Probabilistic Model for Polycrystalline Microstructures
with Application to Intergranular Fracture
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Abstract: A two part probabilistic model for polycrystalline microstructures is described. The model utilizes a Poisson—\Voronoi tessel-
lation for the grain geometry and a vector random field model for the crystallographic orientation. The grain geometry model is calibrated
to experimental data through the intensity of the Poisson point field underlying the Poisson—Voronoi tessellation and the orientation
random field is calibrated to experimental data through its marginal distributions and second moment properties. Realizations of the
random microstructure are generated by use of translation methods and are used, with simplified mechanical models, to investigate tt
problem of intergranular fracture. It is found that intergranular cracks exhibit some statistical properties of a scaled Brownian motion
process.
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Introduction The primary contribution of this paper is the introduction of a
The goals of this paper are td) develop a probabilistic model random figld mpdel f.or the m'ater.ial properties—through the crys-
for the microstructure of polycrystalline materials, af® use  tallographic orientation—which is capable of matching spatial

Monte Carlo simulation methods to determine statistics of inter- correlation which may exist in real materials. This random field is
granular cracks in synthetic microstructures. The fracture me- conditional on the random grain geometry, thereby providing a
chanics problem considered is that of quantifying the uncertainty Physically realistic coupling between the random material prop-
in the trajectory of an intergranular crack in a random heteroge- €rties and random grain geometry.
neous microstructure. The work is motivated by the observation that the proportion
A significant body of research exists which addresses the mod-Of the service lifetime of a structural component in which macro-
eling of random polycrystalline microstructures and their atten- scopic damage is present is small. For a significant portion of the
dant material properties. In several studies a deterministic grainlifetime of a structural component the length scale of the damage
geometry is used—a tessellation of space filling truncated processes acting in the material is small compared to the length
octahedra—while random material properties are assigned to thescale of the microstructure. An example is a crack with a length
grain boundarie$Anderson and Rice 1985; Wilkinson 1988; Har- which is of the same order of magnitude as the average grain
low et al. 1996. Random two-dimensional grain geometries have diameter. To reliably predict, therefore, the service lifetime of a
been generated by either perturbation of a deterministic grain ge-structural component, it is important to be able to predict the rates
ometry (van der Giessen and Tvergaard 1994agh use of ran- of initiation and growth of small scale damage in microstructured
dom tessellationgBallarini et al. 1999. Iterative methods have  materials. Any such predictions must include a quantification of
been proposed for introducing the spatial correlation of material the uncertainty inherent to the problem. This uncertainty origi-
properties to random polycrystal&ertsman et al. 1992, 1996; nates both from uncertainty in loads and in features of the mate-
Gertsman 1997 It has not yet been established, however, rial microstructure.
whether these methods can match experimental data. A recent This work represents a first step towards that goal in introduc-
success has been achieved in the simulation of polycrystallineing a framework for numerical simulation of random polycrystal-
microstructures with the development of a method for automatic line materials. Fig. 1 shows the organization of the framework.
finite element meshing of random two-dimensional grain geom- Material data are used to develop probabilistic models, and
etries(Weyer et al. 200R samples generated from these models are used in the simulation
of crack propagation. The results of these simulations constitute
Iassistant Professor, Dept. of Civil Engineering, Johns Hopkins Simulated data regarding the material state and can in turn be used
Univ., 3400 N. Charles St., Baltimore, MD 21218. E-mail: srarwade@ to develop probabilistic models for the evolved material.

jhu.edu The paper is divided into two main parts. Probabilistic model-
_ZPFOfGSSOF, Dept. of Civil and Environmental Engineering, Comell ing of the material microstructure is presented first. Statistics of
Univ., Ithaca, NY 14853. E-mail: mdg12@cornell.edu experimental data gathered from the literature are used to cali-
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Fig. 3. Distribution of grain sizes in aluminum thin foil sample. Best
fit gamma distribution is also shown. Reproduced from data given by

tify the uncertainty in the trajectory of an intergranular crack in a Fradkov et al(1985.

random polycrystalline material. The crack trajectory is computed
based on a simplified fracture mechanics model which considers
the interaction between the random grain geometry and the ran-
dom material properties resulting from the crystallographic orien-
tation.

tationg. Here two representations are used. The Euler angle rep-
resentation (Bunge 1982 and the axis/angle representation
(Randle 1993

In the Euler angle representation the orientation is given by
three angles which describe the three-dimensional rotation from
the reference to crystal coordinate system. These three angles are
Definitions typically denoted ¢,,®,d,]. Here an alternative notation is in-

