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Abstract

The response of polycrystals to deterministic and random deformations is investigated with respect to the evolution of the crystallographic

orientation and its probability density function, the ODF. The crystals analyzed are highly simplified, being two-dimensional and with only

two active slip systems. A differential equation is derived which governs the evolution of the orientation under arbitrary applied inelastic

deformation. Evolution of the ODF is analyzed by either solution of a Fokker-Planck equation or Monte Carlo simulation. Two main results

are presented. Applied deformation tends to reduce heterogeneity of polycrystals with an initially uniform ODF. The presence of randomness

in the applied deformation leads the ODF to evolve to forms which are not obtained under any form of deterministic deformation.

q 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

The role which material microstructure plays in deter-

mining the performance of engineering materials is

increasingly being recognized by the engineering commu-

nity. The goal of the work presented here is to determine the

effect of uncertainty in applied loads on the evolution of the

atomic lattice orientation in crystalline solids. The atomic

lattice orientation is also called the crystallographic

orientation.

The crystallographic orientation is determined by the

positions of the constituent atoms of a crystalline solid, and,

in turn, determines the alignment of the axes of material

anisotropy in individual grains. The orientation varies

randomly from grain to grain, and therefore the mechanical

response of crystalline materials is random, and dependent

on the crystallographic orientation.

Many engineering materials, such as aluminum and

silicon, are crystalline in structure. The volumes of material

typical of engineering applications consist of many grains,

and are called polycrystalline. The shape and size of the

grains, as well as their orientations, are random and

heterogeneous. This random heterogeneity affects mechan-

ical phenomena such as the initiation and growth of

microcracks.

An interesting feature of the orientation is that it can

evolve during deformation. When a crystalline solid is

deformed inelastically, the orientation changes, dependent

upon the details of the applied deformation. Since the

orientation is random, a probability density function (PDF)

can be defined for the orientation. This PDF is called

the orientation distribution function (ODF). It is the

change, or evolution, of the orientation and ODF which is

examined here.

The presentation is made into two main parts. First, the

crystalline system is described. The crystal is assumed to be

two-dimensional and to have only two active slip systems so

that a differential equation can be derived which governs the

evolution of the orientation in a material subject to an

arbitrary applied deformation. Second, this equation is

solved to analyze the evolution of the orientation for a

variety of different deformation types, both deterministic

and random. The analysis is accomplished by Monte Carlo

simulation and by the derivation and solution of a Fokker-

Planck equation for the orientation.

A significant body of work exists which addresses the

evolution of crystallographic orientation during inelastic
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deformation [1–10]. In all cases the analysis is performed

for deterministic applied deformation. Existing results

address both two- and three-dimensional crystals. Only in

a few cases has uncertainty in the deformation been

addressed [11–13].

2. System definition and mechanical model

The mechanics of crystal plasticity are now described in

a general way, while at the same time more precise

definitions than given in Section 1 are provided for many of

the terms and quantities utilized in the following sections of

the paper. Fig. 1 shows a schematic illustration of a crystal

lattice in which the circles represent atoms. The lines are

included merely for clarity of the figure rather than to

explicitly represent interatomic bonds. Also shown are the

orthogonal coordinate axes Oðx1; x2; x3Þ which are attached

to the crystal lattice. The orientation gives the rotational

relationship of this coordinate system to a fixed reference

coordinate system. The orientation in a three-dimensional

setting has many equivalent representations. It can be given,

for example, as the components of a rotation tensor, as the

triplet of Euler angles, or as an axis/angle pair [14]. The

ODF is simply the PDF of the orientation. The ODF is in

general multi-variate.

2.1. Assumptions

In an actual polycrystalline material, as depicted in Fig. 2,

the individual grains must interact if the deformation of the

body is to satisfy the compatibility conditions placed on

deformations and strains. This interaction affects the stress

and strain fields in the polycrystal. Since the evolution of

orientation is governed partially by the strain, this

interaction between grains affects the orientation evolution.

Exact solution of the problem while accounting for these

interactions is not possible. While approximate numerical

solutions can be obtained, solution by this method is very

time consuming and computationally expensive.

