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Abstract: A new method is introduced for characterizing and analyzing materials with random heterogeneous microstructure. The
method begins with classifiers which process information from high-fidelity analyses of small-sized simulated microstructures. These
classifiers are subsequently used in a multipass moving window to identify subregions of potentially critical microscale behavior such as
strain concentrations. In the derivation of the method, it is shown how information theory-based concepts can be formulated in a Bayesian
decision theory framework that addresses microstructural issues. Furthermore, it is shown how a sequence of classifiers can be constructed
to refine the analysis of microstructure. While the method presented herein is general, a relatively simple example of a two-dimensional,
two-phase composite is used to illustrate the analysis steps.
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Introduction

With recent advances in computational power, there has been
growing interest in analyzing materials down to the microstruc-
tural level. This interest is primarily driven by the fact that dam-
age initiation and growth as well as critical material behavior are
highly dependent on microstructural properties. While methods
such as those based on multiscale techniques have proven to be
promising for many materials, the analysis of materials with ran-
dom microstructure has unique, interesting challenges. The main
challenge is that the behavior of random microstructures cannot
be extrapolated from the behavior of a single subregion of the
microstructure, as is the case of periodic composites, which can
be represented using a unit cell.

Most approaches for characterizing and analyzing materials
with random microstructure use representations at the mesostruc-
tural level based on microscale statistics. The essential idea is to
condense information at the microstructural level, sampled at
multiple or theoretically infinite locations, into a relatively small
set of parameters or functional representations. The most basic
statistical methods use spatial averages over local regions that
are large in comparison with the microstructure. More complex
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statistical methods use second- or higher-moment information,
wherein spatial averaging is performed using a product of prop-
erties at multiple points. The classical examples are effective
medium theories, where micromechanics is used to represent ran-
dom composite materials by equivalent deterministic continua
�Benveniste 1987; Chen et al. 1992; Buryachenco et al. 2003�.
More recent examples include approaches that use the orientation
distribution function �ODF� to characterize polycrystalline mate-
rials �Beaudoin et al. 1995; Adams et al. 2001�. The ODF is a
statistical model of the histogram of the crystal orientation vector
obtained by sampling micrographical observations of crystalline
structure. While the ODF is already a reduced form of micro-
structural information, it is typically reduced further using basis
function expansions. Harmonic polynomials �Adams et al. 1994�
and principal components �Ganapathysubramanian and Zabaras
2004; Acharjee and Zabaras 2003� are two types of such basis
function expansions that have been tailored for specific material
design applications.

While mesostructural representations based on microscale
statistics have been proven to be useful, there is still a need to
analyze material behavior using more detailed, spatially variable
information at the microstructural level. The reason is that
many material characteristics, especially those related to strongly
nonlinear phenomena such as fracture, are closely related to
short-range interactions between microstructural entities. For in-
stance, the yield strength and fracture behavior of materials with
inclusions have been found to be governed by the nonuniformity
of the spatial distribution of inclusions �Lewandowski et al. 1989;
Corbin and Wilkinson 1994�. The difficulty with any detailed,
high-fidelity micromechanical simulations is that, even with
large-scale computational effort, only relatively small-sized mate-
rial specimens can be analyzed �Arwade and Grigoriu 2004�.

The goal of this paper is to introduce a method that can use
information from micromechanical simulations of very small-
sized material samples to characterize and analyze random
composites at the mesoscale. The theoretical framework for this
method is based on Bayesian classifiers. An important difference

from existing statistics or simulation-based methods �Torquato

L OF ENGINEERING MECHANICS © ASCE / FEBRUARY 2007 / 129



et al. 2003; Saganopan and Pitchumani 1998� is that the charac-
terization and analysis is tied to a search for microstructural pat-
terns, defined broadly and abstractly within the classifier context.

Classifiers, which are essentially algorithms that search for a
class of objects within a large data set, have been used with broad
success in computer science applications �McLachlan 1992;
Breiman et al. 1984�. It is only recently that they have been used
in analysis and design problems in structural mechanics �Acharjee
and Zabaras 2003; Ganapathysubramanian and Zabaras 2004�.
The work that is most relevant to the present context is by
Zabaras and his colleagues. Beginning with a statistically reduced
description of the microstructure in the form of the ODF, they
used classifiers to define the relationships between the ODF and
mesoscopic behavior. In the present paper, classifiers are used on
direct representations of the microstructure. As noted later in this
paper, the two methods use statistics and classifiers in a funda-
mentally different way. This has positive implications in that the
methods are, in fact, complementary.

The paper begins with a localized representation of micro-
structure. The simplest representation is a set of geometric and
material-related descriptors that provides information that can be
used, for example, to create a high-fidelity finite-element mesh.
Such a representation, however, is too detailed and cumbersome
for classifier analysis. Hence, for the approach in this paper, a
low-dimensional representation is developed in terms of basis
vector expansions of randomly generated, small-sized materials
samples. Statistically efficient basis vectors for the microstructure
are used that are specifically associated with critical response be-
havior such as local strain concentrations. Next, a sequence of
Bayesian classifiers are derived in a decision-theoretic frame-
work. Finally it is shown how the classifiers can be used with
multipass moving windows to search for the most likely locations
of damage initiation in a material specimen under external
stresses.

While the concepts and associated equations presented herein
are applicable to general three-dimensional �3D�, models of mi-
crostructure, the figures and example used to illustrate the con-
cepts are restricted to a relatively simple two-dimensional �2D�
problem: the prediction of damage initiation in a 2D cross section
of a fiber-reinforced composite material. In the usual approaches
to analyzing this problem, the microstructure is characterized
by the location of each inclusion and is analyzed using the distri-
bution of these locations using spatial statistics. An important
point-based statistic is the shortest distance between neighboring
points; tesselation-based methods �Everett and Chu 1993; Pyrz
1994; Li et al. 1999a,b� provide information on the densities
of inclusion clusters. Correlation-based methods �Berryman 1985;
Baxter and Graham 2000� and multiscale techniques �Spowart
et al. 2001� have also been used to investigate such composites.
The Bayesian classifier method developed herein provides a sig-
nificantly different approach to the composites analysis problem.
The results of the analysis of this simple example problem show
both that mechanically meaningful patterns exist in the micro-
structure of fiber-reinforced composites, and that classification
algorithms can make use of these patterns to identify damage
initiation sites much more quickly than would be possible using
high-fidelity finite-element analyses.