Two features of the material microstructure are addressed in thisiroduced inwhichli, =b,, ;= ®, andy;3=¢,. This notation is
paper, the grain geometry and crystallographic orientation. Mea- introduced so that the Eulerfngles can pe conveniently expressed
surements of these features have been provided by other researctS the VECtols=[{s;,4i,413]". In the axis/angle representation
ers or gathered from the literature. Before proceeding to a discus-tN€ orientation is given Ey a single angle of rotatidwhich is
sion of the data, a brief definition of crystallographic orientation 2PPlied about an axis ift”. The axis/angle representation is par-
is now given. ticularly useful since the anglé can be used as an approximate
The atoms of crystalline solids are arranged periodically on a SCalar representation of orientation.
three-dimensional lattice. This lattice can take several geometric  While orientation describes the rotation from a reference co-
forms, including the simple cubic lattice, the face- and body- ordinate system to a crystal coordinate system, misorientation de-
centered cubic lattices, and the hexagonal lattice. In each case th&CiPes the rotation from one crystal coordinate system to another.
periodic nature of the lattice provides a convenient definition of | N€ misorientation, therefore, characterizes the difference in ori-
the crystal coordinate systeffig. 2). While the crystal lattice ~ €ntation between two crystal lattices. The axis/angle representa-
defines the crystal coordinate system, a reference coordinate systion Of misorientation is particularly useful since it provides, in
tem can be defined relative to some laboratory or componenttn€ form of the anglé, a scalar quantification of the difference
frame of reference. The orientation is the transformation from the PEtWeen two orientations. If the axis/angle representation of the
reference coordinate system to the crystal coordinate system. Thdhisorientation between two lattices has a large angular compo-
orientation, a three-dimensional rotation, can be represented in d'€Nt6 then the lattices can be said to be highly misoriented. It is
variety of mathematical formisee Randl¢1993 and Kumar and useful to be able to make such statements when examining the

Dawson (1998 for in depth discussions of the various represen- strength of grain boundaries, which are discontinuities in the lat-
tice orientation. The misorientation angle between graarglj is

denotedd;; .

crystal lattice A complete characterization of grain geometry requires quan-
tification of two parameters, the grain size and the grain shape.
Quantification of grain shape remains an unsolved problem, with
most existing techniques consisting of calculation of the aspect
ratios of the grains. Grain size, on the other hand, can be quite
_ easily quantified. Three methods are commonly used, correspond-

§ ing to whether one-, two-, or three-dimensional measurements are
desired. The line intercept method provides measurements of
grain diameters, direct measurement of grain cross sectional areas
is possible, and serial sectioning can provide approximate but
) o ) ] ) ] direct measurement of grain volum@kazaki and Conrad 1972;
Fig. 2. _Schemgt_lg illustration of crystalllne_ lattice structure shovymg Rhines and Patterson 1982; Fradkov et al. 1986has been
a possible definition of the crystal coordinate system along with a shown that the average grain diameter, area, and volume are pro-

r?fer?nc? coordlnatet ?I'yhs temt o:g;ned re{ﬁnve fto the geomdgtryt of aportionally related so that measurement of one represents a com-
structural component. The rotatidnmaps the reference coordinates plete characterization of the grain siz®kazaki and Conrad

onto the crystal coordinates. 1972,

Microstructural Measurements
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Fig. 4. Schematic illustration of layout of orientation measurements
on materials surface. The sets of parallel lines are meant to indicate
the local crystallographic orientation.

Fig. 6. Surface plot of Euler anglé

alloy (D. Mika, personal communication, 199&ee Fig. 4 for a
Experimental Data and Statistics schematic of the measurement layouthe sample region con-

. . L . tains cross sections of approximately 120 grains.
For polycrystalline materials the grain size, as measured in one,

h . . h ¢ I ) Fig. 5 shows the grain geometry of the sample. The lines,
LWO’ ort ree-dlmednsmns, 'atfl beer;] ound to be W?j appro},('rg:late,drepresenting the grain boundaries, are found by considering the
y a gamma random variable. The gamma random variable IS nisqrientation between the lattices at adjacent measurement

defined by the probability density functidpdf) points. If the misorientation angkefrom the axis/angle represen-

x*1—lg=xlaz tation of the misorientation is found to be greater than 15° then a
f(x,al,az):al— 1) grain boundary is assumed to exist between the measurement
ay T (ay) points. From this representation of the grain geometry one can

wherel'(-) is the gamma function; angd, anda., are parameters observe that the grain structure appears quite regular with the
of the distribution. exception of a few large, irregularly shaped grains.