The analysis presented here is therefore performed under

two simplifying assumptions. The first is the commonly

applied Taylor assumption [3,8]. The Taylor assumption

states that all crystals in a polycrystal experience identical

deformation. This deformation is equal to the specified

macroscopic applied deformation. By this assumption

compatibility of the polycrystal strains is assured, while

violation of equilibrium is allowed. The second assumption

is that the applied deformation is accommodated in the

polycrystal entirely by inelastic processes. That is, any

elastic part of the deformation is neglected. This assumption

is appropriate to the analysis for two reasons: orientation

evolution is not influenced by elastic deformation, and the

magnitude of elastic deformation in problems of interest is

small compared to the magnitude of the inelastic

deformation.

Two additional assumptions allow the derivation of a

closed form governing equation for the orientation, and also

make exact solution possible in certain cases. These

assumptions are that crystals are planar, or two-dimen-

sional, and that each crystal has only two slip systems

available for accommodating inelastic deformation.

2.2. Crystal geometry

Fig. 3 shows the slip system geometry of a planar crystal

with two slip systems. The slip systems are defined by

vectors nðkÞ; k ¼ 1; 2 normal to the slip plane and slip

directions sðkÞ; k ¼ 1; 2: The slip directions differ by the

angle 2u: Deformation of the crystal is accommodated by

Fig. 1. Schematic illustration of a crystal lattice structure, showing also a

possible definition of the crystal coordinate system used in defining the

orientation.

Fig. 2. Contour plot of the experimentally measured crystallographic

orientation of AL2024 [18]. The location of the contour lines indicates the

change in orientation which occurs at grain boundaries.
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sliding along the slip planes. The rate of sliding along slip

plane k is denoted by _gðkÞ; the slip system shear rate. The slip

system shear rate _gðkÞ is positive if sliding is in the direction

of the slip direction sðkÞ:

The vector a is the bisector of the slip directions. The

orientation angle f is the angle between a and a reference

direction, in this case the direction of e1: The orientation is

periodic with period p and is here defined in the interval

½2p=2;p=2Þ:

The Schmid tensor tðkÞ of slip system k is a geometric

description of the slip system defined by tðkÞ ¼ sðkÞ^nðkÞ;

k ¼ 1; 2: The components of this tensor can be expanded in

terms of the geometric descriptors of the crystal to give

where cð1Þ ¼ 1 and cð2Þ ¼ 21: Decomposition of tðkÞ yields

symmetric and skew tensors pðkÞ and qðkÞ; respectively, the

components of which are

½pðkÞ� ¼
1

2

2sin½2ðfþ cðkÞuÞ� cos½2ðfþ cðkÞuÞ�

sym sin½2ðfþ cðkÞuÞ�

" #
;

and ½qðkÞ� ¼
1

2

0 1

21 0

" #
:

ð2Þ

2.3. External action

The action on the crystals is specified in terms of the

velocity gradient tensor l: Let vðxÞ be the velocity at a point

x in the crystal, that is, the time rate of change of the motion

applied to the material at x: The velocity gradient tensor l is

given by lij ¼ ›vi=›xj; i; j ¼ 1; 2: The components of l are

constrained by the assumption that no elastic deformation

occurs in the material. The two-dimensional deformation

must therefore preserve areas, that is, l11 ¼ 2l22: Physi-

cally, the diagonal components of l are related to axial

deformations, while the offdiagonal components relate to

shear deformations.

Decomposition of the velocity gradient tensor l yields a

symmetric tensor d ¼ 1=2ðl þ lTÞ and a skew tensor v ¼

1=2ðl 2 lTÞ which are called the deformation rate and spin,

respectively. The spin tensor represents the part of the

deformation which results in rigid body rotation of the

material, while the deformation rate tensor represents

the irrotational part of the applied deformation.

2.4. Derivation of orientation governing equation

The geometric parameters describing the crystal are now

combined with the definition of the imposed action to arrive

at a governing differential equation for the orientation. The

derivation largely follows one given elsewhere [8], but the

final result is expressed in a form more convenient for

the current analysis.