The example is used in the next section to clarify the devel-
opment of the theory behind the classifier-based method. Details

of the example results are presented in the succeeding section.
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Development of Microstructural Classifiers

Basic Concepts

Consider a body of material with random heterogeneous micro-
structure under external stresses, such as the two-dimensional,
two-phase composite shown in Fig. 1. Let Rtotal denote the total
region of material under investigation and let Rcritical�Rtotal be
the subregions that may experience critical micromechanical
behavior. Critical behavior may include high stress or strain con-
centrations or other significant localized response such as damage
initiation. This subregion, which may be disjoint, is indicated
by the shaded areas in the figure. The goal is to derive an ap-
proach that can rapidly predict the location of Rcritical at a
computational effort that is far less than that required for a full
analysis of Rtotal. The tradeoff here is that such an approach would
produce errors in identifying the critical region. Specifically, the
method of interest would identify potentially critical subregions

�Ri�= �Ri : i=1, . . . ,m� whose union R̂critical=R1� . . . �Rm con-
tains most or all of the critical subregion Rcritical. In Fig. 1, the
three potentially critical subregions �R1 ,R2 ,R3� are indicated by
the squares.

There are two primary types of error: false positive, where
subregion Rj is completely noncritical and false negative, where

some of the critical subregion lies outside the union R̂critical. These
errors, which are illustrated in Fig. 1, are defined more precisely
by the following:

false positive in subregion j ⇔ Rj � Rcritical = �

false negative ⇔ R̂critical � Rcritical � Rcritical �1�

One important application of such a method is in improving the
efficiency of computational analysis of microstructured materials.
Efficiency can be gained since high-fidelity analysis �a highly
refined finite-element mesh, for example�, need only be per-

formed within R̂critical, whereas in the complementary region

R̂critical� , a lower fidelity analysis �coarse finite-element mesh with
homogenized properties� may suffice. In this application, when
the subregions with false positive error form a relatively large
volume, then the computational effort in the reduced analysis be-
comes unnecessarily high. If the false negative error is large, in
which case a large portion of the critical subregion lies outside of

R̂critical, then the accuracy of the reduced analysis is compromised.

Fig. 1. Two-dimensional, two phase random composite with critical
subregions Rcritical, potentially critical subregions �Ri�, and examples
of false positive and false negative errors
It can be seen that while both types of errors are important, the
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false negative error may be more detrimental in this computa-
tional analysis application. What is presented herein is a method
which identifies the most likely critical subregions �Ri�, and pro-
vides an approximate ranking of these subregions in order of most
critical to least critical. This ranking method can be subsequently
used to investigate false positive and false negative errors using
receiver operating characteristic �ROC� analysis �Provost and
Fawcett 2001�. A brief discussion of such a ROC analysis is given
in numerical example.

A classifier would identify the subregions �Ri� only through
examination of the spatial configuration of the microstructure. As
indicated in Fig. 2, the idea is to characterize the microstructure
within a windowed region Rwindow that is at least as large as any
given subregion Rj but considerably smaller than the entire speci-
men Rtotal. It is convenient to define the operator ��Rwindow�=Rj

for obtaining the central subregion within Rwindow as shown in
Fig. 2. The classifier would use this characterization to provide an
estimated likelihood of finding a critical subregion in the center of
the window. As noted in the “Introduction,” information from
detailed microstructural analyses of a set of small samples would
be needed to derive the classifier. Once this is done, the classifier
can be used over the entire region Rtotal through a moving-window
technique to rapidly identify and rank the potentially critical sub-
regions �Ri�.

Some further notation is needed to explain the microstructural
characterization process. Let X be an nX-dimensional vector that
fully describes the microstructure within Rwindow. In our two-
phase composites example, the microstructure is divided into
np�np square pixels. The microstructure vector X is of dimension
np

2 with coordinates that are the elastic modulus values at the
center of each of the pixels. The space of all possible values for
the vector X is denoted as �X. For a given set of boundary con-
ditions with externally applied tractions over Rwindow, a stress
analysis at the microstructural level is performed. The analysis
results corresponding to microstructure X are collected in an
nY-dimensional vector Y; hence Y =Y�X� can be considered as a
function of X. The set of all possible values for Y is denoted by
�Y. For example, the response vector Y could have dimension
nY =nX with coordinates equal to the effective strain at the pixel
centers. If a range of boundary conditions is of interest, then this
information would have to be appended to the vector X; to sim-
plify notation and to focus on the classifier aspects of the method,
only one set of boundary conditions is considered herein.

The simplest microstructural characterizations would be in
terms of spatial averages of the field properties in X. From the

Fig. 2. Moving window Rwindow enclosing microstructure X with
central subregion Rj = ı �Rwindow� and associated inequality test for
identifying potentially critical subregions
classifier point of view, such characterizations can be obtained
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using classifiers developed through unsupervised learning, where
the term unsupervised indicates that the classifiers are developed
without regard to the microstructural response Y. Besides spatial
averages, spatial correlation functions, higher moments, and other
statistical measures such as the shortest distance between inclu-
sions also fall into this category of characterizations generated
from unsupervised learning. The value of such characterizations
is that they are often related to macrostructural response. Such
relationships can be discovered through theoretical or simulation
studies. It is noted that such relationships are obtained indepen-
dently of the characterization process.

Herein, the emphasis is on characterizations of microstructure
obtained from classifiers developed through supervised learning,
where a microstructure configuration Xi is identified with some
class or category of microstructural response Y�Xi�. In the follow-
ing subsections, the mathematical form of this characterization
process is presented and it is shown how this type of character-
ization can be used to identify the potentially critical subregions
�Rj� in Fig. 1.

Feature Vectors Obtained by Supervised Learning

Consider a set of N simulated random microstructures Xi��X for
regions with size and geometry given by Rwindow. In our example,
these microstructures consist of circular inclusions placed accord-
ing to a Poisson field on an underlying matrix to give a represen-
tation of a cross section through a fiber-reinforced composite. The
raw microstructural data set is given by the set DX= �Xi�. To
perform supervised learning, the microstructural vectors Xi are
augmented with the response vectors Yi=Y�Xi�, yielding the set of
�nX+nY�-dimensional data vectors D= ��Xi ,Yi��. Critical micro-
structural response would be defined by a subset of values
�Y

* ��Y. This subset might be defined, for example, to be those
microstructures in which the maximum strain in the central region
of Rwindow is above some threshold. Microstructure X would then
be defined to be critical if the associated response Y�X� is critical.
Hence, the critical microstructure set is

DX
* = �Xi:Yi � �Y

*� �2�

While it is possible to extend these definitions to three or more
classes of microstructure, there are computational complexities
associated with such an extension. In “Classifiers for Microstruc-
tural Characterization,” it is shown how a sequence of two-class
analyses is sufficient to produce an approximate ranking of mi-
crostructure in order of most critical to least critical.