Fradkov et al.(1985 give the results of experimental mea- Fig. 6 showsy,, the first Euler angle, plotted as a surface.
surements of the grain area of the crystals of a sample of thin Data are taken from the same experimental set as described
aluminum foil. The data are reproduced in Fig. 3 in the form of a above. The surface plot of the data shows the randomness of the
histogram of the normalized grain arédA. The histogram is crystallographic orientation, as well as the fact that the orientation
overlaid with the best fit gamma pdf Whi(.:h has parameteys is nearly constant within individual grains, and has discontinuities
—279 anda.=0.29 at the grain boundaries.

It has recczantly become possible to obtain measurements of the Some statistics of the orientation da.ta are now given. Mgrginal
local crystallographic orientation with very high resolution using pdfs of the three I_Euler angles are estimated, as are spatial auto-
the method of electron backscatter diffractiEBSD) (Adams and cross-correlation functions for the three Euler angles. These
1993; Adams et al. 1994Using EBSD it is possible to measure statistics will be used in the next section to motivate a probabi-
the crystallographic orientation at the surface of a crystalline ma- I'Stﬁiggd;lr;osr (t)??h%”gmg:'c;?{ les are shown in Fia. 7. with the
terial with a resolution of 1 to 2um. The data obtained for the gra . NGIES . 9. 7
current analysis consist of 14,016 measurements taken on a regu(_:orrespondmg cumulative distribution functions in Fig. 8. The

. . . : statistics up to fourth order are given in Table 1. The histograms
I 4QumX54 f2 I > .
ar grid over a 54qum>x540 um region of 2000 series aluminum and statistics show that the random Euler angles are highly non-

Gaussian. The histograms can be compared qualitatively to the
Gaussian pdf, and the skewness; and kurtosis 4,) can be

compared to the values for the Gaussian distributioys 0 and
v4=23. Any probabilistic model of the orientation must therefore
be able to reproduce the non-Gaussianity of the data.
It is assumed throughout that the orientation field
1. Is weakly stationaryspatially homogeneolsnd isotropic,
and
0.4 5 1
03 4
= =3 ~
202 = S
= =, =
01 1 mm
Pl
——— 0.0 s~ 10 stms  boundary levels: 5.0 15.0> 00 5 00 1 00 5

v, (rad) v, (rad) v, (rad)
Fig. 5. Grain geometry of material sample as determined by misori-
entation calculation. Grain boundaries determined with cutoff misori- Fig. 7. Histograms of Euler angles showing highly non-Gaussian
entation angle of=15° (figure courtesy D. P. MiKa nature of the data
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Fig. 9. Auto- and cross-correlation functions of Euler angles. Esti-

2. Has marginal distributions which are invariant under trans- mated based upon assumption of stationarity and isotropy.

lations.
These assumptions allow a simple estimation of the spatial corre-
lation functions of the orientation.

mately 27um. The estimated correlation distances reveal that for
this particular material sample the correlation between the orien-

b ILZt zj, 1=1,.. .h,_n,hbe the points in a coortlj(mattla S);]stem la- tation in neighboring grains is very small. Other investigators
eled &;,Xxp), at which measurements were taken. In the current have, however, found long range correlations in orientations in

exgmplenz 14'01]6' Thde thre% Egler angle_sialtltgegse aneasulremenR/arious aluminum alloy polycrystal&\dams et al. 1991 For this
pc()llgns z are then denote Wi(z), 1= Ly et also reason, the probabilistic model presented in the next section al-
¥i(z ,d) be the value oil;; atz+de, andy;"(z,d) be the lows for the possibility of orientation correlation between grains

value ofis; atz;+de,, wheree is a unit vector in the; direction despite the evidence against such correlations in the current data
and d is a scalar separation distance. The auto- and cross-gq¢

covariance functions are defined by
Cpq(d):E[(‘l’p(y)_Hp)(q’q(y"_dn)_uq)] )
wherey is an arbitrary position in the domain of the polycrystal

and n is an arbitrarily orientefd #nit \;ecto_r. Using the nota_ltion A probabilistic model for polycrystalline microstructures is now
described above, estimates of these functions can be obtained by esented. First, the Voronoi tessellation is proposed as a model

1M 2 for the grain geometry of polycrystalline materials. Second, a

&pq(d)% ﬁZ Z [Up(Z)— }Lp][tbék)(zj D—pgl () rgndom field model is developed for t_he cryst.allo.graphic orienta-