Because there are only two active slip systems, there

exists a unique combination of slip system shear rates which

can accommodate the imposed inelastic deformation. The

shear rates can therefore be found directly from the

deformation parameters. If additional slip systems are

introduced, many possible combinations of slip rates exist

which accommodate the applied deformation, and

an assumption regarding the constitutive behavior of

the material must be introduced in order to determine

the slip rates. The introduction of a constitutive model

significantly complicates the analysis. The slip system shear

rates when only two slip systems are present can be obtained

by solution of the linear algebraic equations

d : pðkÞ ¼
X

k¼1;2

_gðlÞpðlÞ : pðkÞ
; ð3Þ

in which a : b ¼ aijbij denotes the inner product of the

tensors a and b: This equation can be rewritten as the system

of equations

d11

d12

" #
¼ _gð1Þ

pð1Þ
11

pð1Þ
12

2
4

3
5þ _gð2Þ

pð2Þ
11

pð2Þ
12

2
4

3
5; ð4Þ

which can be solved for the slip system shear rates. The

solution obtained for the slip system shear rates is, in terms

of the components of p and d;

_gð1Þ ¼
pð2Þ

12 d112pð2Þ
11 d12

pð1Þ
11 pð2Þ

12 2pð1Þ
12 pð2Þ

11

; _gð2Þ ¼
pð1Þ

11 d122pð1Þ
12 d11

pð1Þ
11 pð2Þ

12 2pð1Þ
12 pð2Þ

11

: ð5Þ

Fig. 3. Geometry of a two-dimensional crystal with two active slip systems.

½tðkÞ� ¼
1

2

2cosðfþ cðkÞuÞsinðfþ cðkÞuÞ cos2ðfþ cðkÞuÞ

2sin2ðfþ cðkÞuÞ sinðfþ cðkÞuÞcosðfþ cðkÞuÞ

2
4

3
5; ð1Þ
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The slip system shear rates are now available in terms of

the applied deformation and slip system geometry. The

equation for the rate of change of the orientation vector is

_a¼vla¼ðv2vpÞa; ð6Þ

where vl is the part of the applied spin which results in

evolution of the orientation, and vp is the part of the

spin tensor resulting from sliding along the slip

directions. The rate of change of the orientation angle

is obtained from Eq. (6),

_f¼v122
X

k¼1;2

_gðkÞqðkÞ
12 ¼

l122 l21

2
2

1

2

X
k¼1;2

_gðkÞ: ð7Þ

By substituting the components of pðkÞ from Eq. (2)

and d11¼ l11; d12¼ðl12þ l21Þ=2 into Eq. (5), and then

inserting the resulting expressions into Eq. (7), the final

governing ordinary differential equation for the orien-

tation is obtained. This equation is

_f¼
l12 2 l21

2
2

secð2uÞ

2
½ðl12 þ l21Þcosð2fÞ22l11 sinð2fÞ�:

ð8Þ

3. Deterministic deformation

The governing equation for the orientation can be solved

for certain deterministic deformations. These solutions

illustrate some features and patterns of orientation evolution.

The dynamics of the orientation are shown in the ðf; _fÞ

phase space. The differential equation for f may or may not

have fixed points, defined by the condition _f ¼ 0: At a fixed

point the orientation does not change in time. The condition
_f ¼ 0 implies

l122l21

2
¼

secð2uÞ

2
½ðl12þl21Þcosð2fÞ22l11 sinð2fÞ�: ð9Þ

The right-hand side of Eq. (9) is a harmonic in f with

period p with a scaling factor dependent upon the value of

the geometric parameter u: Fixed points of the system

can be stable, unstable, or semi-stable. If equilibrium point

fe is stable then all trajectories fðtÞ converge to fe for

fð0Þ[½fe2e;feþe� where e.0 is a small number. If fe is

unstable all trajectories fðtÞ for fð0Þ[½fe2e;feþe�

diverge from fe; except for fð0Þ¼fe; which does not

evolve. If fe is neutrally stable trajectories converge for

fð0Þ[½f;feþe� and diverge for fð0Þ[½fe2e;f� or vice

versa.

Fig. 4 shows the three equilibrium conditions which are

possible in the system: two fixed points, one stable and one

unstable, a single, semi-stable fixed point, or no fixed points.

The examples shown in the figure, as with all examples

given in this paper, use the value u ¼ p=6 without loss of

generality.

The types of behavior shown in the phase space portrait

of Fig. 4 can also be observed in plots of sample paths of the

orientation as it evolves in time. Fig. 5 shows a series of

three such illustrations, corresponding to the three cases

described above. The sample paths in Fig. 5 were obtained

by numerical integration of Eq. (8) with appropriate values

of the velocity gradient components. The main observation

regarding equilibrium solutions of the system is that except

when ll12 2 l21lq 0 and ll12 þ l21lp ll12 2 l21l; almost all

orientation paths tend to collect near a single orientation

value. It is shown in later sections that this behavior does not

necessarily hold when the applied deformations are allowed

to be random.