The dimension nX of the microstructure X is, in general, too
high for subsequent classifier analysis. For example, with a
40�40 pixel microstructural window for our composites prob-
lem, the vectors X are of dimension 1,600. Thus, it is necessary to
provide low-dimensional representations that capture the most
important properties of the microstructure in a compact form.
Such representations are developed using features. In the most
general sense, a microstructural feature is simply a function of X;
in the context of this work, features will be derived using super-
vised learning from the N simulated augmented data vectors
D= ��Xi ,Yi��. A collection of M features would define the coordi-
nates of the M-dimensional feature space F as follows:

f�X� = �f1�X�, . . . , fM�X�� �3�

To be of practical use, the feature space must have a dimension M
that is considerably smaller than the dimension nX of the micro-

structure X. Vectors in the feature space F are also denoted as f; it
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will be clear from context whether f refers to the feature space
vector or the feature function.

The most straightforward feature functions are defined using
class-dependent basis vector expansions. Beginning with the criti-
cal microstructure set DX

* , a set �ej� of n basis vectors would be
obtained, where the expansion of any microstructural vector X
would be of the form

X = �
j=1

n

� jej + Xres �4�

Here, � j�basis vector coefficients and Xres�vector of residuals.
The essential idea is that, for X�DX

* , some measure of the size of
the residuals, such as the sum of the mean-squared components,
would be minimized. Some popular methods to obtain such basis
vectors include principal components analysis, where the coeffi-
cients � j are uncorrelated and the basis vectors ej are orthogonal,
and factor rotation methods, where the statistical dependence be-
tween the coefficients � j is minimized but orthogonality of the
basis vectors ej is not enforced. Once the basis vectors are ob-
tained, then the basis vector coefficients can be used directly as
feature functions, f j�X�=� j for j=1, . . . ,n. As stated earlier, the
number of basis vectors n must be much smaller than the dimen-
sion of the microstructure, nX. In general, the feature vector f can
also contain other components to describe the microstructure X.

For our composites example, the basis vectors were obtained
from principal components analysis. The number of basis vectors
retained in the example is n=20 which is two orders of magnitude
smaller than the original number of components used to describe
the microstructure, nX=1,600. It is noted that while the feature
vector f = ��1 , . . . ,�20� contains only 20 scalars to describe the
microstructure X, each of the 20 associated basis vectors ej con-
tains the full 1,600 components corresponding to the microstruc-
ture pixels.

Partition of Feature Space Using Classifiers

In this subsection, a standard tree-based classifier approach is
briefly presented in the context of microstructural analysis. In the
next subsection, this approach is generalized using decision-
theoretic arguments. Of interest herein are classifiers that quantify
the likelihood that a particular microstructure X, approximately
represented by feature vector f , will have a critical response:

C�f� = Pr�Y�X� � �Y
*:f�X� = f� �5�

where Pr�·� designates an estimated probability. The most
straightforward classifiers C�f� have a finite number of values and
can be defined completely by a partition �Fj� of F and a corre-
sponding set of likelihood values �Pj� as follows:

C�f� = Pj where f � Fj for some 1 � j � L �6�

To make the notation more transparent, it is useful to define an
index function which assigns, for each microstructure X, a parti-
tion index j

j�X� = j�f�X�� = j where f�X� � Fj �7�

We can also rewrite the expression for the classifier as simply

C�X� = C�f�X�� = Pj�X� �8�

The approach used herein for determining the partition �Fj� and
associated likelihood values �Pj� is based on Bayesian classifica-
tion trees �Buntine 1992�.
Briefly, a binary classification tree, such as that shown in
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Fig. 3, consists of nodes and downward directed edges with a root
node at the upper end and leaf nodes j=1, . . . ,L at the lower ends.
Two edges are directed from each nonleaf node—they are asso-
ciated with the binary relations f �Gi and f �Gi. For every leaf j,
there is a unique sequence of edges from the root to the leaf.
The binary expressions and logical values associated with
this sequence define a subset Fj of the feature space F. For in-
stance, in Fig. 3, the subset F4 corresponding to leaf 4 is
F4= �f : f �Gi , f �G3 , f �G4�. The collection of all such subsets
�Fj� form a partition of F. To complete the classification tree,
probability values Pj are assigned to the leaves; these values are
estimated using the microstructural descriptions and their associ-
ated response. For example, P4 would be the probability that
those values of X with features f�X� lying with subset F4, that is,
those microstructures the tree places at leaf node 4, would be
critical, with Y�X���Y

*. The feature function f and the classifi-
cation tree forms a classifier in that every microstructure X would
be assigned a feature vector f = f�X� and would subsequently be
placed by the tree at a unique leaf node j. This leaf node corre-
sponds to a unique subset Fj that contains f and a probability Pj

of being critical. The functional relation between microstructure X
and the leaf node j would define the index function j�X� in
Eq. �7�.

To illustrate the manner in which the tree can classify micro-
structure, one of the trees from the composites example is briefly
examined. A small portion of this tree, shown in Fig. 4, shows a
sequence of edges, binary relations involving the feature vector f
at the nonleaf nodes, and a probability of critical microstructure at
leaf node 1. At the top node of this tree, all microstructures X are
considered. Before proceeding through the tree, the feature vector
f�X� is rapidly evaluated without any mechanics-based stress
analysis. As noted earlier, for the composites example, the com-
ponents of f are simply the 20 coefficients of the basis function
expansion in Eq. �4�. Next, the tree uses f to classify the micro-
structure X according to the binary relations in the nonleaf nodes.
For instance, only those microstructure whose first three compo-
nents of f satisfy the three inequalities shown in Fig. 4 would be
propagated along the leftmost branch of the figure. The terminal
node at the bottom is leaf node 1, and the tree indicates that 17%
of the microstructure X that fall into this node axe critical with a
maximum stress above a critical threshold. In other words, for
any microstructure X falling in this node, the feature vector would

Fig. 3. Binary classification tree with binary expressions f �Gi at
intermediate nodes; feature subset corresponding to leaf 4 is
F4= �f : f �G1 , f �G3 , f �G−4�
be in the first partition, f�X��F1, the index function would be
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j�X�=1, and the classifier result would be C�X�= P1=17%. While
this tree can easily and rapidly classify microstructure X in this
manner, the real work is in designing the tree.

