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Abstract

A new method for approximate solution of mechanics problems is presented that uses a classifier to identify regions in a random het-
erogeneous material where stress is likely to be highly concentrated under a prescribed set of boundary conditions. The example problem
studied is an aggregate of hexagonal grains, each modeled as orthotropic and linear elastic, and subject to uniaxial extension. It is shown
that the Sobol’ decomposition can be used to determine which surrounding grains mechanical properties play the largest role in deter-
mining the average effective stress in any particular grain. It is also shown that the constituent functions of the Sobol’ decomposition
determine a unique material pattern that corresponds to maximum stress concentration. A reduced order representation of the micro-
structure is developed that is in essence a projection of the microstructure description onto the material pattern. Finally, a classifier is
developed that operates on this reduced order representation to predict the level of stress concentration. This classifier is shown to be
over 90% accurate, and, when implemented in a moving window algorithm, to provide very good predictions of the subregions in a large
microstructure where large stress concentration is likely.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

The simulation of deformation fields in random hetero-
geneous materials receives ever increasing attention as engi-
neers become more desirous of methods for accurately
predicting structural failure modes and designing materials
with specific properties. While the majority of research
directed at this goal emphasizes the development of solu-
tion, or multiscale techniques that allow the more accurate
simulation of the response of larger volumes of material,
the goal of this work is to develop a new method for iden-
tifying locations within large, random, and heterogeneous,
solid bodies, that are likely to be sites of stress localization.
This new method, based on pattern recognition and classi-
fication, does not rely on discretization of the governing
equations or the solution of large systems of equations,
but delivers approximate predictions of likely localization

sites. This method may prove particularly useful within
the context of large scale computational approaches by
providing guidance as to where in a random heterogeneous
body computational resources should be allocated.

Due to the spatial heterogeneity of material properties in
polycrystalline materials, analytic solutions for the
mechanical response to loads can be obtained only for very
specialized cases, such as a single ellipsoidal crystal embed-
ded in an infinite homogeneous medium [1,2] or planar
polycrystals with only two slip systems [3]. It is possible
to build up approximate solutions for the response of poly-
crystals using superposition of these analytic solutions, but
the approximation is typically large enough that the solu-
tions are only useful for qualitative studies. At this time,
the only practical alternative approach to determining
polycrystal response is the finite element method [4,5], in
which the crystalline geometry is represented explicitly,
and appropriate constitutive models such as anisotropic
elasticity or singly crystal plasticity are implemented. While
such simulations provide high fidelity predictions of the
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response—the stress field for example—the calculations for
all but the smallest polycrystals are very time consuming,
and even generating high quality meshes for random poly-
crystalline geometry is a significant challenge. An alterna-
tive to these two approaches is to concentrate on the
bulk, or homogenized, polycrystal response. An example
of this approach is the construction of finite element mod-
els of the orientation space [6,7]. Here, the three-dimen-
sional region in which the orientation distribution
function (ODF) is defined is discretized into finite elements.
The finite element method is used here not to solve the par-
tial differential equations of continuum mechanics, but
rather the equations governing the evolution of the ODF
in response to inelastic material deformation. This
approach has the advantages that the discretized domain,
representing the ODF rather than the solid body, does
not deform, and is relatively compact, so that the total
number of degrees of freedom is not large, and does not
increase with the size of the polycrystal being modeled.
The results of finite element calculations of ODF evolution
are particularly useful in material processing contexts,
when the goal is typically to control the bulk material prop-
erties. All information regarding the local arrangement of
grains in the polycrystal is lost, however, when the problem
is transformed to the orientation space, and therefore the
method is not appropriate for studying localization phe-
nomena. Some attempts have been made to develop
approximate methods for mechanics analysis. Two relevant
examples, upon which this work builds, rely on the devel-
opment of fracture mechanics-based heuristics for crack
propagation [8], or the applications of pattern recognition
to the mechanics of particle–reinforced composites [9].

This paper describes a new method for studying locali-
zation in heterogeneous polycrystals based on pattern rec-
ognition and classification techniques primarily developed
by computer scientists for use in such applications as face
identification. The goal is to identify sites within a hetero-
geneous polycrystal where localization is likely to occur
without the use of intensive finite element analysis. In the
example application shown here, the polycrystal is assumed
to be two-dimensional, each grain is assumed hexagonal,
and orthotropic elasticity is assumed within each grain.
Localization is taken to mean effective stress concentration
within a grain above a threshold effective stress under uni-
axial extension. The proposed method can be outlined by
the following steps:

(1) Generate random, independent training samples,
which are polycrystals that contain a relatively small
number of grains, but the size of which is equal to the
length scale at which intergranular interactions die out.

(2) Use finite element analysis or some other high fidelity
analysis technique to determine the state of stress in
these training samples.

(3) Identify patterns in the arrangement of crystal orien-
tations that result in highly concentrated effective
stress in the central grain of the training samples.

(4) Reformulate these patterns as basis vectors for a new
space in which polycrystals of the same size as the
training samples can be represented. This space is
called the microstructural feature space.

(5) Derive a classifier in the microstructural feature space
for predicting, based on the arrangement of crystal
orientations, the degree of effective stress concentra-
tion in the central grain.

(6) Implement a moving window technique using the
derived classifier to identify sites of likely effective
stress concentration in a large polycrystal.

The novelty in this approach comes from the reduced
order representation of the microstructure made possible
by the basis function derivation (step 4), the application
of classifier techniques to mechanics problems (step 5),
and the use of a modified version of the Sobol’ decomposi-
tion of a function of random variables [10,11] to identify
the relevant microstructural patterns (step 3).

The presentation of this new method for micromechan-
ics analysis begins with the detailed problem statement.
Following is the description of training sample generation
and pattern identification using the Sobol’ decomposition,
which patterns are used in the reduced order description of
the polycrystalline microstructure. Next, the classifier is
developed that predicts the degree of effective stress con-
centration, and finally this moving window classification
technique is applied to an example polycrystalline micro-
structure, showing excellent results when compared to a
reference finite element simulation.