=1 k=1 tion. Finally, a procedure for generating realizations of the ran-

Probabilistic Models

wherem is the number of pointg; for which z+de, and z dom microstructure is given.
+de, remain in the domain of measurement.dscreases, sm
decreases. _ _ _ _ Grain Geometry
From the estimated correlation functions estimates of the nor- _ ) _
malized covariance functions can be obtained by The Voronoi tessellation has been used as a model for a variety of

R material microstructures, including the grain geometry of poly-
Cpgld) 4 crystals. Here the Voronoi tessellation is implemented as a model
/—app(o)éqq(o) ) for the two-dimensional grain geometry of the aluminum poly-

) . ] i crystal under examination.
Normalized covariance functions estimated from the data set de- ~Gjven a domainDCR? with n nucleation pointsc e D, i

scribed above are shown in Fig. 9. Best fit exponential decay =1, .. n, the Voronoi tessellation divideB into n polygons, or
functions a exp(~bd) computed for the normalized covariance celis, defined by
functions have the parameters given in Table 2. Also shown in the

ﬁpq(d) =

table are the computed values of the correlation lendths. The Pi={xeDl[x—cll<[x—cj#i} (6)
correlation length is here defined such that The geometric interpretation of this definition is that the &ll
de,j=min{d: p;;(d)<e 1} (5) contains all points id which are closer to the nuclegsthan any

. ) ) ) ) ~other nucleus. The regiorB defined by B={x: x&P;}, i
That is, the correlation length is the separation distance at which

the scaled covariance first takes values less #an
To provide a physical interpretation of the correlation lengths, Table 2. Parameters of Orientation Scaled Covariance Functions as

recall that the sample from which data were collected has dimen- Estimated from Data

sion 540umx540 um, or area 291,60Qm> With approximately

120 grains in the sample, the average grain radius is approxi U U cay (R
p12(d) 1.0 0.036 27
pax(d) 1.0 0.035 28
Table 1. Statistics of Euler Angles pa3(d) 1.0 0.030 33
Mean(n) Standard deviatiofic) Skewness+yj;) Kurtosis (y,) p1(d) —0.57 0.030 14
p1s(d) 0.14 0.021 -
Uy 243 1.45 1.04 3.20 o) 013 0.012 _
iz 2223 (2)3:8 :82;2 12? Note: No entry indicates that the maximum valueRif(® is less then

e L.
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0.5 Non-Gaussianity of the orientation is accommodated by letting
the orientation field¥(x) take the form of a translation field

(Grigoriu 1995. A translation field is a non-Gaussian random

. ~ ield which is a memoryless transformation of a Gaussian random
v field which | i faG d
’g - field, called the Gaussian image of the translation field. For the
=\ ey orientation field this transformation is given by

Wi(x)=F; {P[Vi(0)T}=gilVi(x)] 9)

whereF; (-) is the inverse cdf of Euler angh; ; ®(-) is the
standard Gaussian cdf; and(x) is componeni of a Gaussian
random vector field which has mean zero, unit variance, and a

Fig. 10. Example Poisson—Voronoi tessellation with 100 grains and Lnatrix of normalized covariance functiogéd) which are defined

0.5

spatially invariant intensity y
Kikjtoiopij(d)
=1,... 1, has zero area and defines the network of cell, or grain, S )
boundaries. The polygons defined by the tessellation have straight . wgi(yl)gi(yZ)d’[yl’yz’gii(d)]dyldyz
edges and are convex. Use of the Voronoi tessellation as a model
for grain geometry implies the physical assumptions that grain (10)

growth initiates simultaneously at all nuclei and that grain growth

; . . ) where &(-,-;p) is the bivariate standard normal density function
is stationary and isotropic.

. . . . . with correlation coefficien§. The integral of Eq(10) is typically
Modeling of the nucleation points of the tessellation by a Pois- calculated by numerical integration. The scaled covariance matrix

son point field allows calibration of the average grain area to £(d) of the Gaussian imagé(x) of W(x) must usually be calcu-
experimental measurements and introduces uncertainty into thqated iteratively since Eq(10) givesp in terms ofg

grain geometry. A stationary Poisson point field is chosen since Simulation of random polycrystalline microstructures is ac-

the gxperlmental mgasurements show no .evlldence of SF.)‘E‘t'allycomplished by first generating a realization of the random grain
varying average grain size. The characteristics of a stationary

Poisson point field are determined completely by the intensity of geometry and then generating a realization of the orientation field
the field, denoted by.. The average number of grains in any conditional upon the sample grain geometry. This procedure is

sample is a Poisson random variable with ma#n whereA is now described for a two-dimensional domdin
P . . . Generation of the sample grain geometry is straightforward,
the area of the sample. Since the material sample has 120 graing