Fig. 4. Phase space diagram of the governing equation for orientation. The

three possible scenarios of zero, one, or two fixed points of the system are

illustrated.

Fig. 5. Orientation sample paths for three deterministic deformations. From left to right: l11 ¼ l12 ¼ l21 ¼ 1; l11 ¼ 0:575; l12 ¼ 1; l21 ¼ 21:5; l11 ¼ 0:5;

l12 ¼ 2; l21 ¼ 22:
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It is possible, for certain classes of applied deformations,

to obtain closed form solutions to the governing ODE,

Eq. (8). One of the simplest possible applied deformations is

a monotonic axial strain. This deformation corresponds to a

displacement field uðx1Þ ¼ kx1t; where k is a constant and

uð·Þ is the displacement in the x1 direction. The resulting

velocity is _uðx1Þ ¼ kx1 and the resulting velocity gradient

tensor has components l11 ¼ k and l12 ¼ l21 ¼ 0: In this

case Eq. (8) reduces to _f ¼ k sec 2u sin 2f; the solution to

which is

fðtÞ ¼ arccot½cotðf0Þexpð22kt secð2uÞ�; ð10Þ

in which fð0Þ ¼ f0 is the initial condition. The solution has

equilibrium points at f ¼ 0 and f ¼ 2p=2: If k . 0; the

equilibrium point at f ¼ 0 is unstable, and those at 2p=2

are stable. For k , 0 the stability of the equilibrium points

reverses.

If the applied deformation consists solely of monotonic

shearing, for example, l11 ¼ 0; l12 ¼ 2l21 ¼ k the solution

retains the same structure as for a monotonic axial

deformation, with two equilibrium points, one stable and

one unstable. The location of the equilibrium points is,

however, shifted by p=4: The closed form solution is also

obtained by applying a shift of p=4 to the solution for

monotonic axial deformation. This solution is

fðtÞ¼arccot cot f0þ
p

4

� 	
expð22kt secð2uÞÞ


 �
2

p

4
: ð11Þ

Let l11ðtÞ¼acosvt; l12ðtÞ¼ l21ðtÞ¼0 so that the applied

deformation is no longer monotonic, but rather harmonic.

The solution to the resulting form of Eq. (8) is

fðtÞ¼arccot cotðf0Þexp 2
2asinðvtÞ

vcosð2uÞ

� 	
 �
; ð12Þ

which is itself periodic, though not harmonic. This solution

is shown graphically in Fig. 6 for three values of the scaling

parameter a; each with v¼1: An observation from Fig. 6 is

that when the amplitude of the applied oscillatory

deformation is small, the full range of possible values of

the orientation is well represented at all times. On the other

hand, when the deformation amplitude is large, the bulk of

the orientation paths appear to reside mostly near the

equilibrium points, which switch stability with the change in

sign of the deformation parameter l11ðtÞ: This is evident in

Figs. 7 and 8 which show estimates of the ODF at various

time instants for a¼0:1 and 1.0. Comparison with Fig. 6

reveals that when the amplitude of the applied deformation

is large, the ODF quickly evolves to a form which is nearly

zero throughout much of the range of possible orientations.

The final deterministic solution to be examined is that of

crystals subject to cyclic deformation with a non-zero mean.

In the case of axial straining, the applied deformation is

l11ðtÞ ¼ a1 þ a2 cosðvtÞ; l12ðtÞ ¼ l21ðtÞ ¼ 0; resulting in the

solution

fðtÞ ¼ arccot cotðf0Þexp 2
2a1t

cosð2uÞ
2

2a2 sinðvtÞ

v cosð2uÞ

� 	
 �
:

ð13Þ

Sample solutions are shown graphically in Fig. 9 for

several values of the parameters a1 and a2: The solutions

have an oscillatory part superimposed on a drift towards one

of the equilibrium points. The equilibrium point towards

Fig. 6. Orientation sample paths for harmonic axial deformation with mean zero l11ðtÞ ¼ a cos vt; l12ðtÞ ¼ l21ðtÞ ¼ 0 with, from left to right, a ¼ 0:1; 0:5; 1:0:

Fig. 7. Estimate of ODF at t ¼ 0; 2:5; 5:0 for L11 ¼ a cos vt with a ¼ 0:1:
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which the orientation paths drift is determined by the sign of

a1 as it was by the sign of k in the monotonic case described

previously. Thus, even for a deformation which is not

monotonic, but has a non-zero mean, nearly all initial

orientations eventually approach a single value.

