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Probabilistic Model for Polycrystalline Microstructures
with Application to Intergranular Fracture

Sanjay R. Arwade, A.M.ASCE,1 and Mircea Grigoriu, F.ASCE2

Abstract: A two part probabilistic model for polycrystalline microstructures is described. The model utilizes a Poisson–Vorono
lation for the grain geometry and a vector random field model for the crystallographic orientation. The grain geometry model is
to experimental data through the intensity of the Poisson point field underlying the Poisson–Voronoi tessellation and the o
random field is calibrated to experimental data through its marginal distributions and second moment properties. Realizati
random microstructure are generated by use of translation methods and are used, with simplified mechanical models, to inv
problem of intergranular fracture. It is found that intergranular cracks exhibit some statistical properties of a scaled Brownia
process.
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Introduction
The goals of this paper are to~1! develop a probabilistic mod
for the microstructure of polycrystalline materials, and~2! use
Monte Carlo simulation methods to determine statistics of in
granular cracks in synthetic microstructures. The fracture
chanics problem considered is that of quantifying the uncert
in the trajectory of an intergranular crack in a random heter
neous microstructure.

A significant body of research exists which addresses the
eling of random polycrystalline microstructures and their at
dant material properties. In several studies a deterministic
geometry is used—a tessellation of space filling trunc
octahedra—while random material properties are assigned
grain boundaries~Anderson and Rice 1985; Wilkinson 1988; H
low et al. 1996!. Random two-dimensional grain geometries h
been generated by either perturbation of a deterministic grai
ometry ~van der Giessen and Tvergaard 1994a,b!, or use of ran
dom tessellations~Ballarini et al. 1999!. Iterative methods hav
been proposed for introducing the spatial correlation of mat
properties to random polycrystals~Gertsman et al. 1992, 199
Gertsman 1997!. It has not yet been established, howe
whether these methods can match experimental data. A r
success has been achieved in the simulation of polycryst
microstructures with the development of a method for autom
finite element meshing of random two-dimensional grain ge
etries~Weyer et al. 2002!.
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The primary contribution of this paper is the introduction o
random field model for the material properties—through the c
tallographic orientation—which is capable of matching sp
correlation which may exist in real materials. This random fie
conditional on the random grain geometry, thereby providi
physically realistic coupling between the random material p
erties and random grain geometry.

The work is motivated by the observation that the propo
of the service lifetime of a structural component in which ma
scopic damage is present is small. For a significant portion o
lifetime of a structural component the length scale of the dam
processes acting in the material is small compared to the l
scale of the microstructure. An example is a crack with a le
which is of the same order of magnitude as the average
diameter. To reliably predict, therefore, the service lifetime
structural component, it is important to be able to predict the
of initiation and growth of small scale damage in microstruct
materials. Any such predictions must include a quantificatio
the uncertainty inherent to the problem. This uncertainty o
nates both from uncertainty in loads and in features of the m
rial microstructure.

This work represents a first step towards that goal in intro
ing a framework for numerical simulation of random polycrys
line materials. Fig. 1 shows the organization of the framew
Material data are used to develop probabilistic models,
samples generated from these models are used in the simu
of crack propagation. The results of these simulations cons
simulated data regarding the material state and can in turn be
to develop probabilistic models for the evolved material.

The paper is divided into two main parts. Probabilistic mo
ing of the material microstructure is presented first. Statistic
experimental data gathered from the literature are used to
brate probabilistic models for two features of the polycrysta
microstructure, the grain geometry and the crystallographic o
tation, both modeled in two dimensions. A method is then
sented for efficiently generating realizations of these polycry
line microstructures. In the second part of the paper an exa
application is presented. Monte Carlo simulation on realiza

generated from the probabilistic material models is used to quan-
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tify the uncertainty in the trajectory of an intergranular crack
random polycrystalline material. The crack trajectory is comp
based on a simplified fracture mechanics model which cons
the interaction between the random grain geometry and the
dom material properties resulting from the crystallographic o
tation.

Microstructural Measurements

Definitions

Two features of the material microstructure are addressed i
paper, the grain geometry and crystallographic orientation.
surements of these features have been provided by other res
ers or gathered from the literature. Before proceeding to a di
sion of the data, a brief definition of crystallographic orienta
is now given.