2. Problem statement and definitions

Consider a two-dimensional polycrystal in which all the
grains are regular hexagons of uniform size. A linear elastic
orthotropic material model is selected for the intragranular
material, with a single angle h defining the orientation of
the crystal principal material axes relative to a reference
coordinate system [12–14]. The periodicity of the orthotro-
pic material model, in which Ex ¼ Ey , requires only that
this orientation angle be defined on the interval
½0; p=2Þ � ½0; 90�Þ. For illustrative purposes, the properties
of single crystal copper are selected with

C11 ¼ 168; 000 MPa; C12 ¼ 121; 400 MPa;

C44 ¼ 75; 400 MPa: ð1Þ

The polycrystal is subject to uniaxial extension in the glo-
bal y-direction. This displacement field is applied through
the use of periodic displacement boundary conditions on
the boundary of the polycrystal. Fig. 1 shows an example
polycrystal where the greyscale represents the orientation
angle.

The deformation field, applied through the displacement
boundary conditions on the polycrystal, generates a heter-
ogeneous stress field rðxÞ throughout the polycrystal. Spa-
tial heterogeneity of the stress field is induced by variation
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of the orientation angle among grains, and, by extension,
spatial heterogeneity of the material constitutive matrix.
Define for each grain in the polycrystal an average effective,
or von Mises, stress si ¼ �reff ;i ¼ 1

A

R
Gi

reffðxÞdA, where Gi

represents grain i, reffðxÞ is the effective, or von Mises stress
at location x 2 Gi, and A is the area of Gi. The average
effective stress for each grain is the response of interest in
this work. Note that this definition neglects variation of
the stress field within individual grains, and also does not
capture the large stress concentrations—even singulari-
ties—that can occur due to the elastic mismatch at grain
boundaries. Because the goal of this work is to identify
the location of stress concentration only within approxi-
mately one grain diameter, however, these smaller scaler
fluctuations can be ignored. It would, however, be straight-
forward to address these smaller scale fluctuations without
making major changes to the method. Given this statement
of the problem geometry, material model, and boundary
conditions, the goal is to use pattern recognition and a clas-
sifier to predict which grains in a large polycrystal will meet
the condition si > s�, where s� is a threshold stress level.
These sites are closely related to the locations where dam-
age could be expected to occur in the polycrystal if a stress-
based damage criterion is appropriate.

3. Generation of training data and classifier definition

The classifier introduced in this section attempts to con-
nect the average effective stress in a grain to the orienta-
tions of its neighbor grains under a specified set of
boundary conditions as described above. In order to iden-
tify mechanically relevant patterns in the microstructure,
and train the classifier, a set of training data is required.
In this case, a training sample is an aggregate of a relatively
small number of grains for which the stress state resulting
from the imposed boundary conditions has been deter-
mined by a high fidelity simulation (FEA for example).
The training samples used here consist of aggregates of

61 grains (Fig. 2) in which the orientations are indepen-
dently generated, and uniformly distributed in ½0; p=2Þ.
The size of the training samples is guided by the exact solu-
tions for a circular orthotropic inclusion in an infinite med-
ium, which shows that the local interactions become
insignificant over a distance approximately equal to four
times the inclusion diameter. Therefore, the training sam-
ples are large enough to include the fourth nearest neigh-
bors of the central grain.

To make the generation of training samples somewhat
more efficient, the stress fields in 100-grain polycrystals
are calculated using a high fidelity simulation. In this case,
a triangular spring network model with material properties
calibrated to the orthotropic crystal properties is used,
rather than a continuum finite element model. The density
of the spring network is such that each grain contains
approximately 100 elements, providing sufficient resolution
of the state of stress within each grain. From this 100-grain
aggregate, four 61-grain training samples are extracted.
These four training samples overlap to some degree, mean-
ing that the training samples are not independent from one
another. This effect is considered to be small, however,
since a total of 15,968 61-grain training samples are gener-
ated from 3992 100-grain aggregates.

The training samples provide samples of the microstruc-
tural response function s1ðh1; h2; . . . ; h61Þ which gives the
average effective stress in grain 1 as a function of the orien-
tation angles in grain 1 and its 60 nearest neighbors. The
high dimensionality of the space in which the microstruc-
tural response function is defined precludes the develop-
ment of an efficient classifier or the use of response

Fig. 1. Two-dimensional material model for the polycrystalline micro-
structure. Each grain is represented by a regular hexagon and orientations
for grains are independent and shown by greyscale.
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Fig. 2. Sixty-one-grain polycrystalline aggregate showing grain number-
ing scheme and remote boundary conditions.
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surface type approaches. Therefore, as a preliminary to the
development of a classifier for the average effective stress, a
procedure is introduced for identifying mechanically mean-
ingful patterns in the microstructure. These patterns are
then used to form a reduced order description of the micro-
structure of dimension small enough that efficient classifi-
cation is possible. In this application, the pattern
identification is made using the Sobol’ decomposition of
a function of many random variables, and consists of (1)
the identification of the subset of the 60 nearest neighbor
grains the orientation of which significantly affects the
magnitude of s1 and (2) the orientation values in these
grains that tend to result in elevated values of s1. Here,
one pattern, corresponding to elevated s1 suffices, and so
the reduced order microstructural description is one-
dimensional, and the resulting classifier is a very simple
one, with one node and two leaves. If the reduced order
description is given by aðh1; h2; . . . ; h61Þ, then the classifier
can be expressed as

CðaÞ � Cðh1; h2; . . . ; h61Þ ¼
critical

non-critical

�
ð2Þ

where ‘critical’ is interpreted to mean that the condition
s1 > s� is met, and ‘non-critical’ is complementary to this
definition. The approximation results because, as will be
seen in the following sections, the inverse mapping from
the reduced order description a to the full representation
ðh1; h2; . . . ; h61Þ is not unique.

4. Pattern extraction using the Sobol’ representation

The microstructure response function sðh1; h2; . . . ; h61Þ
can be viewed as a function of 61 random variables that
are, in this case, independent. Note that the subscript on
s has been dropped since hereafter only the stresses in the
central grain of a 61-grain neighborhood are of interest.
The challenge in identifying a mechanically relevant pat-
tern among these 61 variables consists of both identifying
which of the variables should be considered part of the pat-
tern, and what values they take. Here these twin goals are
accomplished through a novel application of the Sobol’
decomposition of multivariate functions [10,11]. A review
of this decomposition is first given, followed by an exten-
sion to make it useable in the current context, and finally
it is shown how the Sobol’ indices can be used to select
the subset of important input variables, and the Sobol’
functions used to set the values of those variables.

