

The elastic modulus process E�x� is assumed to be stationary in
the weak sense and ergodic. This section presents a probabilistic
model for the process based on these assumptions, and complete
through second moment properties and marginal distribution.

The one-point statistics of Table 5 give a strong indication that
the marginal distribution of E�x� is Gaussian, which is expected
since Eq. �9� contains a summation of independent, identically
distributed random variables Ex�C��i��, allowing the invocation
of the central limit theorem. For PSL, the marginal distribution of
E�x� becomes very nearly Gaussian when ten strands are included
in the cross section.

The cross-sectional modulus is approximated in this study as
the sum of a set of independent identically distributed random
variables Ex�C��i��. The variance of E�x� is therefore given by

var�E�x�� =
varEc�C��i���

ns
�11�

Based on simulations of PSL members with 24, 75, 150, and 275
strands, the standard deviation �E of E�x� in a PSL member with
ns strands in its cross section is given by

�E =
4.07 GPa

�ns

�12�

Note that these experiments and computations do not demonstrate
the presence or absence of a size effect on the mean elastic modu-
lus of PSL. This is an important issue that is significant in the
design of sawn-lumber structures, and should be investigated for
PSL.

The unfiltered elastic modulus process E�x� is modeled as a
Gaussian random process with continuous samples. This model
does not have the ability to reproduce the discontinuities in
samples of E�x� that occur whenever a strand ends. These discon-
tinuities in the mesostructure may play in important role in the
onset of damage processes in PSL, but are considered to be mini-

Table 5. Point Statistics of Filtered and Unfiltered Simulated Modulus
Processes

Statistic
A�

unfiltered
A�

filtered
B�

unfiltered
B�

filtered

Mean �GPa� 10.8 10.8 10.9 10.9

Standard deviation �GPa� 0.248 0.220 0.827 0.806

Skewness 0.11 0.16 0.1 0.1

Kurtosis 2.94 2.97 2.99 2.97
mally important with respect to the elastic properties of PSL
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members. Calibration of the model is provided by the mean, 10.8
GPa, the standard deviation given by Eq. �12�, and the scaled
autocovariance function. Fig. 11 shows that the scaled autocova-
riance function of a PSL member is independent of the number of
strands in the cross section. This is true as long as there are more
than roughly ten strands in the cross-section.

A good functional fit to the scaled autocovariance function of
the unfiltered elastic modulus process has linear decay from one
to zero over a specified separation distance, and zero value for
greater separation distances. The general form of such a function
is

���x� = �1 −
�x

lc0
, �x � lc0

0, �x � lc0
� �13�

with best fit parameters to the data of Fig. 11 of lc0=1.95 m. This
function gives an excellent approximation to the estimated scaled
autocovariance over the range of separation distances where the
value of ���x� is greater than 0.1. The choice of this scaled co-
variance function implies that the process E�x� is not differen-
tiable. This is realistic since the mesostructural model results in a
process E�x� that is piecewise constant, but is not consistent with
the choice of a continuous Gaussian process as the probabilistic
model. This inconsistency may cause problems in exact calcula-
tions, but should not affect simulations used in Monte Carlo ap-
proaches. If differentiability of the modulus process were required
for calculations an alternative form could be fit to the scaled
autocovariance. The corresponding spectral density function is

s��� =
lc0 sin2��lc0/2�

���lc0/2�2 �14�

which is useful in generating realizations of the modulus process
using the spectral representation �Soong and Grigoriu 1992�

Conclusion

Three point bending tests on PSL members of different cross-
sectional size show that the variability of the elastic modulus in
PSL is substantially lower than that for equivalent-sized solid
lumber, and that the elastic modulus varies as a stochastic process
with correlation length of several tens of inches. Estimation of
the spatial variation of the elastic modulus requires physical
testing of an ensemble of specimens because commonly avail-
able specimens are not long enough to allow the assumption of
ergodicity.

A computational model for the cross-sectional stiffness of PSL
members includes uncertainty in the strand length, strand elastic
constants, and grain angle, and is validated against the experi-
mental measurements, indicating that it can be used as a predic-
tive tool for PSL elastic modulus. The computational model is
used to further investigate the features of the elastic modulus
process. Model results show that when the PSL member contains
more than about 100 strands, the span used in bending tests is
long enough that the measured modulus process is distorted by
the averaging that takes place over the material volume of
the test. PSL elastic modulus is found to be Gaussian, with vari-
ance that scales inversely with the square of the number of strands
in the cross section, and the modulus process is found to have
a scaled covariance structure that is independent of the number

of constituent strands. A mathematical model for the elastic
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modulus process is introduced that can be used in reliability
analysis of PSL members in which stiffness uncertainty is to be
considered.
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Notation

The following symbols are used in this paper:
A � specimen Group A;

A� � simulated specimens;
B � specimen Group B;

B� � simulated specimens;
C � elastic constitutive matrix;
d � midspan displacement during bending test;

ds � wood strand depth;

Ēi � filtered elastic modulus process at position xi;
Ex� � orthotropic elastic constant;
Ey� � orthotropic elastic constant;

E�x� � elastic modulus process;

Ē�x� � filtered elastic modulus process;
ē�x� � realization of Ē�x�
e�x� � realization of E�x�;

ēi � realization of Ēi;
ei � realization of Ei;

f���� � probability density function of grain angle;
f�,sym��� � one-sided probability density function of grain

angle;
Gx�y� � orthotropic elastic constant;

I � moment of inertia;
Ls � strand length;
lm � length of test specimen;
lp � spacing of bending tests;
lt � bending test span;
lc � correlation length;

lc0 � scaled autocovariance parameter;
m � bending moment;

mo � number of observations along the length of a
sample stochastic process;

n � number of bending tests along specimen length;
t

JOURNAL

Downloaded 24 Aug 2009 to 128.119.91.13. Redistribution subject to
ns � number of strands in PSL cross section;
pi � load applied at test point i during bending test;

s��� � spectral density function;
w � test specimen cross-sectional width;

ws � wood strand width;
x � position along length of PSL member;
xi � position of bending test;
x� � strand coordinate axis;
yij � realization i of Y�x� at xi;

Y�x� � an arbitrary stochastic process;
Z � a � random variable;
	 � parameter of the � distribution;
� � parameter of the � distribution;

�x � separation distance;
� � wood grain angle;


x�y� � orthotropic elastic constant;
���x� � scaled autocovariance;

�E � standard deviation of E�x�; and
�Y � standard deviation of Y�x�.
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