The atoms of crystalline solids are arranged periodically
three-dimensional lattice. This lattice can take several geom
forms, including the simple cubic lattice, the face- and bo
centered cubic lattices, and the hexagonal lattice. In each ca
periodic nature of the lattice provides a convenient definitio
the crystal coordinate system~Fig. 2!. While the crystal lattic
defines the crystal coordinate system, a reference coordinat
tem can be defined relative to some laboratory or compo
frame of reference. The orientation is the transformation from
reference coordinate system to the crystal coordinate system
orientation, a three-dimensional rotation, can be represente
variety of mathematical forms@see Randle~1993! and Kumar an
Dawson~1998! for in depth discussions of the various repres

Fig. 1. Flow chart showing framework for probabilistic model
and simulation of polycrystalline material evolution

Fig. 2. Schematic illustration of crystalline lattice structure show
a possible definition of the crystal coordinate system along w
reference coordinate system defined relative to the geometry
structural component. The rotationT maps the reference coordina
onto the crystal coordinates.
998 / JOURNAL OF ENGINEERING MECHANICS © ASCE / SEPTEMBER 2
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tations#. Here two representations are used. The Euler angle
resentation ~Bunge 1982! and the axis/angle representat
~Randle 1993!.

In the Euler angle representation the orientation is give
three angles which describe the three-dimensional rotation
the reference to crystal coordinate system. These three ang
typically denoted@f1 ,F,f2#. Here an alternative notation is
troduced in whichc15f1 , c25F, andc35f2 . This notation is
introduced so that the Euler angles can be conveniently expr
as the vectorc5@c1 ,c2 ,c3#T. In the axis/angle representat
the orientation is given by a single angle of rotationu which is
applied about an axis inR3. The axis/angle representation is p
ticularly useful since the angleu can be used as an approxim
scalar representation of orientation.

While orientation describes the rotation from a reference
ordinate system to a crystal coordinate system, misorientatio
scribes the rotation from one crystal coordinate system to an
The misorientation, therefore, characterizes the difference in
entation between two crystal lattices. The axis/angle repres
tion of misorientation is particularly useful since it provides
the form of the angleu, a scalar quantification of the differen
between two orientations. If the axis/angle representation o
misorientation between two lattices has a large angular co
nentu then the lattices can be said to be highly misoriented.
useful to be able to make such statements when examinin
strength of grain boundaries, which are discontinuities in the
tice orientation. The misorientation angle between grainsi andj is
denotedu i j .

A complete characterization of grain geometry requires q
tification of two parameters, the grain size and the grain sh
Quantification of grain shape remains an unsolved problem,
most existing techniques consisting of calculation of the as
ratios of the grains. Grain size, on the other hand, can be
easily quantified. Three methods are commonly used, corres
ing to whether one-, two-, or three-dimensional measuremen
desired. The line intercept method provides measuremen
grain diameters, direct measurement of grain cross sectional
is possible, and serial sectioning can provide approximate
direct measurement of grain volumes~Okazaki and Conrad 197
Rhines and Patterson 1982; Fradkov et al. 1985!. It has bee
shown that the average grain diameter, area, and volume ar
portionally related so that measurement of one represents a
plete characterization of the grain size~Okazaki and Conra

Fig. 3. Distribution of grain sizes in aluminum thin foil sample. B
fit gamma distribution is also shown. Reproduced from data give
Fradkov et al.~1985!.
1972!.
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Experimental Data and Statistics

For polycrystalline materials the grain size, as measured in
two, or three-dimensions, has been found to be well approxim
by a gamma random variable. The gamma random variab
defined by the probability density function~pdf!

f ~x,a1 ,a2!5
xa121e2x/a2

a2
a1G~a1!

(1)

whereG~•! is the gamma function; anda1 anda2 are paramete
of the distribution.

Fradkov et al.~1985! give the results of experimental me
surements of the grain area of the crystals of a sample of
aluminum foil. The data are reproduced in Fig. 3 in the form
histogram of the normalized grain areaA/Ā. The histogram i
overlaid with the best fit gamma pdf which has parametera1

52.79 anda250.29.
It has recently become possible to obtain measurements

local crystallographic orientation with very high resolution us
the method of electron backscatter diffraction~EBSD! ~Adams
1993; Adams et al. 1994!. Using EBSD it is possible to measu
the crystallographic orientation at the surface of a crystalline
terial with a resolution of 1 to 2mm. The data obtained for th
current analysis consist of 14,016 measurements taken on a
lar grid over a 540mm3540mm region of 2000 series aluminu

Fig. 4. Schematic illustration of layout of orientation measurem
on materials surface. The sets of parallel lines are meant to in
the local crystallographic orientation.