4.1. Sobol’ representation and Sobol’ indices

This section presents a brief overview of the relevant fea-
tures and definitions of the Sobol’ decomposition. The
details underlying these statements are to be found in
[10,11]. Consider a square integrable scalar function
y ¼ f ðxÞ of n input random variables contained in

x 2 Un, where Un is the unit hypercube, and the elements
of x are assumed to be independent.

The Sobol’ representation of f ðxÞ is

f ðxÞ ¼ f0 þ
Xn

m¼1

X
i1<���<im

fi1���imðxi1 ; . . . ; ximÞ ð3Þ

¼ f0 þ
Xn

i¼1

fiðxiÞ þ
X
i<j

fijðxi; xjÞ

þ � � � þ f12���nðx1; . . . ; xnÞ:

The terms of this expansion are defined so that

f0 ¼
Z

Un
f ðxÞdx ð4Þ

is the mean value of f ðxÞ,

fiðxiÞ ¼
Z

Un�1

f ðxÞ
Y
p 6¼i

dxp � f0 ð5Þ

are the first order terms, obtained by integration with re-
spect to all but one of the variables, and

fijðxi; xjÞ ¼
Z

Un�2

f ðxÞ
Y
p 6¼i;j

dxp � fiðxiÞ � fjðxjÞ � f0 ð6Þ

are the second order terms, obtained by integration over all
but two of the variables. The higher order terms are defined
analogously. The Sobol’ decomposition has many useful
properties that are defined in detail in the references, but
are peripheral to the application described here, and so
are omitted. Only those properties made use of herein are
now described.

Considering, as defined above, that the elements of x are
independent, the variance of f ðxÞ is

D ¼
Z

Un
f 2ðxÞdx� f 2

0 ; ð7Þ

which can be decomposed into partial variances

D ¼
Xn

m¼1

X
i1<���<im

Di1���im ð8Þ

¼
Xn

i¼1

Di þ
X
i<j

Dij þ � � � þ D12���n ð9Þ

in which the individual terms follow the definition

Di1���im ¼
Z

Um
f 2

i1���imðxi1 ; . . . ; ximÞdxi1���xim : ð10Þ

The Sobol’ indices are the partial variances expressed as
fractions of the total variance, namely,

Si1���im ¼ Di1���im=D: ð11Þ
These indices quantify the contribution to the total vari-
ance of the individual input variables and all possible com-
binations of input variables.

1400 L. Tan, S.R. Arwade / Comput. Methods Appl. Mech. Engrg. 197 (2008) 1397–1409



Author's personal copy

4.2. Extension of Sobol’ representation

In the problem addressed here, f ðxÞ is replaced by
sðh1; h2; . . . ; h61Þ, where the input variables are the material
orientations of the grains. This microstructural response
function is decomposed into its constituent Sobol’ func-
tions, and the corresponding Sobol’ indices are calculated.
The Sobol’ indices define which of the 61 orientation vari-
ables should be retained in a reduced order description of
the microstructure, and the Sobol’ functions define the val-
ues of these variables that will be used in defining a pattern
corresponding to microstructure criticality, that is, elevated
effective stress in the central grain.

A small modification is required to apply the Sobol’
decomposition to this problem because the orientations
are not uniformly distributed in the unit hypercube.
Rather, the orientations fhig are uniform on the interval
½0; p=2Þ, and are independent. Extending the Sobol’ decom-
position to account for this change in input variable distri-
bution is straightforward, and the key steps are given here.

The microstructure response function can be written

s ¼ s
p
2

y1;
p
2

y2; . . . ;
p
2

y61

� �
ð12Þ

¼ f ðy1; y2; . . . ; y61Þ

by using the change of variables yi ¼ 2hi=p, resulting in
yi � Uð0; 1Þ.

The Sobol’ representation of s is, therefore,

s ¼ f ðy1; y2; � � � ; y61Þ ð13Þ

¼ f0 þ
X61

m¼1

X
16i1<���<im661

fi1���imðyi1 ; . . . ; yimÞ

¼ s0 þ
X61

m¼1

X
16i1<���<im661

si1���imðhi1 ; . . . ; himÞ; ð14Þ

where

s0 ¼ f0

¼
Z

U61

f ðy1; y2; . . . ; y61Þ
Y61

j¼1

dyj ð15Þ

¼
Z

p
2Uð Þ61

sðh1; h2; . . . ; h61Þ
2

p

� �61Y61

j¼1

dhj

¼ Eh1h2���h61
½sðh1; h2; . . . ; h61Þ	 ð16Þ

and

siðhiÞ ¼ fiðyiÞ ð17Þ

¼
Z

Un�1

f ðxÞ
Y
p 6¼i

dyp � f0

¼
Z

p
2Uð Þn�1

sðhÞ 2

p

� �60Y
p 6¼i

dhp � s0

¼ Eh1h2���hi�1hiþ1���h61
½sðh1; h2; . . . ; h61Þ	 � s0:

The second order terms are given by

sijðhi; hjÞ ¼ Eh1���hp ���h61

p 6¼i;j

½sðh1; h2; . . . ; h61Þ	 � siðhiÞ � sjðhjÞ � s0:

ð18Þ

In the above expressions, E½�	 is the expectation operator
and ðp

2
UÞn is a hypercube of dimension n with side length

p=2. These expressions make clear that the integrals used
in defining the Sobol’ decomposition are simply expecta-
tions. When the input variables are uniform, but defined
on an interval other than ½0; 1Þ, the marginal probability
density functions must appear explicitly in the integral
expressions. The use of the expectation notation provides
a simple way to write the variance, partial variances, and
Sobol’ indices for the microstructure response function,
namely,

D ¼ Eh1���hp ���h61
½s2	 � s2

0; ð19Þ
Di1���im ¼ Eh1���hm ½s2

h1���hm
	;

Si1���im ¼ Di1���im=D:

These definitions apply as long as the input variables are
uniform and independent. When the variables are depen-
dent, or non-uniform, further modifications to the Sobol’
decomposition are required. This extension is a topic of
current research by the authors.

4.3. Calculation of Sobol’ quantities by Monte Carlo

simulation

The analytic expressions for the Sobol’ functions and
indices rely on integration of the microstructure response
function. In the current application, the form of
sðh1; h2; . . . ; h61Þ is not known. The integrals needed to eval-
uate the Sobol’ functions and indices are therefore com-
puted by Monte Carlo simulation using the training data
described above. Only the first order terms of the decompo-
sition are calculated here, and it is shown in the following
sections that this is sufficient to identify the mechanically
relevant pattern in the material microstructure.