To design the structure of the tree and the nature of the binary
relations, standard classification tree algorithms use the �informa-
tion� entropy for the heuristic. The entropy of leaf j of a tree is
given by

I�Pj� = − Pj log2 Pj − �1 − Pj�log2�1 − Pj� �9�

which is minimized when Pj =0 or 1. These limiting values for Pj

represent perfect information, or equivalently, zero uncertainty.
For the present problem, this situation would occur when either
all or no microstructure X assigned to leaf j has critical response.
The weighted entropy IT of the tree T is a weighted average of the
leaf information entropies �Hastie et al. 2001�

IT = �
j=1

L

� jI�Pj� �10�

where � j�proportion of the training microstructures assigned to
leaf j. While the weighted entropy cannot be minimized in a
computationally feasible manner, it has been successfully used in
heuristics of several widely used tree construction methods
�Breiman et al. 1984; Quinlan 1993�. To prevent the size of the
tree from growing too large and cumbersome, the heuristics in
these methods include a penalty term that is a function of tree
complexity.

Decision-Theoretic Classifiers

Standard information-theoretic classifiers, as reviewed in the
preceding subsection, turn out to be ill suited for the microstruc-
tural analysis problem. Those classifiers must be generalized in a
decision theory framework; the derivation of such generalized
classifiers is presented in the following. The derivations are given
here in outline form. Details of the calculations can be found in
Liu and Igusa �2006�, which is available for online download
from the location given in the citation.

The Bayesian approach begins with utility functions; in the
present application, the utility of interest is associated with the
microstructure assigned to leaf j. This utility can be expressed as
a function q�Pj� of the probability Pj that a microstructure X
assigned to leaf j is critical. The expected utility would then be

Fig. 4. Small portion of tree T�1� for class k=1 that identifies
microstructures X with features satisfying f �1�	3.02, f �2�	5.50,
f �3�	−2.37, . . . , as having 17% likelihood of high stress
concentration
given by
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E�q�T,Pj� = �
j=1

L

� jq�Pj� �11�

where the topology and associated binary expressions of the tree
T is treated as a condition. A special case is where the utility of
information is given by the negative of the entropy defined in
Eq. �9�

q�Pj� = − I�Pj� �12�

It can then be immediately shown that the expected utility in
Eq. �11� is equal to the negative entropy −IT in Eq. �10�. Thus,
the weighted entropy heuristic is a special case of the Bayesian
heuristic.

In a decision-theoretic approach, it is first necessary to assign
each microstructure X to either the critical or noncritical class.
This is equivalent to defining a logical classifier Clogical that would
be equal to the logical value of the statement Y�X���Y

*. In terms
of the probability classifier, C�X� as defined in Eq. �8�, the logical
classifier would be

Clogical�X� = 	TRUE if Pj�X� � P*

FALSE otherwise
�13�

Next, costs or negative utilities must be assigned to false positive
and false negative errors, defined in Eq. �1�. Let the cost associ-
ated with a false positive result be 1 and that associated with a
false negative result be c. Consider microstructure X that the
tree assigns to leaf j. If Pj � P*, then the logical classifier will be
true, and X will always be considered to be critical. Hence, the
only possible error is a false positive, with probability 1− Pj and
cost 1. Similarly, if Pj 	 P*, then the only possible error is a false
negative, with probability Pj and cost c. It immediately follows
that the conditional expected utility q�Pj� of microstructure
placed in leaf j will be given by

q�Pj� = 	Pj − 1 if pj � P*

− cPj otherwise
�14�

It can be verified that q�Pj� is maximized when

P* =
1

c + 1

For the special case where the costs of false negatives and false
positives are all equal to 1, we have P*=1/2 and q�Pj� becomes
symmetric about Pj =0.5, the point of zero information gain so
that, for example, q�0.4�=q�0.6�.

The decision theory result for the expected utility of the tree
would be given by the weighted sum in Eq. �11� with conditional
expected utility q�Pj� given by Eq. �14�. While this result is a
straightforward conclusion from decision theory, it has been noted
�Hastie et al. 2001� that it does not necessarily lead to a good
search heuristic. We can illustrate this with a simple example that
is modified from the example in the aforementioned reference.
Consider two trees, denoted as A and B, each with only two
leaves, where half of the microstructure data X are placed in each
leaf in Tree A, �1

A=�2
A=1/2, and one fourth of the data are placed

in leaf 1 of Tree B, �2
B=1/4 and �2

B=3/4. The proportions of
critical microstructure in the two leaves of Tree A are P1

A=1/3,
P2

A=2/3 and the corresponding proportions of Tree B are
P1

B=1/6, P2
B=7/18. If the costs of false positives and false nega-

tives are equal to 1, then the expected utility of the two trees
would be equal, with E�q �TA , Pj

A�=E�q �TB , Pj
B�=−1/3, in which
the decision theory result for the utility function q in Eq. �14� is
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used. With the weighted entropy heuristic, Tree B is preferred
over Tree A; this is because leaf 1 of Tree B is more pure than leaf
1 of Tree A which results in a significantly smaller entropy. The
weighted entropy heuristic gives better guidance for constructing
the tree because, after selecting Tree B, this heuristic would lead
to tree growth in the direction of leaf 2.

This simple example provides an indication as to why the
weighted entropy is desirable as a tree construction heuristic and,
as noted above, is used in the most popular classification tree
algorithms. Nevertheless, the decision theory approach is attrac-
tive in its treatment of unequal costs of false positives and false
negatives. The strengths of the decision theory approach to gen-
eral classification problems has be documented in many applica-
tions �Tan and Schlimmer 1990�. What is done next in the present
paper is to combine the concepts of weighted entropy and ex-
pected utilities to obtain a decision theory-based heuristic for
constructing classification trees. Such a heuristic is derived by
examining the value of information from the decision theory point
of view.

The basic idea is to compare the preceding decision theory
results with the limiting case where infinite information is avail-
able. To do this within the Bayesian framework, the probabilities
�Pj� must be modeled as beta-distributed random variables. If
standard Bayesian conjugate prior and posterior distributions are
used, the expected value of the information in the training data Dj

associated with leaf j would be given by

E�Qj�Dj� =

0

1

q�Pj�
 j�Pj�Dj�dPj �15�

Here 
 j�Pj �Dj��posterior beta density function given the Nj data
samples in Dj �DeGroot 1970�. The difference in the expected
information evaluated when Pj is treated as given information and
when it is treated in the Bayesian sense as a random variable has
the following asymptotic limit

lim
Nj→�

log2�E�Qj�Pj� − E�Qj�Dj��
Nj

= I�Pj� + 1 �16�

where the total number of data Nj corresponding to leaf j in-
creases to infinity. This gives the essential relationship between
the expected value of information and the weighted entropy. If the
weighted sum in Eq. �10� is used to combine the differences in
expected information, then the following is obtained:

lim
Nj→�

1

N�
j=1

L

log2�E�Qj�Pj� − E�Qj�Dj�� = IT + 1 �17�

where we use Nj =� jN and note that the proportion � j which
would appear in the denominator of Eq. �16� would cancel with
the weights in Eqs. �10�. Since the weighted entropy IT is used for
the search heuristic, it is important to see how slight changes in IT

are related to changes in the expected information difference
E�Qj � Pj�−E�Qj �Dj�. The result is approximately