Fig. 5. Grain geometry of material sample as determined by mi
entation calculation. Grain boundaries determined with cutoff mi
entation angle ofu515° ~figure courtesy D. P. Mika!.
JOURNAL
-

alloy ~D. Mika, personal communication, 1997! ~see Fig. 4 for
schematic of the measurement layout!. The sample region co
tains cross sections of approximately 120 grains.

Fig. 5 shows the grain geometry of the sample. The l
representing the grain boundaries, are found by considerin
misorientation between the lattices at adjacent measure
points. If the misorientation angleu from the axis/angle represe
tation of the misorientation is found to be greater than 15° th
grain boundary is assumed to exist between the measur
points. From this representation of the grain geometry one
observe that the grain structure appears quite regular wit
exception of a few large, irregularly shaped grains.

Fig. 6 showsc1 , the first Euler angle, plotted as a surfa
Data are taken from the same experimental set as des
above. The surface plot of the data shows the randomness
crystallographic orientation, as well as the fact that the orient
is nearly constant within individual grains, and has discontinu
at the grain boundaries.

Some statistics of the orientation data are now given. Mar
pdfs of the three Euler angles are estimated, as are spatia
and cross-correlation functions for the three Euler angles. T
statistics will be used in the next section to motivate a prob
listic model for the orientation.

Histograms of the Euler angles are shown in Fig. 7, with
corresponding cumulative distribution functions in Fig. 8.
statistics up to fourth order are given in Table 1. The histog
and statistics show that the random Euler angles are highly
Gaussian. The histograms can be compared qualitatively t
Gaussian pdf, and the skewness (g3) and kurtosis (g4) can be
compared to the values for the Gaussian distribution,g350 and
g453. Any probabilistic model of the orientation must theref
be able to reproduce the non-Gaussianity of the data.

It is assumed throughout that the orientation field
1. Is weakly stationary~spatially homogeneous! and isotropic

and

Fig. 6. Surface plot of Euler anglec1

Fig. 7. Histograms of Euler angles showing highly non-Gaus
nature of the data
OF ENGINEERING MECHANICS © ASCE / SEPTEMBER 2004 / 999
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2. Has marginal distributions which are invariant under tr
lations.

These assumptions allow a simple estimation of the spatial c
lation functions of the orientation.

Let zj , j 51, . . . ,n, be the points in a coordinate system
beled (x1 ,x2), at which measurements were taken. In the cu
examplen514,016. The three Euler angles at these measure
points zj are then denoted byc i(zj), i 51,2,3. Let also
c i

(1)(zj ,d) be the value ofc i at zj1de1 and c i
(2)(zj ,d) be the

value ofc i at zj1de2 , whereei is a unit vector in thexi direction
and d is a scalar separation distance. The auto- and c
covariance functions are defined by

cpq~d!5E@„cp~y!2mp…„cq~y1dn!2mq…# (2)

wherey is an arbitrary position in the domain of the polycrys
and n is an arbitrarily oriented unit vector. Using the notat
described above, estimates of these functions can be obtain

ĉpq~d!'
1

2m (
j 51

m

(
k51

2

@cp~zj !2mp#@cq
~k!~zj ,d!2mq# (3)

where m is the number of pointszi for which zi1de1 and zi

1de2 remain in the domain of measurement. Asd increases, som
decreases.

From the estimated correlation functions estimates of the
malized covariance functions can be obtained by

r̂pq~d!5
ĉpq~d!

Aĉpp~0!ĉqq~0!
(4)

Normalized covariance functions estimated from the data se
scribed above are shown in Fig. 9. Best fit exponential d
functions a exp(2bd) computed for the normalized covarian
functions have the parameters given in Table 2. Also shown i
table are the computed values of the correlation lengthsdc,i j . The
correlation length is here defined such that

dc,i j 5min$d: r i j ~d!,e21% (5)

That is, the correlation length is the separation distance at w
the scaled covariance first takes values less thane21.

To provide a physical interpretation of the correlation leng
recall that the sample from which data were collected has di
sion 540mm3540mm, or area 291,600mm2. With approximately
120 grains in the sample, the average grain radius is app

Fig. 8. Cumulative distribution functions of Euler angles as e
mated from experimental data

Table 1. Statistics of Euler Angles

Mean ~m! Standard deviation~s! Skewness (g3) Kurtosis (g4)

c1 2.43 1.45 1.04 3.20
c2 0.683 0.358 20.616 1.58
c3 3.52 2.08 20.296 1.31
1000 / JOURNAL OF ENGINEERING MECHANICS © ASCE / SEPTEMBER
mately 27mm. The estimated correlation distances reveal tha
this particular material sample the correlation between the o
tation in neighboring grains is very small. Other investiga
have, however, found long range correlations in orientation
various aluminum alloy polycrystals~Adams et al. 1994!. For this
reason, the probabilistic model presented in the next sectio
lows for the possibility of orientation correlation between gr
despite the evidence against such correlations in the curren
set.