The training set consists of N samples, for each of which
the spring network analysis provides a single evaluation

sðjÞðhðjÞ1 ; h
ðjÞ
2 ; . . . ; hðjÞ61 Þ, which is the average effective stress

in grain 1 of training sample j. These data points provide
the first order Sobol’ functions according to

s0 ¼
1

N

XN

j¼1

sðjÞðhðjÞ1 ; h
ðjÞ
2 ; . . . ; hðjÞ61 Þ

siðĥkÞ ¼
1PN

j¼1I ½ĥk�Dh6hðjÞi <ĥkþDh	

XN

j¼1

I ½ĥk�Dh6hðjÞi <ĥkþDh	

sðjÞðhðjÞ1 ; h
ðjÞ
2 ; . . . ; hðjÞn Þ � s0 ð20Þ

in which I ½�	 is an indicator function, and fĥkg are a set of
Nk values evenly spaced in the interval ½0; p=2Þ at which
the first order Sobol’ functions are estimated. The variance
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and partial variances of the microstructure response func-
tion are calculated by

D ¼ 1

N

XN

j¼1

sðhðjÞ1 ; h
ðjÞ
2 ; . . . ; hðjÞn Þ

2 � s2
0;

Di ¼
1

Nk

XNk

k¼1

siðĥkÞ2: ð21Þ

In the current example, the number of training samples is
N ¼ 15; 968, and the number of orientation intervals is
Nk ¼ 90, yielding Dh ¼ p=180 and ĥk ¼ kp=90þ p=180;
k ¼ 0; 1; . . . ; 90.

4.4. Pattern identification using the Sobol’ decomposition

The symmetry of the grain geometry in the example
problem is exploited to effectively increase the number of
training samples and thereby reduce the estimation error
inherent in the evaluation of expressions (20) and (21).
Define a 19-grain model according to Fig. 3 with orienta-
tions denoted by fh�i g with i ¼ 1; 2; . . . ; 19. By using the
orientations of the 19-grain model, a four-fold increase is
achieved in the number of training samples available for
evaluation of s�i ðh

�
i Þ for i ¼ ½2; 5; 6; 8; 9; 10; 11; 14; 15; 16;

17; 18	 (group 1), and a two-fold increase for
i ¼ ½3; 7; 12; 19	 (group 2) and i ¼ ½4; 13	 (group 3). The
number of samples available when i ¼ 1 is unchanged.
Problem symmetry dictates the following example relation-
ships: h�2 � h2 � p=2� h4 � h5 � p=2� h7 for group 1;
h�3 � h3 � h6 for group 2; h4 � h8 � p=2� h14 for group 3.

It is emphasized that the symmetry referred to above is
not present in the actual material properties. For example,
in a given training sample, h1 6¼ h6, so that the symmetry
referred to is not the classical symmetry of mechanics in
which only a single quadrant of a doubly symmetric
domain with doubly symmetric boundary conditions must
be analyzed. What is taken advantage of in this application
example is simply the symmetry in the grain geometry. For
example, intuition suggests that h2 and h5 should have the
same influence on s, and that the values of h2 and h5 that
maximize s should be equal. Preliminary analysis not
shown here indicates the validity of this intuition, in that

s2 � s5, and s2ðh2Þ � s5ðh5Þ. Thus, the symmetry used here
results simply in an increase in the number of samples
available for estimating the Sobol’ indices and functions,
and does not impose or presuppose any constraints on
the deformations or arrangement of material properties
in the polycrystal. If the geometric symmetry of the grains
is broken, by, for example, the introduction of spatially
varying grain size, the only modification to the procedure
described here is that more training samples must be gener-
ated to estimate the Sobol’ indices and functions.

Using expressions (20) and (21), modified appropriately
to take advantage of the symmetry expressions above, the
first order Sobol’ functions and indices are estimated from
the training samples. Each of these functions
s�i ðh

�
i Þ; h�i 2 ½0; p=2Þ represents, approximately, the depen-

dence of the microstructural response sðh1; h2; . . . ; h61Þ on
each of the individual input variables, making use of the
symmetry relationships above so that, for example,
s2ðh2Þ � s4ðp=2� h4Þ � s5ðh5Þ � s7ðp=2� h7Þ � s�2ðh

�
2Þ, and

likewise for the other groups of grains. The Sobol’ indices
require no transformation so that S2 ¼ S4 ¼ S5 ¼ S7 ¼ S�2,
and likewise for the other groups. Table 1 shows the full
set of equivalences between the 19- and 61-grain models.

Fig. 4 shows the Sobol’ indices calculated for the 19-
grain model. Note that log10ðS�i Þ is shown because of the
very large range of magnitudes of S�i . These results quantify
the intuitive prediction that the orientation of grains close
to the center of the neighborhood, and aligned with the
global y-axis (the loading axis) have more effect on the state
of stress in the central grain. For example, S�7 
 S�4, even
though they are both second nearest neighbors to grain
1, and S�2 
 S�19 although they both lie along the global
y-axis. Also, since

P19
i¼1S�i � 1, it is confirmed that the 61-

grain model, represented here by the 19-grain model, con-
tains a sufficient volume of material to capture nearly all of
the heterogeneity of material properties that influence the
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Fig. 3. Nineteen-grain polycrystalline aggregate derived using symmetry
conditions on 61-grain aggregate.