In summary, several observations of the behavior of

the deterministic system will be useful reference points in

the forthcoming discussion of the stochastic version of the

system. For monotonic deformations, nearly all possible

initial orientations eventually reorient to be near the stable

or semi-stable equilibrium point of the system. Only applied

deformations with large shear components of opposite sign

result in systems with no equilibrium points. When the

applied deformation is either a harmonic pure axial

deformation or a harmonic pure shear deformation with

zero mean, the resulting orientation paths are cyclic, but not

harmonic. When a harmonic deformation is applied with

non-zero mean, nearly all initial orientations evolve to be

near the equilibrium point of the system which would be

stable for a monotonic applied deformation of the same sign

as the average value of the cyclic deformation. This

evolution towards the equilibrium point need not, however,

be monotonic, depending upon the relative amplitudes of

the mean deformation and the harmonic part of the

deformation.

4. Random deformation

The governing differential equation for the orientation,

Eq. (8) becomes the stochastic differential equation

_FðtÞ ¼
L12ðtÞ2 L21ðtÞ

2
2

secð2uÞ

2
½ðL12ðtÞ þ L21ðtÞÞcosð2fÞ

2 2L11ðtÞsinð2fÞ�; ð14Þ

when the components of the applied velocity gradient are

assumed to be the random processes LijðtÞ; i; j ¼ 1; 2:

Eq. (14) is identical to Eq. (8) except for the capitalization

of the orientation and velocity gradient components to

indicate that they are random quantities.

The objective here is to analyze the evolution of the

probability density function of the orientation, or ODF,

governed by Eq. (14). In investigating the evolution of the

ODF, two methods are used, Monte Carlo simulation and

solution of a Fokker-Planck equation for the time varying

ODF. In the Monte Carlo simulations the governing

differential equation is integrated numerically given realiz-

ations of the deformation processes LijðtÞ to obtain

realizations of the orientation process FðtÞ: Estimates of

the ODF at various stages of deformation can be obtained by

which the evolution of the ODF can be analyzed. The ODF

is the solution of a Fokker-Planck equation derived from

Eq. (14). Solution of a Fokker-Planck equation is compu-

tationally efficient but can be achieved only for a class of

processes Lij:

4.1. Fokker-Planck equation

Let XðtÞ be an n-dimensional vector diffusion process

defined by the stochastic differential equation

dXðtÞ ¼ mðx; tÞdt þ sðx; tÞdBðtÞ; ð15Þ

where mðx; tÞ is the n £ 1 vector drift function, sðx; tÞ is the

n £ n matrix diffusion function, and BðtÞ is an n-dimensional

Brownian motion process, with dBðtÞ being the increment of

this process. The PDF of XðtÞ; denoted by f ðx; tÞ is, in

Fig. 8. Estimate of ODF at t ¼ 0; 2:5; 5:0 for L11 ¼ a cos vt with a ¼ 1:0:

Fig. 9. Orientation sample paths for harmonic axial deformation with non-

zero mean.
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general, a function of time and initial conditions, and obeys

the partial differential equation

›f

›t
¼2

Xn

i¼1

›

›xi

½miðx; tÞf �þ
1

2

Xn

i;j¼1

›2

›xi›xj

½bijðx; tÞf �; ð16Þ

referred to as a Fokker-Planck equation, where bijðx; tÞ ¼

½sðx; tÞsðx; tÞT�ij:
Suppose that the components of the velocity gradient are

arranged in a vector, L̂ ¼ ½L11ðtÞ; L12ðtÞ; L21ðtÞ�
T and form a

diffusion process defined by

dL̂ ¼ mðl̂; tÞdt þ sðl̂; tÞdBðtÞ; ð17Þ

where mðl̂Þ is a 3 £ 1 vector drift function, sðl̂Þ is a 3 £ 3

matrix diffusion function, and dBðtÞ is the increment of a

3 £ 1 Brownian motion process.