Probabilistic Models

A probabilistic model for polycrystalline microstructures is n
presented. First, the Voronoi tessellation is proposed as a m
for the grain geometry of polycrystalline materials. Secon
random field model is developed for the crystallographic orie
tion. Finally, a procedure for generating realizations of the
dom microstructure is given.

Grain Geometry

The Voronoi tessellation has been used as a model for a vari
material microstructures, including the grain geometry of p
crystals. Here the Voronoi tessellation is implemented as a m
for the two-dimensional grain geometry of the aluminum p
crystal under examination.

Given a domainD,R2 with n nucleation pointsciPD, i
51, . . . ,n, the Voronoi tessellation dividesD into n polygons, o
cells, defined by

Pi5$xPDuix2ci i,ix2cj i , j Þ i % (6)

The geometric interpretation of this definition is that the celPi

contains all points inD which are closer to the nucleusci than any
other nucleus. The regionB defined by B5$x: x¹Pi%, i

Fig. 9. Auto- and cross-correlation functions of Euler angles. E
mated based upon assumption of stationarity and isotropy.

Table 2. Parameters of Orientation Scaled Covariance Functio
Estimated from Data

ai j bi j dc,i j (mm)

r11(d) 1.0 0.036 27
r22(d) 1.0 0.035 28
r33(d) 1.0 0.030 33
r12(d) 20.57 0.030 14
r13(d) 0.14 0.021 –
r23(d) 0.13 0.012 –

Note: No entry indicates that the maximum value ofPi j (d) is less then
21
e .

2004
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and
51, . . . ,n, has zero area and defines the network of cell, or g
boundaries. The polygons defined by the tessellation have st
edges and are convex. Use of the Voronoi tessellation as a
for grain geometry implies the physical assumptions that g
growth initiates simultaneously at all nuclei and that grain gro
is stationary and isotropic.

Modeling of the nucleation points of the tessellation by a P
son point field allows calibration of the average grain are
experimental measurements and introduces uncertainty int
grain geometry. A stationary Poisson point field is chosen s
the experimental measurements show no evidence of spa
varying average grain size. The characteristics of a statio
Poisson point field are determined completely by the intensi
the field, denoted byl. The average number of grains in a
sample is a Poisson random variable with meanlA, whereA is
the area of the sample. Since the material sample has 120
in an area of 540mm3540 mm, the intensity is calculated to b

l5
120 grains

~0.540 mm!2
5412 grains/mm2 (7)

A sample of the random grain geometry produced by the
part model of a Poisson point field for the grain nuclei an
Voronoi tessellation for the grains themselves is shown in Fig
The sample domain isD5@0,0.5#2 mm and the number of grai
in this sample is 100. Comparison with Fig. 5 shows a qualita
similarity in the grain geometry although the Voronoi tessella
is not able to reproduce the anomalously large, concave g
seen in the actual material sample.

Crystallographic Orientation

The spatial variability of the crystallographic orientation sugg
a random field as an appropriate probabilistic model. A ve
random field which is stationary in its marginal distributions
second moment properties can be calibrated to the statistic
mated for the experimental data. The vector random field is

C~x!5FC1~x!
C2~x!
C3~x!

G (8)

with marginal cumulative distribution functions shown in Fig
and denoted byFi(c) i 51,2,3. Thespatial variation of the or
entation field is characterized in second moment by the m
covariance functionc(d) or the normalized matrix covarian
function r(d). The component normalized covariance functi
r i j (d) are set equal to the best fit exponential decay function

Fig. 10. Example Poisson–Voronoi tessellation with 100 grains
spatially invariant intensity
Table 2.

JOURNAL O
l

Non-Gaussianity of the orientation is accommodated by le
the orientation fieldC~x! take the form of a translation fie
~Grigoriu 1995!. A translation field is a non-Gaussian rand
field which is a memoryless transformation of a Gaussian ran
field, called the Gaussian image of the translation field. Fo
orientation field this transformation is given by

C i~x!5Fi
21$F@Vi~x!#%5gi@Vi~x!# (9)

whereFi
21(•) is the inverse cdf of Euler anglec i ; F~•! is the

standard Gaussian cdf; andVi(x) is componenti of a Gaussia
random vector field which has mean zero, unit variance, a
matrix of normalized covariance functionsj(d) which are define
by

m im j1s is jr i j ~d!