Table 1
Correspondence between 19-grain model and 61-grain model

Equivalent grain of 19-grain model Grains of 61-grain model

1* 1
2* 2 4 5 7
3* 3 6
4* 8 14
5* 9 13 15 19
6* 10 12 16 18
7* 11 17
8* 20 28 29 37
9* 21 27 30 36
10* 22 26 31 35
11* 23 25 32 34
12* 24 33
13* 38 50
14* 39 49 51 61
15* 40 48 52 60
16* 41 47 53 59
17* 42 46 54 58
18* 43 45 55 57
19* 44 56
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stress state in the central grain. It is possible to identify
within Fig. 4 five groups of grains with similar Sobol’ indi-
ces, and that have Sobol’ indices substantially larger than
for grains not in one of these five groups. These groupings
are identified visually, and are denoted the first through
fifth geometric patterns of the microstructure where the
numbering is applied in decreasing order of Sobol’ index
magnitude. The inset figures show the locations of the
grains in each of the five groups, and Fig. 5 shows how
the five groups of grains are arranged in the 61-grain neigh-
borhood, along with the limiting values of S�i for each of
the groups. Note that while the patterns agree with intui-
tion in a general way, their determination via the Sobol’
indices is systematic, could be readily applied to more sub-
tle problems, and provides some results that are not imme-
diately obvious. For example, intuition may not lead an
analyst to conclude that h�2 and h�7 are very nearly equally

important in controlling the central grain stress state. Table
2 shows which grains of the 19-grain and corresponding 61-
grain model are involved in each of the geometric patterns
using a notation in which the sets of grains in the micro-
structural patterns are denoted by Ik � f1; 2; . . . ; 61g. For
example, I2 ¼ f3; 6g and I4 ¼ f23; 24; 25; 32; 33; 34g.

Having used the Sobol’ indices to identify the grains that
contribute significantly to determining the state of stress in
the central grain, and assigning these grains to groups, or
geometric patterns, based on the magnitude of their influ-
ence on s, the first order Sobol’ functions corresponding
to the orientation of these grains are used to determine
the values that will form the pattern of material properties
used in classification. Fig. 6 shows the estimated Sobol’
functions for 4 of the orientations in the 19-grain model.
For each Sobol’ function there exists a unique
h�i;max 2 ½0; p=2Þ satisfying

h�i;max ¼ arg maxh�i 2½0;p=2Þ½s�i ðh
�
i Þ	: ð22Þ

These are the values of the grain orientations in the
19-grain model that tend to increase s. These stress maxi-
mizing orientations are shown in Fig. 7. The orientations,
combined with the geometric patterns described above,
form a set of five microstructural patterns f/ig that are
related to the state of stress in the central grain. It is
emphasized that these patterns have been determined in a
systematic way by analyzing the microstructure response

Fig. 4. Sobol’ indices for orientations of the 19-grain model. Darkened
grains in the insets indicate the locations of the grains with relatively large
Sobol’ indices. All of the grains for which log Si > �2 are selected as
significant to determining the stress in the central grain, and are separated
into five groups, or patterns. The groups are chosen based on clustering of
the Sobol’ indices.

1st, -0.75 < log(Si)

2nd, -1.25 < log(Si) < -0.75

3rd, -1.60 < log(Si) < -1.25

4th, -1.85 < log(Si) < -1.60

5th, -2.00 < log(Si) < -1.85

Geometric Patterns

Fig. 5. Geometric patterns in 61-grain model. Greyed grains are those for
which logðSiÞ > �2, indicating a significant influence on the stress of the
central grain. The grey scale corresponds to the magnitude of the Sobol’
indices so that the darker grains have larger influence on the stress in the
central grain.
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Fig. 6. Six first order terms of Sobol’ representation. Points are estimated
from training data and solid lines are the best fit trigonometric functions.

Table 2
Grains involved in geometric patterns

Rank Constituent grains from
19-grain model

Constituent grains from 61-grain
model (Ik)

1 1* 1
2 3* 3,6
3 2*,6*,7* 2,4,5,7,10,11,12,16,17,18
4 11*,12* 23,24,25,32,33,34
5 18*,19* 43,44,45,55,56,57
6 Other Other

L. Tan, S.R. Arwade / Comput. Methods Appl. Mech. Engrg. 197 (2008) 1397–1409 1403



Author's personal copy

function using the Sobol’ decomposition. This procedure
can be readily extended to more complicated microstruc-
tures or general stochastic mechanics problems. In the fol-
lowing sections the microstructural patterns are used to
form a reduced order description of the microstructure,
and this reduced order description is then used in a classi-
fication scheme that predicts the stress state in a grain with-
out the need for a high fidelity mechanics simulation.

In summary, the patterns that are used to perform clas-
sification consist of two parts, the geometry, or location of
the contributing grains, and the material properties, or
grain orientations that maximize the central grain stress
s. The geometric part of the pattern is found using the
Sobol’ indices, and the material property part is found
using the Sobol’ functions. In this particular application,
the pattern is divided into five sub-patterns, or groups, so
that different weights can be assigned to input variables
(grain orientations) with different magnitudes of influence
on the central grain stress s.

5. Classification of the microstructural response

The results of the previous section are used to develop a
reduced order description of the 61-grain microstructural

model. A classifier is then developed that operates on this
reduced order description to provide predictions of
sðh1; h2; . . . ; h61Þ.

5.1. Reduced order microstructural representation

The raw representation of the 61-grain microstructure is
simply the 61 dimensional vector of orientations in each of
the grains ½h1; h2; . . . ; h61	. Here, the reduced order repre-
sentation is defined as

½w1;w2; . . . ;w5	 ¼ Cðh1; h2; . . . ; h61Þ: ð23Þ

The elements on the left-hand side of Eq. (23) represent
projections of the orientations fh1; . . . ; h61g onto the micro-
structural patterns f/1; . . . ;/5g and form the coordinates
of a five-dimensional representation of the 61-grain model.
The function Cðh1; h2; . . . ; h61Þ represents a form of projec-
tion of the 61 orientations onto the five microstructural
patterns that is not a standard vector projection, but is spe-
cially defined here in response to the form of the 61 input
variables and the microstructural patterns. The mapping
from the 61 to five-dimensional spaces represented by
Cðh1; h2; . . . ; h61Þ is many-to-one, meaning that any attempt
to classify the microstructural response using the reduced
order coordinates ðw1; . . . ;w5Þ will be approximate.