. . o d consists of the following steps:
in an area of 54Qum>540 ym, the intensity is calculated to be 1. Generate a realizatiom of the Poisson random variabh

120 grains . with meanN=NX\ [pdA.
A= (0540—mm2:412 grains/mrh (7 2. Generaten independent pointg;, i=1,...n uniformly
' distributed inD. These points serve as the grain nuclei.
A sample of the random grain geometry produced by the two 3. Calculate the Voronoi tessellation associated with the nuclei

part model of a Poisson point field for the grain nuclei and a G using existing algorithms such as tleggaull algorithm
Voronoi tessellation for the grains themselves is shown in Fig. 10. implemented inMATLAB
The sample domain i®=[0,0.5]2mm and the number of grains Generation of a realization of the orientation field, a vector

in this sample is 100. Comparison with Fig. 5 shows a qualitative random field, is complicated by the fact that the orientation field
similarity in the grain geometry although the Voronoi tessellation is characterized by discontinuities at the grain boundaries. Since
is not able to reproduce the anomalously large, concave grainsno currently available simulation methods are able to produce
seen in the actual material sample. such samples, a scheme is introduced which takes advantage of
the already created grain geometry sample. This approach as-
sumes that the orientation is constant within each grain. This as-
sumption reduces the problem of simulation of the orientation
The spatial variability of the crystallographic orientation suggests field to the generation of a sample of a vector of orientations, one
a random field as an appropriate probabilistic model. A vector for each grain.
random field which is stationary in its marginal distributions and Then orientations are generated at the geometric centroids of
second moment properties can be calibrated to the statistics estithe Voronoi cells, denoted , i=1, ... n. The centroids are not
mated for the experimental data. The vector random field is then necessarily coincident with the nuclgi, i=1, ... n. The orien-
W(%) tation fieldW(x), xe D is completgly defined by the sample grain

W(x)=| ¥a(x) ) geometry and the random vectdf which has components de-
W y(x) fined by
3

with marginal cumulative distribution functions shown in Fig. 8 Wi=¥,(C) (11)
and denoted by;(¥) i=1,2,3. Thespatial variation of the ori- - ~
entation field is characterized in second moment by the matrix Wni=¥2(G) 12)
covariance functionc(d) or the normalized matrix covariance - . ~ .
function p(d). The component normalized covariance functions Wansi=Ws(@), 1=1...n (13)
pij(d) are set equal to the best fit exponential decay functions of The correlation structure of this random vector is such that it has
Table 2. a scaled covariance matrix

Crystallographic Orientation
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‘;ll 612 f)l3 f t ? ? f f ? ? ? ‘
p=| P2 P2 P2 (14)
P31 P32 P33
Defining d;; =|¢;— ;|| to be the distance between the geometric

centroids ofp; andp;, the submatriceéij have componentsee
Table 2

6ij,pq:pij(dpq) (15)

The random vecto® is modeled as a translation vector whose

Gaussian imag®/ has scaled covariance matixgiven by Eq.

(10). )

Given this definition of the random vectdf the procedure for "’
generating a realization of the orientation field (onditional

upon a tessellation with graing, i=1,... ) L

1. Calculate the geometric centroiffs} of the grains; R RRRE

2. Calculate the grain separation distanfes}; t

3. Populate the scaled covariance maigpof the Gaussian  Fig. 11. Schematic illustration of example crack propagation prob-
imageV of ¥; . . lem. A polycrystal subject to uniaxial tension.

4. Generate a realization of by V=BZ where B is the
Cholesky decomposition cf andZ is a Gaussian random
vector with components that are independent identically dis-
tributed with mean zero and unit variance; and

5. TransformV into W by

fracture of the grain boundaries relative to the intragranular ma-
terial. Several general assumptions are made regarding the behav-
_ . ior of the crack, namely:

=1, 1si=n e The crack propagates only along the grain boundaries, that is,
\i,i:gj(\"/i) j=2, n+l<i<2n (16) it remains intergranular;

. . e The crack tip always proceeds in the direction of positiye

j=3, 2n+1<i=<3n .

e The crack does not branch; and

The realizatioms(x), xe D, of the orientation field is com- Propagation continues until the polycrystal is severed.
pletely defined, and is given by