5E
2`

` E
2`

`

gi~y1!gj~y2!f@y1 ,y2 ;j i j ~d!#dy1dy2

(10)

wherej~•,•;r! is the bivariate standard normal density func
with correlation coefficientj. The integral of Eq.~10! is typically
calculated by numerical integration. The scaled covariance m
j(d) of the Gaussian imageV~x! of C~x! must usually be calcu
lated iteratively since Eq.~10! givesr in terms ofj.

Simulation of random polycrystalline microstructures is
complished by first generating a realization of the random g
geometry and then generating a realization of the orientation
conditional upon the sample grain geometry. This procedu
now described for a two-dimensional domainD.

Generation of the sample grain geometry is straightforw
and consists of the following steps:
1. Generate a realizationn of the Poisson random variableN

with meanN̄5l*DdA.
2. Generaten independent pointsci , i 51, . . . ,n uniformly

distributed inD. These points serve as the grain nuclei.
3. Calculate the Voronoi tessellation associated with the n

ci using existing algorithms such as theqhull algorithm
implemented inMATLAB.

Generation of a realization of the orientation field, a ve
random field, is complicated by the fact that the orientation
is characterized by discontinuities at the grain boundaries.
no currently available simulation methods are able to pro
such samples, a scheme is introduced which takes advant
the already created grain geometry sample. This approac
sumes that the orientation is constant within each grain. Th
sumption reduces the problem of simulation of the orienta
field to the generation of a sample of a vector of orientations
for each grain.

The n orientations are generated at the geometric centroi
the Voronoi cells, denotedĉi , i 51, . . . ,n. The centroids are n
necessarily coincident with the nucleici , i 51, . . . ,n. The orien
tation fieldC~x!, xPD is completely defined by the sample gr
geometry and the random vectorĈ which has components d
fined by

Ĉi5C1~ ĉi ! (11)

Ĉn1 i5C2~ ĉi ! (12)

Ĉ2n1 i5C3~ ĉi !, i 51, . . . ,n (13)

The correlation structure of this random vector is such that i

a scaled covariance matrix

F ENGINEERING MECHANICS © ASCE / SEPTEMBER 2004 / 1001



tric

ose
.

r
l

n

m
dis-

-

ma-
an

n of
uch

tes of
xter-
iled
n of
appli-
that
f the
esults
ilistic

ure,
sed i
ular
ely a
ack

ber
ome
er-
re of

ma-
ehav-

at is,

blem
. 12;
long
triple
rain
e
in-

ns
ta-

sen-
,

along
con-
n

rob-

junc-
ndi-
r̂5F r̂11 r̂12 r̂13

r̂21 r̂22 r̂23

r̂31 r̂32 r̂33

G (14)

Defining di j 5i ĉi2 ĉj i to be the distance between the geome
centroids ofpi andpj , the submatricesr̂i j have components~see
Table 2!

r̂ i j ,pq5r i j ~dpq! (15)

The random vectorĈ is modeled as a translation vector wh
Gaussian imageV̂ has scaled covariance matrixĵ given by Eq
~10!.

Given this definition of the random vectorĈ the procedure fo
generating a realization of the orientation field is~conditiona
upon a tessellation with grainspi , i 51, . . . ,n)
1. Calculate the geometric centroids$ĉi% of the grains;
2. Calculate the grain separation distances$di j %;
3. Populate the scaled covariance matrixĵ of the Gaussia

imageV̂ of Ĉ;
4. Generate a realization ofV̂ by V̂5bẐ where b is the

Cholesky decomposition ofĵ and Ẑ is a Gaussian rando
vector with components that are independent identically
tributed with mean zero and unit variance; and

5. TransformV̂ into Ĉ by

Ĉi5gj~V̂i !H j 51, 1< i<n

j 52, n11< i<2n

j 53, 2n11< i<3n

(16)

The realizationc~x!, xPD, of the orientation field is com
pletely defined, and is given by

c~x!5F ĉ i

ĉn1 i

ĉ2n1 i

G , xPpi (17)

Intergranular Fracture

The probabilistic model developed for the microstructure and
terial properties of polycrystalline materials is not useful in
engineering context if it cannot be used to aid in the solutio
important problems in probabilistic micromechanics. One s
problem is the determination of the propagation paths and ra
microstructurally small cracks subject to possibly uncertain e
nal actions. The complexity of this problem places its deta
solution beyond the scope of this paper. A simplified versio
the problem is, however, addressed to indicate the possible
cation of the probabilistic polycrystal model. It is recognized
the assumptions made detract from the physical realism o
analysis, yet, the solution does demonstrate the types of r
which can be obtained using simulation based on the probab
polycrystal model.