The definition of the dimension reduction projection of
Eq. (23) is constructed using a complex transformation of
the raw microstructural variables fhig that accounts for
the p=2 periodicity of the orientation. Define

GðhiÞ ¼ eið4hiÞ; ð24Þ

where i ¼
ffiffiffiffiffiffiffi
�1
p

when not appearing as an index. This trans-
formation overcomes the difficulty, among others, that the
interval ½0; p=2Þ is not closed to addition and subtraction
operations. This complex transformation of the orientation
angles allows a straightforward definition of the projection
operation needed to calculate Eq. (23). The projection of
the vector of orientations ½h1; h2; . . . ; h61	 onto the micro-
structural patterns is defined by

wjðh1; h2; . . . ; h61Þ ¼ Re
X
k2Ij

e�4ihk;max � e4ihk

( )
; ð25Þ

providing a scalar measure of how close the actual orienta-
tions are to the maximizing orientations. The quantities wj

are maximized when the orientations in a particular aggre-
gate of grains exactly match the pattern that maximizes
stress, namely that shown in Fig. 7. Conversely, they are
minimized when the orientations differ from those shown
in the pattern by p=4. Because the material is orthotropic
with a constitutive matrix that is unchanged by rotations
of multiples of p=2, this projection effectively measures
how close the stiffnesses of the grains in an aggregate are
to the stiffnesses of the grains in the pattern. Results shown
later (Fig. 8) demonstrate that the response increases
monotonically, in an average sense, with the parameters wj.

Fig. 7. Grain orientations hi;max that maximize the corresponding first
order Sobol’ functions.
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It would be possible to develop a classifier for s in the
five-dimensional space defined by the pattern projection
coefficients fwig. Here, however, the coefficients are further
combined to provide a single scalar measure of the proxim-
ity of the microstructure orientations to their maximizing
values. This further dimension reduction is accomplished
by a weighted sum of the individual pattern projection
coefficients, namely,

ak ¼
Xk

j¼1

wjwj; k ¼ 1; . . . ; 5: ð26Þ

Here, the weights are denoted by fwjg, and the parameter k

controls how many of the microstructural patterns partici-
pate in determining ak. If k is larger, more grain orienta-
tions are considered in the calculation. The weights are
determined according to

wj ¼
1P61

i¼1I ½i2Ij	

X61

i¼1

I ½i2Ij	
ffiffiffiffi
Si

p
ð27Þ

representing the average square root Sobol’ index for all
the grains in microstructural pattern j. Thus, the patterns
containing grains that are more important in determining
s, the average effective stress in the central grain, also play
a large role in determining the value of ak, the scalar repre-
sentation of the microstructural orientations.

Fig. 8 shows the average effective stress in the central
grain of the training samples plotted against ak. From the
definition of ak and consultation with the figure, one can
see that large values of ak derive from microstructures with
orientations that are close to the maximizing microstruc-
tural patterns, and, therefore, correspond to elevated val-
ues of s. Also, the scatter in the relationship between ak

and s decreases substantially as k increases, reflecting the
inclusion of additional microstructural information in the
calculation of ak. In the next section a classifier based on
the data of Fig. 8 is developed and tested.

By defining ak as above, the number of dimensions
needed to describe the microstructure has been reduced
from 61 to 1. This is a dramatic reduction in the number
of variables needed to describe the microstructure, but it
is shown in the following sections that it is possible to
develop a classifier using this scalar microstructural
descriptor that delivers satisfactory accuracy in predicting
the stress in the individual grains of a polycrystal. This
success may be due in part to the relative simplicity of
the microstructural geometry, response, and boundary
conditions considered here—regular hexagons, linear
elastic deformation, uniaxial extension. In more general
micromechanics problems it may be necessary to use
an intermediate number of variables for microstructural
description.

5.2. Definition of microstructural classifier

Here it is shown that a very simple classifier can be
developed to predict the average effective stress in a grain
of a polycrystal using a scalar representation of the orien-
tation of neighboring grains. The classifier has the form

CðakÞ � Cðw1; . . . ;w5Þ

� Cðh1; . . . ; h61Þ ¼
critical; s > s�

non-critical; s 6 s�

� ð28Þ

The threshold stress is defined by s� ¼ ls þ rs, where ls and
rs are the mean and standard deviation of the average effec-
tive stress in all grains of the training samples. In this exam-
ple the choice of the threshold value is essentially arbitrary.
In an actual application, the threshold value of the re-
sponse function would be chosen based on the specific
mechanics. Example choices could be the yield stress, or
an effective strain associated with the onset of void growth
and damage, with appropriate safety factors accounted for.

The form of the approximate classifier CðakÞ defined
above is

CkðakÞ ¼
critical; ak > a�k
non-critical; ak 6 a�k

�
ð29Þ

corresponding, in the vocabulary of classification and pat-
tern recognition to a decision tree with a single root node
and two leaves. Here, the values a�k correspond to the
threshold stress values s�. In the following it is described
how a�k is selected to minimize the loss associated with clas-
sifier error. Although this is the simplest possible decision
tree, it is sufficient in this case to illustrate the application
of Sobol’ decomposition derived patterns to micromechan-
ics problems and a method for incorporating a loss func-
tion other than the standard 0–1 loss function into the
derivation of the classifier.

The choice of a�k is made so as to minimize the loss, or
error, of the classifier. The classification result falls into
one of four categories defined by Table 3 in which the nota-
tion critical � 1 and non-critical � 0 has been used for
compactness.
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For a set of data classified according to Eq. (29) let
nTP; nTN; nFN and nFP denote the number of samples that
are true positive, true negative, false negative and false
positive, respectively. The total accuracy of the classifier
CkðakÞ is

AccuðCkÞ ¼
nTP þ nTN

nTP þ nTN þ nFN þ nFP

: ð30Þ

The true positive and true negative rates of the classifier
TPðCkÞ and TNðCkÞ, are

TPðCkÞ ¼
nTP

nTP þ nFN

ð31Þ

and

TNðCkÞ ¼
nTN

nTN þ nFP

ð32Þ

and the error rates, the false negative and false positive
rates are

FNðCkÞ ¼
nFN

nTP þ nFN

¼ 1� TPðCkÞ ð33Þ

and

FPðCkÞ ¼
nFP

nTN þ nFP

¼ 1� TNðCkÞ: ð34Þ

Fig. 9 shows the dependence of the total accuracy
AccuðCkÞ on a�k for each value of k. A well-defined peak
in the accuracy occurs for all values of k except k ¼ 1,
and AccuðCkÞ > AccuðCk�1Þ, although it is not a general
results that the inclusion of more independent variables will
increase classifier accuracy. It is emphasized that the calcu-

lation of the curves of Fig. 9, accomplished by repeated
evaluation of Eq. (29), is extremely fast.