1

N log 2�
j=i

L
��E�Qj�Pj� − E�Qj�Dj��

E�Qj�Pj� − E�Qj�Dj�
� �IT �18�

This shows that, in the entropy search heuristic, it is the relative
changes in the expected information difference that is important.
The weights � j, which are proportional to the number of data in
each leaf, are not used. As shown in Eq. �17�, these weights are

implicitly included in the expected information difference.
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With the relationship between weighted entropy and Bayesian
decision theory established, it is now possible to include the im-
portant difference of utilities associated with false negatives and
false positives. A simple approximate approach to include this
difference is to use a revised probability Pi� defined by

Pi� =
cPi

1 + �c − 1�Pi
�19�

in place of the probability Pi in Eqs. �6� and �14�. This revised
probability can be interpreted as the probability of critical con-
figuration at leaf j if the number of critical configurations is
scaled by the relative cost of false negatives, c. It can be shown
that the minimum of the entropy I�Pj�� at leaf j evaluated using
this revised probability is approximately at Pj�= �c+1�−1; this cor-
responds to the maximum of the expected utility in Eq. �11�.

The preceding results for a decision-theoretic classifier are
new; it is shown in the following how these results can be com-
bined with standard Bayesian techniques to reduce the complexity
of the classifier. The essential idea is to use prior probabilities

�T� for the tree T; the prior acts essentially as a weight to influ-
ence tree design. For instance, if trees with a relatively small
number of edges and nodes are preferred, then the prior 
�T�
would be larger for such trees. The final heuristic for the design
of Bayesian classification trees would be given by the product of
the expected value of the information and the prior probability for
the tree

Toptimal = arg max
T

�E�Q�T,data�
�T�� �20�

In practice, the optimization required in this equation is difficult;
hence, heuristic algorithms have been developed. In the present
context, a Bayesian approach to tree construction �Buntine 1992�
is most relevant.

It is noted that any feature f j that is not included in the binary
expressions of the tree can always be removed from the feature
vector f . Hence, an important benefit of the tree reduction process
is in reducing the dimension of the feature vector space F.

Classifiers for Microstructural Characterization

In this subsection, it is shown how a sequence of classifiers can
be developed for characterizing the microstructure in a speci-
men Rtotal larger than Rwindow. The first classifier C�1� and corre-
sponding tree T�1�, given by C and T in the preceding section,
would be used to analyze the microstructure X within Rwindow.
Specifically, the classifier would estimate the probability that the
microstructure response is critical, as defined by the relation
Y�X���Y

�1�=�Y
*. If this probability exceeded some threshold

value Pthreshold
�1� , then the central subregion R= ��Rwindow� within

Rwindow, as defined by the operator �, would be marked as a po-
tentially critical subregion. By moving the window throughout
Rtotal, this classifier would identify a collection of potentially criti-
cal subregions �Ri� as illustrated in Fig. 2. The union of these

subregions would yield the potentially critical region, R̂critical
�1� .

With only a single classifier, however, it is not possible to obtain

R̂critical
�1� with low likelihoods of false positives and false negatives.

This is because, to keep the likelihood of false negative low, the
threshold probability must be set so that 1− Pthreshold

�1� is nearly 1.

This would make R̂critical
�1� large, and would result in a high likeli-

hood of false positives. To address this problem, two additional
classifiers are defined that will reduce the size of the potentially

critical region without increasing the likelihood of false negatives.
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A natural choice for the second class of microstructural re-
sponse is simply the complement of the first, �Y

�2�= ��Y
*��, rep-

resenting uncritical cases. For the composites example, such
uncritical cases correspond to microstructure response with small
strain in the central pixel. Using the data subset DX

�2� in Eq. �2�,
the feature vector f �2� can be derived, as explained after that equa-
tion. The classifier C�2� and tree T�2� for this second class would,
in general, not be a simple complement of the classifier and tree
associated with the first class. With this second classifier, a second
pass of the moving window Rwindow would be performed. Since
the probability Pj

�2� of the second classifier C�2� is the estimated
probability that a region is not critical, a second upper threshold
value Pthreshold

�2� would be used with C�2� to eliminate some of the
regions identified in the first pass. In this manner, the second
classifier reduces the size of the potentially critical region without
significantly affecting the probability of false negatives. This pro-
cess is explained explicitly in the following:
1. Using a moving window Rwindow over the total region Rtotal

the first pass approximation for the critical region would be
obtained using the first classifier, C�1�

R̂critical
�1� = �

Rwindow�Rtotal

���Rwindow�:C�1��f �1��Rwindow�� � Pthreshold
�1� �

�21�

Here the union is a collection of subregions, R̂critical
�1�

= �Rwindow,1 ,Rwindow,2 , . . . �, and f �1��Rwindow��feature vector
associated with the microstructure in Rwindow. The operator
��Rwindow� which extracts the central portion of the window,
is applied since the goal of the classification is to identify the
actual site of critical behavior, and the trees have been de-
veloped in terms of the responses within this central portion.
Thus, the classifiers actually provide predictions about the
criticality of the central portion of the window based on the
microstructural contents of the entire window.

2. The second pass would produce a refinement using the
second classifier, C�2�

R̂critical
�2� = �

Rwindow�R̂critical
�1�

���Rwindow�:C�2��f �2��Rwindow�� 	 Pthreshold
�2� �

�22�
where the union remains as a collection of subregions.

In theory, it is possible to replace the aforementioned two
classifiers with a single classifier to do essentially the same
classification problem. Such a single classifier would have at
least three classes, which predicts the likelihood that a mi-
crostructure X within Rwindow is a member of the critical
class, noncritical class, and one or more intermediate classes.
This approach was not pursued herein because of complexity
issues. As noted earlier, the optimization of a classification
tree is computationally infeasible, and suboptimal search al-
gorithms must be used in practice. The reason for proposing
a separation of the classification problem into two separate
problems, one for critical microstructure and the other for
noncritical microstructure, is to reduce computational com-
plexity. It was found that using a single classification tree,
there were convergence difficulties and the tree construction
algorithm produced larger, yet less accurate trees.