Realizations of the random polycrystalline microstruct
generated using the procedure described above, are now u
an investigation of uncertainty in the trajectory of intergran
microcracks. The problem analyzed is shown in Fig. 11, nam
polycrystal subject to uniaxial tension with an initial edge cr
along one of the grain boundaries.

By limiting the crack to an intergranular trajectory the num
of possible crack trajectories is reduced from infinite to s
finite, tractable number. A key result of the limitation to int
granular cracks is that only the relative resistance to fractu

the grain boundaries must be known, and not the resistance to

1002 / JOURNAL OF ENGINEERING MECHANICS © ASCE / SEPTEMBER
n

fracture of the grain boundaries relative to the intragranular
terial. Several general assumptions are made regarding the b
ior of the crack, namely:
• The crack propagates only along the grain boundaries, th

it remains intergranular;
• The crack tip always proceeds in the direction of positivex1 ;
• The crack does not branch; and
• Propagation continues until the polycrystal is severed.

Crack Path Determination

Since the crack is restricted to the grain boundaries, the pro
of determining the trajectory is reduced to that shown in Fig
determination of which of two grain boundaries to proceed a
when the crack tip encounters a grain boundary junction, or
point. In the figure, the crack tip is at the junction of the g
boundaries separating grainsp1 , p2 , andp3 . These grains hav
orientationsci , i 51,2,3, where the underscore in the figure
dicates a vector quantity. The grain boundary between graipi

andpj is denoted bybi j and has associated with it a misorien
tion angleu i j which is the angle part of the axis/angle repre
tation of the misorientation betweenci andcj . The dashed line
labeled homogeneous trajectory, indicates the trajectory
which the crack would propagate were it in a homogeneous
tinuum subject to the remote uniaxial stresss. The angle betwee

Fig. 11. Schematic illustration of example crack propagation p
lem. A polycrystal subject to uniaxial tension.

Fig. 12. As an intergranular crack approaches a grain boundary
tion ~triple point!, the crack must propagate along one of the ca
date grain boundaries
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the homogeneous trajectory andb12 is g1 and g2 is the angle
between the homogeneous trajectory andb23.

While the grain boundary along which propagation occurs
be determined by energy considerations coupled with the
ciples of linear elastic fracture mechanics~Arwade et al. 1998!,
the application of such a method requires extremely time con
ing finite element analysis and Monte Carlo simulation. As ye
insufficient number of simulations have been made to allow
conclusions to be drawn regarding the propagation of uncert
through the system.

Here, two mechanically simplified criteria are used to de
mine the crack propagation direction at grain boundary junct
In the first, called the maximum misorientation criterion,
crack is assumed to propagate along the grain boundary w
has the larger angle of misorientation, for example, alongb23 in
Fig. 12 if u23.u12. In the second, the minimum deviation cri
rion, the crack propagates along the grain boundary which
closest to the homogeneous trajectory. That is, the grain bou
for which the angleg is minimized, which, in Fig. 12 isb12 since
g1,g2 . These two criteria correspond, respectively, to the c
in which randomness in the crack trajectory is determined
randomness in the material properties or the grain geometry
maximum misorientation criterion is motivated by the observa
that grain boundaries with a high misorientation tend to h
lower fracture toughness~Kurishita et al. 1985; Li and Zhan
1995!. The minimum deviation criterion is based on the intuit
that, for an edge crack under uniaxial tension, the energy re
per unit crack extension is greater the closer to perpendicu
the applied stress is the angle of propagation.

These two criteria are chosen in the belief that they repre
extremes of the possible fracture behavior; the propagatio
pending either entirely upon the local material properties~maxi-
mum misorientation!, or the local grain boundary geometry~mini-
mum deviation!. The physical reality likely is a combination
these two effects. As a preliminary attempt to address these
mediate cases, a mixed criterion is introduced. Define the qu

B5W
u

umax
1~12W!

gmax2g

gmax
(18)

whereumax'62° as given by the Mackenzie distribution~Randle
1993!, gmax590° since the crack must always propagate forw
andW is a weight factor. WhenW51 the maximum misorienta
tion criterion is obtained, and whenW50 the minimum deviatio
criterion is obtained if the crack is assumed to propagate in

Fig. 13. Single realization of intergranular crack growth using b
the maximum misorientation and minimum deviation criteria.
solid line corresponds to the minimum deviation criterion and
dashed line to the maximum misorientation criterion.
direction of greaterB.