For the classifier C5, which uses all five of the micro-
structural patterns, the peak accuracy occurs at a5 ¼ 0:76
giving a total accuracy of AccuðC5Þ ¼ 0:91 and the confu-
sion matrix of Table 4, in which C�5 denotes the classifier
Cða5Þ with a�5 ¼ 0:76. Selection of a�k based on total accu-
racy represents a compromise between maximizing the true
positive and true negative rates, since lima�k!�1TPðCkÞ ¼ 1
and lima�

k
!1TNðCkÞ ¼ 1. In an engineering context, choos-

ing a low value for a�k can be viewed as conservative, result-
ing in a high true positive rate, but also a high false positive
rate. Since a major goal of this work is to make microme-
chanics analysis more efficient by quickly identifying
regions in which localization is likely to occur, such a con-
servative approach severely limits any possible gains in effi-
ciency. Note here that the confusion matrices presented are
based on training accuracy. For the C�5 classifier, 10-fold
cross validation yields a confusion matrix that differs from
that of Table 4 by less than one-tenth of 1%. From here
forward confusion matrices represent training accuracy.

The definition of accuracy presented above implicitly
assigns equal cost to the false positive and false negative
errors. This may not be appropriate for engineering appli-
cations in which a false negative error, which is unconser-
vative and may compromise safety, is a worse error than
a false positive error, which compromises efficiency but
not safety. To allow the analyst to properly account for
the relative importance of false negative and false positive
error, the definition of Eq. (30) is augmented with a param-
eter cFN, the cost of a false negative error, to give

AccucðCkÞ ¼
cFNnTP þ nTN

cFNnTP þ nTN þ cFNnFN þ nFP

: ð35Þ

Here the cost of a false positive error is fixed at cFP ¼ 1,
which does not cause any loss of generality since only the
ratio cFN=cFP affects the results. The accuracy function of
Eq. (35) can be derived directly from the standard loss
function approach to classifier optimization, and therefore
the two sets of terms are equivalent. The accuracy vocabu-
lary is adopted here because in the authors opinion it is
more readily interpreted in an engineering context than
the more abstract loss function vocabulary.

Fig. 10 shows the accuracy curves AccucðCkÞ with
cFN ¼ 1:5. For k ¼ 5 the peak accuracy is given by
a5 ¼ 0:68, which value is denoted by a��5 . As expected, when
the cost of false negative errors is raised the threshold value
of ak is lowered. The classifier C5ða5Þ with a5 ¼ 0:68 is
denoted C��5 , and gives a total cost-adjusted accuracy of

Table 3
Types of classification result, 1 = critical

CkðakÞ ¼ 1 CkðakÞ ¼ 0

Cðh1; . . . ; h61Þ ¼ 1 True positive False negative
Cðh1; . . . ; h61Þ ¼ 0 False positive True negative
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Fig. 9. Classifier accuracy as a function of threshold value a�k .

Table 4
Confusion matrix for classifier C�5

C�5ða5Þ ¼ 1 C�5ða5Þ ¼ 0

Cðh1; . . . ; h61Þ ¼ 1 0.65 0.35
Cðh1; . . . ; h61Þ ¼ 0 0.04 0.96

Total accuracy 0.91.
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AccucðC��5 Þ ¼ 0:89 and a total accuracy of AccuðC��5 Þ ¼
0:91. Note that the cost-adjusted accuracy is used to deter-
mine the appropriate value of a��5 but the true total accu-
racy AccuðC��5 Þ should be used to evaluate classifier
performance. The confusion matrix for classifier C��5 (Table
5) shows that the introduction of a false negative cost
cFN ¼ 1:5, which is greater than the false positive cost,
decreases the false negative rate by 0.07 while increasing
the false positive rate by only 0.02, and leaving the total
accuracy essentially unchanged. For cFN ¼ 1:5 the false
negative rate FNðC��5 Þ ¼ 0:28 remains uncomfortably
high. Setting cFN ¼ 3 results in a false negative rate
FNðC��5 Þ ¼ 0:18 and a total accuracy of 0.90. These results
demonstrate the flexibility of the method, and the ability to
reduce the false negative rate significantly without signifi-
cant reduction in the total accuracy. These examples are
illustrative, however, and, for a particular engineering
application, the choice of the cost matrix must be made
carefully.

Although attention here has focussed on a simple, two
leaf decision tree operating on the single microstructural
feature a5, many other approaches to the classification of
the training data are possible [15,16]. In closing the discus-
sion of classifier development, then, comparison is made to
three alternative classification approaches, namely linear
regression, a decision tree and a support vector machine
operating on the microstructural features ðw1; . . . ;w5Þ.
The linear regression, a hyperplane in R5, is defined by
sðh1; . . . ; h61Þ � slrðw1; . . . ;w5Þ ¼ x0 þ

P5
i¼1xiwi, and the

classification is made such that Clrðw1; . . . ;w5Þ ¼ 1 if
slrðw1; . . . ;w5Þ > s�, the threshold value of the effective
stress in the central grain. The decision tree classifier,
denoted by Cdtðw1; . . . ;w5Þ is obtained using the software
WEKA [17] using the J48 algorithm with pessimistic prun-
ing applied. This decision tree differs from the one empha-
sized here in that it uses five input variables, resulting in a
large decision tree, with several hundred nodes, even after
pruning. In the decision tree emphasized here, only one
node is used since the individual microstructural features
have been combined into a single parameter, a5, using the
weighted sum of Eq. (26). Finally, and again using WEKA
for the calculations, a linear support vector machine classi-
fier Csvmðw1; . . . ;w5Þ is trained and tested. The confusion
matrices for these three classifiers are given in Tables 6–8.
The results show that the regression model performs essen-
tially equally as well as the classifier C�5. The five parameter
decision tree Cdt has a somewhat lower total accuracy, and
has a significantly higher false negative rate. The support
vector machine classifier Csvm has nearly the same total
accuracy as C�5 but performs slightly worse in terms of false
negative rate. Indeed any of these classifiers might be suc-
cessfully applied to the problem at hand. The single param-
eter decision tree is the best performing, however, and is
used in the following. It is also preferred because of its sim-
plicity and the ease with which variable loss matrices can be
incorporated into tree construction.

6. Application of classifier to large microstructures

The true value of a classifier such as that developed in
the previous sections lies in providing rapid preliminary
screening of heterogeneous materials. For example, in
developing a finite element model of a large polycrystal,
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Fig. 10. Cost-adjusted accuracy of classifiers as a function of threshold
value a�k .