While the use of two classifiers provides a smaller set of
potentially critical locations than the use of a single classifier,

the result for the set of potentially critical subregions R̂critical
�2�
is still too large to be practical. The essential source of the
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difficulty is in the binary nature of the classifiers, with as-
sessments restricted to relations of the form Y�X���Y

* and
Y�X���Y

*. To address this problem, a third classifier is used
that, while still within the binary framework, provides a more
detailed assessment of microstructural response. The third
classifier is based on a relational operator � that is used
to compare microstructural responses, where Y�XA��Y�XB�
implies that the response of microstructure XB is more criti-
cal or severe than that of microstructure XA. If the response
function Y�X� is scalar, then the operator � can simply be
replaced by the inequality 	; if Y�X� is a vector or tensor,
then a more general form of response comparison is needed.
In the composites example, a scalar response function was
used, given by the strain in the center of the microstructural
window. Once this operator is defined, then the third classi-
fier would be given by a generalization of Eq. �5�

C�3��f� = Pr�Y�XA� � Y�XB�:f�XA,XB� = f� �23�

Here, the feature function is defined for the 2nX-dimensional
vector �XA ,XB�. The data subset associated with this third
classifier would be defined by a generalization of Eq. �2�

D�XA,XB�
�3� = ��XA,XB�:Y�XA� � Y�XB�� �24�

There are two ways to define the feature vector f �3��F�3�.
The first would be to use a basis vector expansion based on
an analysis of the subset D�XA,XB�

�3� similar to that described
after Eq. �2�; the components of the feature vector would be
given by � j

�3� of Eq. �4� with X replaced by �XA ,XB�. A sim-
pler way to define feature vector f �3� is to use the product
space F�3�=F�1��F�2��F�1��F�2� of feature vectors for the
first two classes resulting in a 2�n�1�+n�2��-dimensional
vector

f �3��XA,XB� = �f �1��XA�, f �2��XA�, f �1��XB�, f �2��XB�� �25�

In either case, a third classification tree T�3� would be used
with partitions �Fj

�3�� of the feature space F�3�. At the jth leaf
of this tree, Pj

�3� would be the probability that microstructures
XA and XB with feature value f�XA ,XB��Fj

�3� has responses
satisfying Y�XA��Y�XB�.

The third classifier C�3� would be used to rank order the

set of regions R̂critical
�2� identified by the first two classifiers in

the following manner, in which a higher ranked region has a
more critical response:

3. The probability Pi that a region Rwindow,i� R̂critical
�2� is more

critical than any other region in R̂critical
�2� is approximated by

the following product, based on the third classifier, C�3�:

Pi = �
j�i

C�3��f �3��Rwindow,j,Rwindow,i�� �26�

If the indices of the m largest values for the probabilities �Pi�
are given by i�1� , i�2� , . . . , i�m�, then

R̂critical = �
j=1

m

��Rwindow,i�j�� �27�

would be the final estimate for the critical region. Here,
the indices i�j� would be rank ordered such that
Pi�1�� ¯ � Pi�m�; hence ��Rwindow,i�1�� is the estimate of
the most likely critical subregion.

Implicit in the approximation for the probabilities Pi is the
assumption that the events Y�XA��Y�XB� and Y�XC��Y�XB� are

independent for distinct regions XA ,XB, and XC. This assumption
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would be valid provided that the regions are sufficiently separated
in the spatial sense. Even if the independence assumption was not
accurate, the preceding approximation for Pi would still produce a
useful estimate for the indices i�1� , . . . , i�m� and the associated
rank order of probabilities. If the regions Xi overlap or are other-
wise spatially aggregated, clustering techniques can be used to
form groups of regions. The central region would be used to
represent each group before performing the rank order analysis.

Application to 2D Composites

General Concepts

This section contains a detailed analysis of the microstructural
example that was described in the “Introduction,” and subse-
quently used to illustrate the concepts used in the proposed
method. The microstructure considered is that of a fiber rein-
forced composite with parallel fibers. The problem is rendered
two dimensional by considering only a cross section of the mate-
rial taken perpendicular to the fiber direction. The matrix and
inclusions are modeled as homogeneous, isotropic, elastic–brittle
materials with deterministic properties; the only uncertainty is the
position of the inclusions. The Young’s moduli, Poisson’s ratio,
and ultimate strains for the two phases are given by EJ, J, and �J

with index J�matrix or inclusion. The fibers, or inclusions, are
cylindrical with diameter d, and the applied load �� is uniaxial,
perpendicular to the inclusions as shown in Fig. 1. In the remain-
der of this subsection, an overview is presented to show how the
classifier-based method can be used to identify the most likely
locations for damage initiation, without performing a finite ele-
ment, or other computationally intensive analysis. The next sub-
sections provides specific details for a numerical example.

To begin the analysis, the size of the window region, Rwindow,
must be determined. This window size is used in generating the
microstructural samples Xi in the data set D= ��Xi ,Yi�� which is
used in supervised learning to determine the feature set to be used
in classification. The tradeoff in selecting window size is between
retaining more of the mechanically relevant microstructure with a
large window, and reducing the dimension nX of X, the vector
describing the microstructural geometry, with a small window. A
large window results in inefficiencies associated with the high
dimensionality of Xi and with the computation cost in evaluating
Yi=Y�Xi� for each sample i. On the other hand, a small window
may not allow the supervised learning algorithm to capture the
relevant, physically meaningful features of the microstructure.
The concept of a representative volume element �RVE� with
periodic boundary conditions �Hill 1963� is widely used for
obtaining an appropriate moving window size. For the present
application, the size of the RVE should be large enough such that
its averaged elastic modulus is not sensitive to the positions of the
inclusions �Drugan and Willis 1996�. To help find an appropriate
RVE, Drugan and Willis �1996� provided a micromechanics-
based constitutive equation relating the averaged stress and strain
for a wide range of random linear elastic composites. By com-
paring the results of this constitutive equation with those obtained
from a constant overall modulus tensor, it is found that the mini-
mum RVE size is typically on the order of just several inclusion
diameters. Once the RVE is chosen, each microstructural sample
Xi can be generated with randomly placed inclusions using a
spatial Poisson point process with standard techniques to handle

periodicity and inclusion overlap. To represent the possible vari-
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ability in local volume fraction in the total material specimen,
Rtotal, samples Xi with different numbers of inclusions are needed.