Since the equation governing orientation evolution

(Eq. (8)) contains each of the components of the velocity

gradient, a four-dimensional diffusion equation can be

written which defines the deformation processes and

governs the behavior of the orientation. This four-dimen-

sional diffusion equation is, in its most general form

d
F

L̂

" #
¼

gðf; l̂; tÞ

mðl̂; tÞ

" #
dt þ

0 0

0 sðl̂; tÞ

" #
dBðtÞ; ð18Þ

where mðl̂; tÞ and sðl̂; tÞ are as before, and BðtÞ is now a

four-dimensional Brownian motion process. In Eq. (18), the

function gðf; l̂; tÞ; obtained from Eq. (8) is

gðf; l̂; tÞ ¼
l12ðtÞ2 l21ðtÞ

2
2

secð2uÞ

2
½ðl12ðtÞ þ l21ðtÞÞcosð2fÞ

2 2l11ðtÞsinð2fÞ�: ð19Þ

The drift and diffusion functions of Eq. (18) can be

substituted into the Fokker-Planck equation (Eq. (16)). In

principle, the resulting Fokker-Planck equation can then be

solved to obtain the time varying joint probability density

function of the orientation and the three deformation

processes. Analytical solutions of Fokker-Planck equations

are available only in special cases. Approximate numerical

solution of such equations is possible [15,16], requiring

significant computing resources.

Certain assumptions are now introduced regarding the

nature of the applied deformation processes. Two cases are

examined. In the first, the deformation processes are

assumed to be of the form

L11 ¼ kL11lþ Q1

dB1ðtÞ

dt
;

L12 ¼ kL12lþ Q2

dB2ðtÞ

dt
;

L21 ¼ kL21lþ Q3

dB3ðtÞ

dt
;

ð20Þ

in which kLijl represents the mean value of deformation

process LijðtÞ; and the coefficients Qi are constant scaling

factors applied to the Gaussian white noise process denoted

by the formal derivatives dBiðtÞ=dt of the Brownian motion

processes BiðtÞ which are mutually independent. Substi-

tution of Eq. (20) into Eq. (8) results in the diffusion

equation

dF ¼

"
kL12l2 kL21l

2
2 ½ðkL12lþ kL21lÞcosð2fÞ

22kL11lsinð2fÞ�

#
dt 2 2Q1 sinð2fÞdB1ðtÞ

þQ2½
1
2
2 cosð2fÞ�dB2ðtÞ2 Q3½

1
2
þ cosð2fÞ�dB3ðtÞ:

ð21Þ

The drift function in this case is

mðfÞ ¼

"
kL12l2 kL21l

2
2 ½ðkL12lþ kL21lÞcosð2fÞ

22kL11lsinð2fÞ�

#
: ð22Þ

The matrix diffusion function in this case reduces to the

1 £ 3 vector diffusion function

sðfÞ¼½22Q1 sinð2fÞ;Q2ð
1
2
2cosð2fÞÞ;2Q3ð

1
2
þcosð2fÞÞ�:

ð23Þ

These drift and diffusion functions can be substituted into

Eq. (16) to obtain the Fokker-Planck equation governing the

evolution of the ODF for a crystal subject to deformations

given by Eq. (20).

In the above discussion, the three deformation processes,

L11ðtÞ; L12ðtÞ; L21ðtÞ have random parts which are indepen-

dent of one another. An alternative is the case where the

random parts of the deformation process are proportional to

one another. One possible form of such deformation

processes, analogous to that of Eq. (20) is

L11ðtÞ ¼ kL11lþ Q1

dBðtÞ

dt
;

L12ðtÞ ¼ kL12lþ Q2

dBðtÞ

dt
;

L11ðtÞ ¼ kL21lþ Q3

dBðtÞ

dt
;

ð24Þ

where the coefficients Qi are again constant scaling factors

applied to the Gaussian white noise processes which are

identical. Substitution of Eq. (24) into Eq. (8) yields a

diffusion equation for the orientation with

mðfÞ ¼

"
kL12l2 kL21l

2
2 ½ðkL12lþ kL21lÞcosð2fÞ

22kL11lsinð2fÞ�

#
;

ð25Þ
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and

sðfÞ ¼
Q2 2 Q3

2
2 ½ðQ2 þ Q3Þcosð2fÞ2 2Q1 sinð2fÞ�


 �
:

ð26Þ

5. Results

Results are presented regarding the evolution of the ODF

in crystals subject to random deformation. First, a closed

form stationary solution to the Fokker-Planck equation is

presented for the case of an applied deformation which is

purely axial. Second, the Fokker-Planck equation is solved

numerically using the first order finite difference method for

a variety of values of the deformation parameters kL11l;
kL12l; kL21l; Q1; Q2; Q3: Results of Monte Carlo simulations

are also shown for certain cases not amenable to analysis

using the Fokker-Planck equation.