Table 5
Confusion matrix for classifier C��5

C��5 ða5Þ ¼ 1 C��5 ða5Þ ¼ 0

Cðh1; . . . ; h61Þ ¼ 1 0.72 0.28
Cðh1; . . . ; h61Þ ¼ 0 0.06 0.94

Total accuracy 0.91.

Table 6
Confusion matrix for linear regression classifier Clr

Clr ¼ 1 Clr ¼ 0

Cðh1; . . . ; h61Þ ¼ 1 0.64 0.36
Cðh1; . . . ; h61Þ ¼ 0 0.04 0.96

Total accuracy 0.91.

Table 7
Confusion matrix for decision tree on w1; . . . ;w5

Cdt ¼ 1 Cdt ¼ 0

Cðh1; . . . ; h61Þ ¼ 1 0.54 0.46
Cðh1; . . . ; h61Þ ¼ 0 0.05 0.95

Total accuracy 0.88.

Table 8
Confusion matrix for support vector machine on w1; . . . ;w5

Csvm ¼ 1 Csvm ¼ 0

Cðh1; . . . ; h61Þ ¼ 1 0.61 0.39
Cðh1; . . . ; h61Þ ¼ 0 0.04 0.96

Total accuracy 0.91.
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it might be desirable to use a finer mesh in regions where
localization is likely to occur. A classifier approach can
guide the analyst in determining which regions of a large
material volume should be meshed with smaller or higher
order elements. Similar reasoning can be applied to multi-
scale simulations in which the lower scales are instantiated
only in regions where, for example, damage initiates. A
classifier can also provide an initial, approximate, evalua-
tion of the overall mechanical response of a microstructure,
indicating, for example, whether large regions of the mate-
rial domain are likely to be susceptible to damage.

To make the classifier useful in these kinds of contexts, a
moving window approach is here defined that allows rapid
scanning of a large polycrystal and identification of those
grains that will experience elevated stress under boundary
conditions similar to those used in developing the classifier.
The test microstructures consist of 1000 grains and are sub-
ject to uniaxial extension with periodic displacement
boundary conditions. In the moving window technique,
each grain of the microstructure is treated as grain 1 of a
61-grain microstructure. The classifier C��5 developed above
is then applied to the orientations of these 61 grains. In this
manner each grain is identified as critical or non-critical.

For comparison, a spring network simulation, similar to
that used in developing the classifier, is performed on the
1000-grain microstructure. The average effective stress is cal-
culated for each grain and grains are determined critical or
non-critical according to s > s�, the threshold effective stress.
Thus, for each grain in the microstructure both C��5 ða5Þ and
Cðh1; . . . ; h61Þ are calculated. Here, despite the approxima-
tions inherent in the spring network model, Cðh1; . . . ; h61Þ
is considered to deliver the true class of the grain.

Two example results of the moving window classifica-
tion of 1000-grain polycrystals are shown in Fig. 11. In

the figure, the orientations are shown in greyscale in the left
frame, and in the middle and right frames black crystals are
critical. Although errors do exist, the overall match
between the patterns of stress localization are quite consis-
tent between the classifier and spring network results. The
critical grains, in which the average von Mises stress
exceeds a threshold, tend to occur in strings aligned with
the principal loading axis. This can be attributed to two
features of the material properties and mechanics of the
problem. First, a string of grains, aligned with the principal
loading axis, can occur that all have orientations leading to
relatively high stiffness. This local stiffness will tend to
attract load and result in locally higher stresses. Second,
if an isolated grain has orientation such that it has high
stiffness, it will tend to attract load, and, if the surrounding
grains are of average stiffness, they will also experience
somewhat elevated stress. The classifier, as implemented
here in a moving window framework, is capable of identi-
fying clusters of critical grains that are larger than the
dimension of the patterns used in classification. Further-
more, that clusters of critical grains occur that are larger
in dimension that the pattern used for classification should
not be interpreted to mean that longer range interactions
than are considered in pattern extraction are occurring.
Rather, these clusters are a result of randomly occurring
clusters of stiff grains.

7. Conclusions

The objective of this work is to develop a classifier-based
method for predicting, approximately, the state of stress in
a polycrystalline material, with random and heterogeneous
material properties, subject to deterministic boundary con-
ditions. The method presented here uses a decision tree
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classifier operating on a reduced order representation of
the material microstructure. The reduced order representa-
tion is based on the recognition of mechanically meaning-
ful patterns in the spatial distribution of material
properties.

Three theoretical developments are presented. First, the
Sobol’ decomposition of a function of many random vari-
ables is modified so that it can be applied to functions
depending on variables that are uniform over an interval
other than ½0; 1Þ. Second, the Sobol’ indices, quantifying
the contribution of individual input random variables
to the variance of the response function, are used to iden-
tify the variables that should be retained in the reduced
order representation. Specifically, they identify the subset
of all nearby grains that should be used in classifying the
response of a specific grain. Third, the first order Sobol’
functions, which give the approximate dependence of the
response function on the individual input variables, are
used to develop a set of microstructural patterns that cor-
respond to elevated average effective stress in a grain. By
defining a type of projection of the microstructure onto
these patterns, a single, scalar representation of the micro-
structural material properties is derived that correlates well
with the response, the average effective stress.

A simple decision tree classifier is developed using this
scalar representation of the microstructure that is able to
predict whether the average effective stress in a grain will
exceed a threshold value with an accuracy of approxi-
mately 0.91. This accuracy is achieved without resorting
to any mechanics analysis such as finite element analysis,
and the application of the classifier is extremely fast. The
classifier is defined in such a way that the analyst is able
to assign different costs to false negative (unconservative)
and false positive (conservative) errors depending upon
the particular application.

Finally, it is shown that this classifier can be used in a
moving window algorithm to scan a relatively large (1000
grains) polycrystal subject to uniaxial extension, and deter-
mine with a high degree of accuracy which grains of the
polycrystal will experience average effective stress above a
specified threshold. Again, this classification is done with-
out a high fidelity mechanics analysis and is extremely fast.
This sort of moving window classification could prove use-
ful in determining what subregions of a material volume
should be instantiated at small scale in a multiscale simula-
tion of material response. A subject of ongoing research is
also whether it is possible to perform microstructural
design and optimization using the classifier in place of tra-
ditional function evaluations such as finite element analy-

sis, and whether the optimization can be performed
directly in the reduced order space of microstructural
descriptors.
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