Rd Crack Path Determination
W(x)= fl'"“ » XEDi 17 Since the crack is restricted to the grain boundaries, the problem
Yon+i of determining the trajectory is reduced to that shown in Fig. 12;

determination of which of two grain boundaries to proceed along

when the crack tip encounters a grain boundary junction, or triple
Intergranular Fracture point. In the figure, the crack tip is at the junction of the grain
The probabilistic model developed for the microstructure and ma- gﬂngﬁ{éisaif’piafg%?r\zwsr’eazh’eal:]:d%ré;ﬁeesﬁ ?;ae|r;%3r§ev?n_
terial properties of polycrystalline materials is not useful in an dicates a vector quantity. The grain boundary between grgins

_engineering context i.f it canno; _bg use_d to aid in Fhe solution of andp; is denoted byb;; and has associated with it a misorienta-
important problems in probabilistic micromechanics. One such tion angled;; which is the angle part of the axis/angle represen-

pr_oblertn |stthe|?eterrrllllnatlor|2 of tTﬁ picipagathtr)ll paths atnc_i ratets Ofta'[ion of the misorientation betweel andis; . The dashed line,
m|T:rost_ruc ur_le_lhy sma lcra_(; ssfuthj_ec otr):;los& Iy “”C‘?tr aljn fx_leg labeled homogeneous trajectory, indicates the trajectory along
nal actions. The complexity of this problem places IS detailed \pich the crack would propagate were it in a homogeneous con-

solution bey(_)nd the scope of this Paper. A simplified Version Of, tinuum subject to the remote uniaxial stressThe angle between
the problem is, however, addressed to indicate the possible appli-

cation of the probabilistic polycrystal model. It is recognized that

the assumptions made detract from the physical realism of the
analysis, yet, the solution does demonstrate the types of results
which can be obtained using simulation based on the probabilistic

polycrystal model.

Realizations of the random polycrystalline microstructure,
generated using the procedure described above, are now used in
an investigation of uncertainty in the trajectory of intergranular
microcracks. The problem analyzed is shown in Fig. 11, namely a
polycrystal subject to uniaxial tension with an initial edge crack
along one of the grain boundaries.

By limiting the crack to an intergranular trajectory the number
of possible crack trajectories is reduced from infinite to some
finite, tractable number. A key result of the limitation to inter- . ) .
granular cracks is that only the relative resistance to fracture of tion (tnpl_e poind, th_e crack must propagate along one of the candi-
the grain boundaries must be known, and not the resistance todate grain boundaries

Fig. 12. As an intergranular crack approaches a grain boundary junc-
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Fig. 13. Single realization of intergranular crack growth using both
the maximum misorientation and minimum deviation criteria. The
solid line corresponds to the minimum deviation criterion and the
dashed line to the maximum misorientation criterion.
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Fig. 14. Monte Carlo simulation of intergranular crack growth using
both the maximum misorientation and minimum deviation criteria

the homogeneous trajectory aid, is vy, and~y, is the angle Monte Carlo Simulation

between the homogeneous trajectory apsgl To investigate the propagation of uncertainty in the material mi-
While the grain boundary along which propagation occurs can crostructure to uncertainty in intergranular crack trajectories
be determined by energy considerations coupled with the prin- Monte Carlo simulation is performed on the problem described
ciples of linear elastic fracture mechani@rwade et al. 1998 above(see Fig. 11 Independent microstructural realizations are
the application of such a method requires extremely time consum-generated with the domain of the polycrystal beDg-[0,L]2.
ing finite element analysis and Monte Carlo simulation. As yet, an The crack is assumed to initiate at the grain boundary which
insufficient number of simulations have been made to allow any intersectsx; =0 with x, coordinate closest ta,=L/2, and the
conclusions to be drawn regarding the propagation of uncertaintycrack tip is advanced using either the minimum deviation or
through the system. maximum misorientation criterion until the crack tip encounters
Here, two mechanically simplified criteria are used to deter- X1=L. The Monte Carlo simulation provides independent realiza-
mine the crack propagation direction at grain boundary junctions. tions of the random crack paths, denotedd{x,). Fig. 13 shows
In the first, called the maximum misorientation criterion, the the crack paths determined for a sample microstructure using the
crack is assumed to propagate along the grain boundary WhichtWP criteria, illustrating the significantly different crack paths ob-
has the larger angle of misorientation, for example, albggin tained by the two methods. o o
Fig. 12 if 0,5>01,. In the second, the minimum deviation crite- Flg.. 14 shows 25 crack pgth real|zat|on§ for each crltgnon. The
rion, the crack propagates along the grain boundary which lies domain of the samples, with =500um, is D=[0,500° p.m
closest to the homogeneous trajectory. That is, the grain boundaryVith an average of 100 grains. Two adjustments are made to the
for which the angley is minimized, which, in Fig. 12 i®;, since crack pathf as presented in Fig. 13: the crack paths are normal-
v1<7,. These two criteria correspond, respectively, to the casesized using%; =x; /v/A and C(x,)=C(x;)/ VA, whereA is the
in which randomness in the crack trajectory is determined by average grain area, and the initial crack path is shifted so that
randomness in the material properties or the grain geometry. TheC(0)/\/A=>5. The normalization is applied so that statistics of the
maximum misorientation criterion is motivated by the observation crack paths can be computed nondimensionally and to neglect
that grain boundaries with a high misorientation tend to have uncertainty in the initiation site of the crack. The side by side
lower fracture toughneséKurishita et al. 1985; Li and Zhang comparison of crack paths obtained by the two different criteria
1995. The minimum deviation criterion is based on the intuition indicate that the minimum deviation criterion results in crack
that, for an edge crack under uniaxial tension, the energy releasg?@ths much closer to the homogeneous trajectory than those ob-
per unit crack extension is greater the closer to perpendicular tot@ined by use of the maximum misorientation criterion.
the applied stress is the angle of propagation. This observation is confirmed bX the statistics shown in Fig.
These two criteria are chosen in the belief that they represent15. The variance oE(x,) is linear inx, . The growth rates of the
extremes of the possible fracture behavior; the propagation de-
pending either entirely upon the local material propertiesxi-
mum misorientatio)) or the local grain boundary geometmini- 15
mum deviation. The physical reality likely is a combination of
these two effects. As a preliminary attempt to address these inter-
mediate cases, a mixed criterion is introduced. Define the quantity 10