JOURNAL O
Monte Carlo Simulation

To investigate the propagation of uncertainty in the materia
crostructure to uncertainty in intergranular crack trajecto
Monte Carlo simulation is performed on the problem descr
above~see Fig. 11!. Independent microstructural realizations
generated with the domain of the polycrystal beingD5@0,L#2.
The crack is assumed to initiate at the grain boundary w
intersectsx150 with x2 coordinate closest tox25L/2, and the
crack tip is advanced using either the minimum deviation
maximum misorientation criterion until the crack tip encoun
x15L. The Monte Carlo simulation provides independent rea
tions of the random crack paths, denoted byC(x1). Fig. 13 show
the crack paths determined for a sample microstructure usin
two criteria, illustrating the significantly different crack paths
tained by the two methods.

Fig. 14 shows 25 crack path realizations for each criterion
domain of the samples, withL5500mm, is D5@0,500#2 mm
with an average of 100 grains. Two adjustments are made
crack paths as presented in Fig. 13: the crack paths are no
ized usingx̃15x1 /AĀ and C̃(x1)5C(x1)/AĀ, where Ā is the
average grain area, and the initial crack path is shifted so
C(0)/AĀ55. The normalization is applied so that statistics of
crack paths can be computed nondimensionally and to ne
uncertainty in the initiation site of the crack. The side by
comparison of crack paths obtained by the two different cri
indicate that the minimum deviation criterion results in cr
paths much closer to the homogeneous trajectory than thos
tained by use of the maximum misorientation criterion.

This observation is confirmed by the statistics shown in
15. The variance ofC̃( x̃1) is linear inx̃1 . The growth rates of th

Fig. 14. Monte Carlo simulation of intergranular crack growth us
both the maximum misorientation and minimum deviation criter

Fig. 15. Growth of variance of the crack trajectories
F ENGINEERING MECHANICS © ASCE / SEPTEMBER 2004 / 1003
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variance are 0.50 and 0.15 with respect tox̃1 for the maximum
misorientation and minimum deviation criteria, respectively.

Some example calculations with the mixed criterion y
some interesting preliminary results. WhenW50.75, the crac
path has a variance growth rate of 0.35, whenW50.5 the vari-
ance growth rate is 0.21, and whenW50.25 the variance grow
rate is 0.17. These variance growth rates, corresponding to
mediate values of the criterion weight, demonstrate the nonl
sensitivity of the variance growth rate to the weight, and also
the minimum deviation criterion appears to dominate for wei
close to 1. It is in this regime of intermediate weights that the
behavior of intergranular cracks is expected to be found. Thr
the use of higher fidelity, but more time consuming mechan
models, future investigation will attempt to further explain
behavior of intergranular cracks in this intermediate regime.

Probabilistic Model

The random nature of the crack paths generated by Monte
simulation, coupled with the observed linear variation of
crack path variance suggests that a scaled Brownian motion
be an appropriate model for intergranular crack trajectories
the normalized crack be a random process defined by

C̃~ x̃1!5sB~ x̃1! (19)

whereB( x̃1) is a standard normal Brownian motion process,
is, a Gaussian process with stationary independent increm
such thatB(u1h)2B(u), h.0 is N(0,h). The processC̃( x̃1)
has zero mean and variance var@C̃( x̃1)#5s2x̃1 if var@C̃(0)#50.
The parameters is determined to beA0.50 andA0.15 for the
cases of cracks whose trajectory is determined by the max
misorientation and minimum deviation criteria, respectively.

To generate realizations of intergranular crack paths a ste
D x̃1 is selected which is equal to 1. An initial conditionC̃(0) is
chosen and the crack trajectory is generated by the forward
ference equation

C̃~ x̃1,i 11!5C̃~ x̃1,i !1~sAD x̃1!Ai (20)

where $Ai% are independent standard normal Gaussian ran
variables. Samples of this process are shown in Fig. 16 for
values of the calibration parameter. The sample trajectories b
qualitative resemblance to the simulated trajectories of Fig
and match the linear growth of variance. The process can th
rescaled to actual units byC(x)5C̃(x/AĀ)AĀ. This simulation
method can as well be applied to generate crack trajectorie

Fig. 16. Realizations of crack trajectories generated from sc
Brownian motion model for intergranular cracks
responding to the mixed propagation criterion introduced earlier.