Damage would occur in the central region ��Rwindow� of the
window when the local strain exceeds the fracture strain. Hence a
natural choice for the microstructural response Y is the ratio of
the local and fracture strain in the material phase in the center of
the window. The set of critical responses would be defined in
terms of a lower limit: �Y

�1�= �Y �Y�1��. Due to the periodicity in
the analysis of Xi, it is always possible to shift the microstructure
within the window so that the largest value of the strain ratio is
at the center; the shifted microstructure is denoted as Xi

�1�. Thus,
for the critical microstructures data set DX

�1�= �Xi
�1� :Yi��Y

�1��,
the most likely damage initiation location of each sample Xi

�1�

is at the center. Similarly, for the uncritical microstructures
DX

�2�= �Xi
�2� :Yi��Y

�2��, the set of critical responses would be
defined in terms of an upper limit: �Y

�2�= �Y �Y�2��. The micro-
structure Xi

�2� is obtained from Xi by shifting the microstructure
so that the largest value of the strain ratio is at the corners. In the
way, it is highly unlikely that damage initiation would occur in
the centers of the microstructures in the uncritical set DX

�2�. It can
be seen that the computationally intensive analysis Y�Xi� is
needed once for each sample Xi to determine the two data sets
DX

�k� for classes k=1,2 which correspond to critical and non-
critical microstructural response. After obtaining the basis vector
coefficients � j

�k�, which define the feature subvector f �k� for
j=1, . . . ,n�k�, three classifiers C�1� ,C�2�, and C�3� are derived,
following the general procedure described above.

Numerical Example

In the specific numerical example analyzed herein, the stiffness of
the inclusion is three times that of the matrix, Einclusion=3Ematrix,
and the Poisson’s ratio for both phases is =1/3. The fracture
strain for the inclusion is five times as large as that of the matrix,
�inclusion=5�matrix, so that damage initiation always occurs in the
matrix. The volume fraction of inclusions is set to be 12%. The
composite is subjected to stresses �x

� in the x direction under
plane-strain conditions. Using the aforementioned RVE concept,
an appropriate window size was determined to be 5d where d is
the inclusion diameter. A triangular spring lattice model �Ostoja-
Starzewski et al. 1996� is used for the stress analysis. The spring
length is chosen to be d /8 to accurately capture the stress
concentrations between inclusions. With this spring length and
window size, a 40�40 lattice is needed to model each micro-
structure Xi.

In the Poisson point process generation of microstructures
Xi, the minimum allowable distance between inclusion centers
was set at 3d /2. Three volume fractions, 19, 25 and 31% were
used, corresponding to 3, 4, and 5 inclusions/sample. A total of
N=600 samples were generated and analyzed. For each of the
resulting two data sets, DX

�1� and DX
�2� ,n�1�=n�2�=10 feature co-

ordinates were retained. As noted in “Feature Vectors Obtained by
Supervised Learning,” the basis vector coefficients were obtained
by principal components analysis. With these feature coordinates,
the original 1,600-dimensional vectors Xi are reduced to 20 di-
mensions. Fig. 5 shows three of the feature basis vectors derived
from the critical training samples, denoted, as ej

�1� in Eq. �4�, and
Fig. 6 shows three derived from the noncritical training samples,
denoted as ej

�2� in Eq. �4�. The darker regions represent regions of
higher stiffness, which correspond to high likelihood of inclu-
sions; the lighter regions represent locations of low likelihood of

inclusions. It is noted that these basis vectors do not necessarily

7



represent critical microstructures: the classifiers C�k�, used as
described in “General Concepts,” are needed to identify such mi-
crostructures. The feature basis vectors indicate sensitivity of the
local stress at the center to inclusion patterns, but as noted earlier,
it is the classifiers C�k�, that identify critical inclusion patterns
most likely to induce high local stresses.

The basis vectors can partially be interpreted based on the
Eshelby solution to the problem of an inclusion in a homoge-
neous, infinite matrix subject to remote tension �Liu 2003�. This
solution describes stress and strain concentrations caused by a
stiff, circular inclusion. Critical basis vector e1

�1� shows two in-
clusions aligned with the loading axis, for which configuration
superposition of the Eshelby solution would predict extreme
strain concentration. Noncritical basis vector e1

�2�, on the other
hand, shows inclusions �dark regions� far away from the center,
and a light color, indicating a low likelihood of inclusion pres-
ence, near the center of the window. Such a configuration would
be expected to result in low strain near the center of the window.
The other basis functions shown are more difficult to interpret
mechanically. The mechanical meaning of the basis functions is a
topic of active research by the writers.

With the data sets, DX
�k�, for classes k=1,2 and the associated

feature vectors f �k�, the classifiers C�k� are obtained next. The
corresponding Bayesian classification trees T�k� were constructed
so that the prior density for the tree in Eq. �20� favored relatively
small trees: T�1� had 19 nodes and eight leaves, T�2� had only 11
nodes and four leaves. As discussed earlier, Fig. 4 shows a small
portion of the tree T�1� for class k=1. This portion of the tree
shows that if microstructure X within a window Rwindow has
features satisfying f1

�1�	3.02, f2
�1�	5.50, f3

�1�	−2.37, . . ., then

Fig. 5. First three basis vectors e1
�1�, e2

�1�, and e3
�1�, for critical

response, showing high �dark� and low �light� likelihood of
inclusions; angle 
 corresponds to direction of long-range stress
reduction

Fig. 6. First three basis vectors e1
�2�, e2

�2�, and e3
�2�, for noncritical

response, showing high �dark� and low �light� likelihood of inclusions
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there is a 17% likelihood that the central portion of the window is
characterized by high stress concentrations. Following “General
Concepts,” the comparative classifier C�3� is also obtained using
the simplified form for the feature vector in Eq. �25�. This
classifier, which operates on the product of feature spaces, is
considerably more complex than the first two classifiers: the cor-
responding tree T�3� had 115 nodes and 58 leaves.

To test the classifier approach, ten material specimens are gen-
erated, each with region Rtotal that is four times as large as the
window-sized regions Rwindow used for the samples Xi. To main-
tain the volume fraction of 12%, each specimen includes 15 ran-
domly located inclusions. The benchmark analysis is performed
using an 80�80 spring network loaded until damage initiates by
failure of a spring element. The classifier-based procedure de-
scribed in “General Concepts” is used to determine the most
likely locations of damage initiation. The three main steps of the
analysis, illustrated in Fig. 7, are as follows: �1� the first pass
approximation for the critical region is obtained using the first

classifier, C�1�, resulting in a rather large region R̂critical
�1� for the

possible locations of damage initiation; �2� the second pass using

the second classifier, C�2�, eliminates most of R̂critical
�1� , resulting in a

substantially smaller region for consideration; and �3� the com-
parative analysis using the third classifier, C�3�, provides the final
estimates for the three most likely locations for damage initiation,
indicated by the numerals in the figure. A simple clustering algo-
rithm, based on the average linkage method, was used to group
the closely spaced regions. This method identifies clusters simply
based on the average Euclidean distance between all points in
each cluster. This simple clustering algorithm is implemented
in the statistics toolbox of the MATLAB scientific computing
program, and this implementation was used to perform the clus-
tering in this study. The benchmark analysis result for damage
initiation, indicated by a star in Fig. 7�c�, coincides with the most
likely site from the classifier analysis for this specimen. In Fig. 8,
four additional representative specimens are shown with compari-
sons between benchmark and classifier results. The benchmark
result coincides with the most likely location identified by the
classifier in Figs. 8�a and b�, the second most likely location in
Fig. 8�c�, and with none of the top four likely locations identified
by the classifier in Fig. 8�d�. While the result in Fig. 8�d� indicates