5.1. Analytic results

If a stationary PDF exists for a scalar diffusion process

XðtÞ; it can be calculated using [17]

f ðxÞ¼
q2

bðxÞ
exp 2

ðx

0

mðuÞ

bðuÞ
du


 �
2

2q1

bðxÞ

ðx

0
exp 2

ðx

u

mðvÞ

bðvÞ
dv


 �
du;

ð27Þ

where bðxÞ¼ssT mðxÞ is the drift function, and q1; q2 are

constants. The unknown constants can be found by use of

prescribed boundary conditions on f ðxÞ and by the normal-

ization condition
Ð1
21 f ðxÞdx¼1:

Assuming a deformation of the form given by Eq. (24)

and setting kL11l ¼ A and Q1 ¼ B with kL12l ¼ kL21l ¼
Q2 ¼ Q3 ¼ 0; the stationary solution to Eq. (16)

f ðfÞ ¼
dðf2 p=2Þ; A=B2 – 0;

1
2
ðdðf2 p=2Þ þ dðfÞÞ; A=B2 ¼ 0;

8<
: ð28Þ

where A . 0 has been assumed without loss of generality.

This solution has some interesting features. First, according

to this solution, as long as the applied velocity gradient has

non-zero mean, all orientation paths eventually flow to f ¼

p=2; regardless of the scale of the random part of the

deformation process. This is surprising, as intuition might

suggest that the introduction of a random part to the

deformation process would result in a stationary ODF with

non-zero variance, but this is apparently not the case. Even

when the mean of the deformation process is zero, that is

A=B2 ¼ 0; the ODF evolves into a function comprising two

delta functions. This is again surprising as intuition would

suggest that a mean zero random deformation process would

result in a stationary ODF with non-zero values throughout

the range ð2p=2;p=2�:

5.2. Fokker-Planck solutions and Monte Carlo simulation

The Fokker-Planck equation is solved approximately

using a first-order finite difference approximation for a

variety of axial, shear, and mixed mode deformations. In all

results presented in this section the initial condition of the

ODF has been taken to be uniform, that is, f ðfÞ ¼ 1=p;

f [ ½2p=2;p=2Þ:

Consider first the case of a purely axial deformation

with kL11l ¼ 1 and Q1 ¼ 0:75: The result of the finite

difference calculation is shown in Fig. 10. The results show

clearly that starting from an initially uniform ODF,

orientations initially accumulate near the fixed points of

the system at 0;2p=2; with probability mass accumulating

at a greater rate near 2p=2: In accordance with the

stationary solution given in the previous section, eventually

all orientation paths must approach 2p=2 for the

parameters used in this example. This behavior has not

yet been observed in the finite difference solution. As can

Fig. 10. Finite difference solution to the Fokker-Planck equation

for orientation for an axial applied deformation with kL11l ¼ 1:0 and

Q1 ¼ 0:75:

Fig. 11. Finite difference solution to the Fokker-Planck equation for

orientation for a deterministic axial applied deformation with kL11l ¼ 1:0

and Q1 ¼ 0:
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be seen in the figure, the gradients of f ðf; tÞ become large

quite quickly. Accurate solution of the Fokker-Planck

equation into the time ranges when such behavior would be

expected to occur requires a very fine discretization beyond

the capabilities of computing resources available to the

authors. Fig. 11 shows the solution to the Fokker-Planck

equation with kL11l ¼ 1; Q1 ¼ 0; that is, a deterministic

deformation. Comparison of Figs. 10 and 11 shows that the

introduction of randomness to the deformation process

drives reorientation at a faster average rate.

When the applied deformation is purely axial, the

numerical and analytic solutions presented previously

indicate that a collection of crystals with an initially

uniform, or highly heterogeneous microstructure, evolves

towards a state in which only one or two orientations are

represented; a state of increased homogeneity. From results

for deterministic deformations presented in Section 3, it

would be expected that the behavior would be similar for

pure shear deformations, with only the location of the

equilibrium points shifted. When the applied deformation is

a mixed mode, random deformation, however, it is possible

for the system to evolve to a stationary ODF which

represents a significant preservation of heterogeneity.