max. misorientation
0.50

e —
B=W—— +(1—w) TmxY (18)

0 max Y max 5 min. deviation

SA(X)/A

wheref ,,,,~62° as given by the Mackenzie distributiRandle \

. 0.15
1993, vmax=90° since the crack must always propagate forward, o
andW is a weight factor. WheiwW=1 the maximum misorienta- 0 5 10 15
tion criterion is obtained, and whati=0 the minimum deviation WA

criterion is obtained if the crack is assumed to propagate in the . . . .
direction of greateB. Fig. 15. Growth of variance of the crack trajectories

20 25
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Maximum misorientation Minimum deviation It entails simply finding the value of the variance growth rate for
the desired value oV, and inserting this value into E¢R0).

This example illustrates the possibility of using Monte Carlo
simulation of microstructural evolution as a means of generating
statistics on microstructural features such as crack trajectories. If
sufficient confidence can be placed in the mechanics of the mod-
els used in the Monte Carlo simulation then direct probabilistic
modeling of the evolved microstructures may be possible, allow-
ing generation of sample microstructures at the desired stage of
evolution. While the mechanics of the crack propagation models
presented here are too simplified to offer such a claim to physical
reality, the example serves to illustrate the method and the poten-
Fig. 16. Realizations of crack trajectories generated from scaled tial usefulness of the described probabilistic model of polycrys-
Brownian motion model for intergranular cracks talline microstructures.

C(x/<A>'"?)

1/2

X/<A>

Conclusions
variance are 0.50 and 0.15 with respecixtofor the maximum
misorientation and minimum deviation criteria, respectively.

Some example calculations with the mixed criterion yield
some interesting preliminary results. Whev=0.75, the crack

A framework for the numerical simulation of polycrystalline ma-
terials is described. The grain geometry is modeled, in two dimen-
sions, by a Poisson—Voronoi tessellation in which the nucleation
path has a variance growth rate of 0.35, wiW¥r 0.5 the vari- phomts (.)f thi gralnls are represented bé/ z P(%lsson"pm?t f|(\9/|d and_
ance growh rate s 0.21, and whh=0.25 the variance growth 2 B8 RRer 8 P (R te i e GO e o
rate is 0.17. These variance growth rates, corresponding to inter- - : . " ) pabie
mediate values of the criterion weight, demonstrate the non"nearreproducmg grain structures which are |sotrop|q and .have station-
sensitivity of the variance growth rate to the weight, and also that ary average grain size. The_ madel presented is callbrate(_j to ex
the minimum deviation criterion appears to dominate for weights pirllrrrl]e.ntallmeasurehmgnts n terfmrs] of t.he aver.age}. ?ram Size,
close to 1. It is in this regime of intermediate weights that the true which is related to t M |nte_n5|ty o t_e Poisson point field.
behavior of intergranular cracks is expected to be found. Through Th‘? crystgllo_graphlc or|er_1tat|on IS mo_del_ed as a vector ran-
dom field which is calibrated in marginal distributions and second

the use of higher fidelity, but more time consuming mechanical . . L
models, future investigation will attempt to further explain the moment properties. Samples Of. the orientation f_|eld are gener_ated
behavior of intergranular cracks in this intermediate regime. by a memoryle;s trgnsformatmn of a Gausslqn random field
called a translation field. These samples statistically match the
experimental data in marginal distribution and second moment
properties.
An example application is presented in which realizations of