1004 / JOURNAL OF ENGINEERING MECHANICS © ASCE / SEPTEMBER
It entails simply finding the value of the variance growth rate
the desired value ofW, and inserting this value into Eq.~20!.

This example illustrates the possibility of using Monte C
simulation of microstructural evolution as a means of gener
statistics on microstructural features such as crack trajector
sufficient confidence can be placed in the mechanics of the
els used in the Monte Carlo simulation then direct probabi
modeling of the evolved microstructures may be possible, a
ing generation of sample microstructures at the desired sta
evolution. While the mechanics of the crack propagation mo
presented here are too simplified to offer such a claim to phy
reality, the example serves to illustrate the method and the p
tial usefulness of the described probabilistic model of polyc
talline microstructures.

Conclusions

A framework for the numerical simulation of polycrystalline m
terials is described. The grain geometry is modeled, in two di
sions, by a Poisson–Voronoi tessellation in which the nucle
points of the grains are represented by a Poisson point fiel
the grains themselves are represented by the cells of a Vo
tessellation constructed on the nuclei. This model is capab
reproducing grain structures which are isotropic and have sta
ary average grain size. The model presented is calibrated
perimental measurements in terms of the average grain
which is related to the intensity of the Poisson point field.

The crystallographic orientation is modeled as a vector
dom field which is calibrated in marginal distributions and sec
moment properties. Samples of the orientation field are gene
by a memoryless transformation of a Gaussian random
called a translation field. These samples statistically matc
experimental data in marginal distribution and second mo
properties.

An example application is presented in which realization
the polycrystalline microstructure are analyzed for fracture
ject to uniaxial tension. The trajectory of an intergranular c
through the sample polycrystal is calculated by one of two c
ria. The crack is assumed to propagate either along the
boundary with the largest misorientation—the weaker g
boundary—or the grain boundary which is closest to the tr
tory the crack would take in a homogeneous continuum. Th
clusion of material effects through the misorientation incre
the variability of the crack trajectories. Preliminary investiga
of a mixed propagation criterion indicates that the behavior in
mixed regime is nonlinear and complex. Further study is ne
sary in this regime to achieve physically realistic results.

Using Monte Carlo simulation of the intergranular cracks
crack trajectories were found to exhibit the linear increas
variance which is typical of a Brownian motion process. A sc
Brownian motion was shown to be a qualitatively good mode
intergranular cracks with the scaling parameter dependent
the amount of material dependence. This model can be us
efficiently generate realizations of microcracks which statistic
match the cracks generated by Monte Carlo simulation. Th
ample has demonstrated the possibility of using numerical s
lation to calibrate probabilistic models for materials at evo
states.

Notation

The following symbols are used in this paper:
¯
A 5 average grain area;
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A 5 grain area;
B 5 network of grain boundaries;

bi j 5 grain boundary betweenpi andpj ;
Ĉ(•) 5 normalized crack trajectory;
C(•) 5 crack trajectory;

c 5 covariance function ofC;
ĉi 5 grain centroids;
ci 5 grain nuclei;

ĉi j 5 estimates of covariance functions;
ci j 5 covariance functions;
D 5 polycrystal domain;
d 5 separation distance;

dc,i j 5 correlation lengths;
E@•# 5 expectation operator;

ei 5 unit vector;
Fi(•) 5 cumulative distribution function ofC i ;

n 5 unit vector;
p̂i j 5 estimates of normalized covariance functions;
pi 5 Voronoi polygon;
V 5 Gaussian random vector;
zi 5 orientation measurement points;

a1 ,a2 5 parameters of gamma distribution;
b 5 Cholesky decomposition ofr;

G~•! 5 gamma function;
g i j 5 angle betweenbi j and homogeneous crack

trajectory;
g3 5 skewness;
g4 5 kurtosis;
D x̂ 5 crack growth increment;
u i j 5 misorientation angle between grainsi and

j (rad);
l 5 Poisson point field intensity;

m i 5 mean ofC i ;
j 5 scaled covariance of Gaussian image ofC;
r 5 scaled covariance function ofC;
s 5 scaling parameter for Brownian motion crack

model;
s i 5 standard deviation ofC i ;
t 5 applied stress;

F~•! 5 standard normal cdf;
f~•,•;r! 5 bivariate Gaussian pdf with correlationr;

(f1 ,F,f2) 5 Euler angles, standard notation~rad!;
C 5 orientation random field; and

(c1 ,c2 ,c3)5 Euler angles, notation used in current paper
~rad!.
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