Let Q1 ¼ Q2 ¼ Q3 ¼ 1 with all other deformation

parameters zero. Also, let the applied deformation be of

the form of Eq. (24) so that the deformation processes have

independent random parts. The time-varying ODF for this

deformation is shown in Fig. 12. In the left-hand frame it

can be seen that the ODF reaches stationarity. The right

frame shows that the stationary ODF retains significant

probability mass throughout the entire range of definition

of f: The histogram in the right figure represents the

results of a Monte Carlo simulation with 10,000 samples.

The agreement with the Fokker-Planck solution is

satisfactory.

To illustrate the importance of interdependence between

the random parts of the deformation process, Monte Carlo

simulation has been used to analyze the case in which Q1 ¼

Q2 ¼ Q3 ¼ 1 but the deformation processes follow the form

of Eq. (20), that is, the random parts are proportional to one

another. In this case, since Q1 ¼ Q2 ¼ Q3 and kL11l ¼
kL12l ¼ kL21l ¼ 0; the deformation processes are identical.

The results of the Monte Carlo simulation of 10,000 samples

are shown in Fig. 13 and show clearly the different character

of the solution. Whereas when the deformation processes

are independent, a stationary ODF is obtained which has

significant probability mass throughout the range ½2p=2;

p=2Þ; when the deformation processes are identical, the ODF

evolves to a form in which it appears only two orientations

are possible.

This previous example is not given to indicate, however,

that no significant heterogeneity can be preserved when the

random parts of the deformation are proportional. Fig. 14

shows the time-varying ODF for kL11l ¼ Q2 ¼ Q3 ¼ 1 with

all other deformation parameters zero and the random parts

of the deformation process proportional as in Eq. (20). The

ODF evolves to a stationary form which retains significant

heterogeneity.

Fig. 13. Results of Monte Carlo simulation for Qi ¼ 1:0 and perfect dependence among the deformation processes. Results based on 10,000 realizations.

Fig. 12. Fokker-Planck solution for kL11l ¼ kL12l ¼ kL21l ¼ 0 and Qi ¼ 1:0: Note the establishment of an apparently stationary ODF before t ¼ 1:0: Also, a

comparison of the Fokker-Planck solution with the results of Monte Carlo simulation.
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6. Discussion and conclusions

The evolution of the probability density function of

crystallographic orientation, the ODF, has been analyzed for

aggregates of polycrystals subject to deterministic and

random deformation. The physical system analyzed is

highly simplified from the physically realistic case in

order to permit the addition of increased complexity to the

problem in the form of deformation randomness.

The crystals studied are assumed to be planar and

infinite, and to have only two active slip systems, which

accommodate any applied deformation entirely through

plastic slip. In line with previous analysis of this same

system subject to deterministic deformation, an ordinary

differential equation has been derived which governs the

evolution of the angle of orientation f: For all monotonic

deformations except extreme shear deformations, the

orientation approaches a single value regardless of its initial

value. When the applied deformation is harmonic with mean

zero, the response orientation process is cyclic, though not

harmonic. When a non-zero mean harmonic deformation is

applied to the crystals, all orientations again approach a

single value.

The governing equation for the orientation is rendered a

stochastic differential equation when the applied defor-

mation processes are assumed to themselves be random

processes. When the applied deformations are diffusion

processes the ODF is the solution of a Fokker-Planck

equation. If the applied deformation processes take the form

of a scaled Gaussian white noise process plus a constant

mean value, the diffusion equation and corresponding

Fokker-Planck equation for orientation can be solved either

in closed form or approximately using the finite difference

method.

For pure axial or shear deformations with zero

temporal mean applied to the crystals all orientation

paths approach one of two values. This evolution occurs

despite the absence of a mean deformation component.

When the applied deformation is either purely axial or

pure shear but with a non-zero mean, all orientation paths

approach a single value, consistent with the deterministic

result. It appears that in all cases when the aggregate of

crystal is subject to pure shear or axial deformations, a

microstructure which is initially highly heterogeneous

(e.g. a uniform ODF), evolves towards a state of increased

homogeneity, with one, or at most two possible orien-

tations remaining.

When a mixed mode deformation, that is, one with

both axial and shear components, is applied it is possible

for the polycrystal to retain significant heterogeneity of

orientation. In the examples shown, the ODF evolves

towards a stationary form which has significant non-zero

values throughout a significant portion of the range of

definition of the orientation angle, if not the entire

range.
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