Probabilistic Model

The random nature of the crack paths generated by Monte Carlo

simulation, coupled with the observed linear variation of the

crack path variance suggests that a scaled Brownian motion ma)J . .
through the sample polycrystal is calculated by one of two crite-

be an appropriate model for intergranular crack trajectories. Let
the normalized crack be a random process defined by

the polycrystalline microstructure are analyzed for fracture sub-
ject to uniaxial tension. The trajectory of an intergranular crack

ria. The crack is assumed to propagate either along the grain

boundary with the largest misorientation—the weaker grain
boundary—or the grain boundary which is closest to the trajec-
tory the crack would take in a homogeneous continuum. The in-
clusion of material effects through the misorientation increases
Yhe variability of the crack trajectories. Preliminary investigation

g - of a mixed propagation criterion indicates that the behavior in the
has zero mean and variance \@fx)]=o%x; if var[C(0)]=0. mixed regime is nonlinear and complex. Further study is neces-

The parametets is determined to be/0.50 and\0.15 for the  sary in this regime to achieve physically realistic results.

cases of cracks whose trajectory is determined by the maximum  ysing Monte Carlo simulation of the intergranular cracks the

misorientation and minimum deviation criteria, respectively. crack trajectories were found to exhibit the linear increase of

To generate realizations of intergranular crack paths a step sizeyariance which is typical of a Brownian motion process. A scaled

AX, is selected which is equal to 1. An initial conditi@{0) is Brownian motion was shown to be a qualitatively good model for

chosen and the crack trajectory is generated by the forward dif-intergranular cracks with the scaling parameter dependent upon

ference equation the amount of material dependence. This model can be used to
~ ~ = efficiently generate realizations of microcracks which statistically
CXaj+1)=Cx)) + (o VAXDA, (20) match the cracks generated by Monte Carlo simulation. The ex-

where {A;} are independent standard normal Gaussian randomample has demonstrated the possibility of using numerical simu-

variables. Samples of this process are shown in Fig. 16 for bothlation to calibrate probabilistic models for materials at evolved

values of the calibration parameter. The sample trajectories bear astates.

qualitative resemblance to the simulated trajectories of Fig. 14

and match the linear growth of variance. The process can then beNotation

rescaled to actual units t@(x)=C(x/\/K)\/K. This simulation

method can as well be applied to generate crack trajectories cor-The following symbols are used in this paper:

responding to the mixed propagation criterion introduced earlier. A = average grain area;

C(Xy)=0B(Xy) (19)

whereB(X;) is a standard normal Brownian motion process, that
is, a Gaussian process with stationary independent increment

such thatB(u+h)—B(u), h>0_is N(0,h). The proges:f:(il)
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A = grain area,
B = network of grain boundaries;
_ bjj = grain boundary betweep; andp;;
C(-) = normalized crack trajectory;
C(-) = crack trajectory;
¢ = covariance function ofl’;
G = grain centroids;
¢ = grain nuclei;
¢ = estimates of covariance functions;
cij = covariance functions;
D = polycrystal domain;
d = separation distance;
d¢ij = correlation lengths;
E[-] = expectation operator;
€ = unit vector;
Fi(-) = cumulative distribution function o¥; ;
n = unit vector;
pi; = estimates of normalized covariance functions;
p; = Voronoi polygon;
V = Gaussian random vector;
z, = orientation measurement points;
aq,0p, = parameters of gamma distribution;
B = Cholesky decomposition gf;
I'(-) = gamma function;
vij = angle betweetp;; and homogeneous crack
trajectory;
v3 = skewness;
v4 = Kkurtosis;
AX = crack growth increment;
0;; = misorientation angle between grainand
j (rad);
N = Poisson point field intensity;
ki = mean ofV;;
& = scaled covariance of Gaussian imagelof
p = scaled covariance function &¥F;
o = scaling parameter for Brownian motion crack
model;
o; = standard deviation o¥; ;
T = applied stress;
®d(-) = standard normal cdf;
&(-,-;p) = bivariate Gaussian pdf with correlatign
(dbq1,P,d,) = Euler angles, standard notatiomd);
W = orientation random field; and
(U1,0,03)= Euler angles, notation used in current paper
(rad).
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