Fig. 7. Evolution of estimate for likely subregions of damage

initiation, R̂critical: �a� first pass approximation obtained from classifier
C�1�; �b� second pass reduction using C�2�; and �c� third pass reduction
and comparative analysis using C�3�, with numerals indicating
estimates for three most likely locations
that the classifier has room for improvement, it is noted that the
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classifier results are based on a relatively small training data set
and that its accuracy can be enhanced by increasing the size of the
training data set. Overall, in 80% of the comparisons, the bench-
mark result was among the four most likely locations and in half
of the comparisons, the benchmark result coincided with the most
likely location identified by the classifier. These results are re-
markably accurate, considering that the classifier analysis is sev-
eral orders of magnitude faster than the benchmark analysis for
identifying the locations of damage initiation.

It is noted that the concepts of false positives and false nega-
tives with nonequal costs were used in developing a decision-
theory based heuristic that incorporates the desirable properties of
the entropy-based heuristic. This heuristic was needed to drive the
construction of the tree-based classifiers. It was not possible to
perform a meta comparison of several classifiers, simply because
standard classifier-based methods, such as using off-the-shelf
classifier algorithms to construct a single classification tree for
finding the most likely damage initiation point, performed so
poorly. Moreover, the intent herein is not to criticize such widely
used algorithms, but to explain how minor modifications to the
underlying heuristic can result in a classifier particularly suited to
the microstructure characterization problem. It is noted that if the
notions of false positives and false negatives, which were vital in
defining this heuristic, are also applied to the final classifier in the
example problem then the probability of false positive is high and
the probability of false negatives would be very close to zero.
Specifically, if m is the total number of locations within each
specimen, n is the final number of locations with each specimen
that is retained as possible locations for the highest stress level,
and p is the probability that the highest stress level in a specimen
lies within these n grid points, then the probability of false posi-
tives is 1− p /n and the probability of false negatives is p /m.
Here, each location refers to a cluster of points, so that in Fig. 8,
there are n=4 locations per specimen identified out of a total of
approximately m=1,000 possible locations. For n=4, the prob-
abilities of false positive and false negative are 1−0.8/4=80%
and 0.8/1,000=008%, whereas for n=1, these probabilities are
1−0.5/1=50% and 0.5/1,000=0.05%. Hence, if these points
were plotted on a ROC curve, they would lie nearly horizontally
at the top of ROC coordinates. To make use of this comparative
information, a measure of cost of false positive and false negative
errors is needed for this problem of finding the most highly
stressed location in a specimen. This is beyond the present study,
and is different from the costs of false positive and false negative
errors used in the classifier heuristic, which is the focus of this

Fig. 8. Estimates for most likely locations of damage initiation
paper.
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Conclusions

In the foreseeable future, high-fidelity simulations of microstruc-
tural response are largely limited to very small material sample
sizes. The research work presented herein was conducted with
this important limitation in mind. Specifically, an approach was
developed that can use such simulation results to characterize and
analyze materials with random microstructure at the mesoscale.
Bayesian classifiers are used in a manner that is considerably
different from standard classifier applications in pattern recogni-
tion and other data-mining problems. What is noteworthy herein
is: �1� the generalization of the classifier heuristic from the stan-
dard information-theoretic to the broader decision-theoretic set-
ting that can be tied to microstructural analysis goals; and �2� the
manner in which a sequence of classifiers are used to identify
the critical region of a material specimen. A relatively simple
example is used to illustrate the method.

Outstanding issues include the estimation of the errors inher-
ent in the procedure, the characterization of microstructure with
random phase geometry, the consideration of multiple sets of
boundary conditions, and the analysis of more complex examples.
In the paper, there was only a brief discussion of the basis vector
expansion that was used in an intermediate step; the compatibility
of Bayesian classifiers to various expansion methods, particularly
approaches using factor rotation and principal surfaces and mani-
folds, could be explored. While more complex classifiers using
flexible discriminants or support vector machines can also be ex-
amined, there is always the fundamental statistical issue of bias-
variance tradeoff where more complex methods can fit data more
faithfully, but end up with poorer predictive accuracy �Vapnik
1996; Cherkassky and Mulier 1998�.

While the classifiers can be used directly in problems such as
the identification of damage initiation sites, they can also provide
insight into macromechanical behavior of composites. Further-
more, classifiers can guide the construction of computational
models. A main challenge in analyzing the response of material
microstructures is the degree of discretization necessary to obtain
reliable computational results. By identifying regions of a micro-
structure that are likely to participate in damage initiation, for
example, classification has the potential to guide multiscale mod-
eling and discretization of microstructures.

It was noted earlier that there has been some seminal work on
materials with random microstructure by Zabaras and his col-
leagues that also use statistics and classifiers. The two approaches

ared with benchmark results for four representative specimens
comp
examine the materials problem from different viewpoints, how-
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ever, and work at different aspects of the materials problem.
While the methods in the aforementioned work do not require
detailed microstructural simulations, they also are not developed
to extract information from such simulated data. Thus, the two
approaches are complementary. The combination of these ap-
proaches would allow for the analysis of information from both
experimentally sampled microstructural data, such as captured by
the orientation distribution function, and small-scale mechanical
simulations of microstructure. While this is not addressed herein,
it would be a natural next step in this research topic.
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Notation

The following symbols are used in this paper:
C�f� � classifier;

Clogical � logical classifier;
C�X� � alternative classifier notation;

c � cost of false negative error;
D � a set of microstructure and response vector pairs

�Xi ,Yi�;
DX � a set of multiple microstructure vectors;

Dx
�k� � training data set for response class k;

DX
* � subset of D* corresponding to critical response;
d � fiber diameter;
E � elastic modulus;

E�·� � expectation;
ej � basis vectors defining coordinates of feature

space;
F � feature space;

f�X� � feature space vector;
f i�X� � feature function;

Gi � feature space partition;
I � entropy of leaf node;

IT � weighted entropy of classification tree;
j�X� � partition index;

M � dimension of feature space;
N � number of microstructures used in classification

training;
N � total number of data used in tree construction;

Nj � number of data used in estimation of leaf node
likelihoods;

n � number of basis functions used to represent
microstructure;

np � the number of pixels along a side of Rwindow;
nX � dimension of X;
nY � dimension of microstructural response vector;
Pi� � revised likelihoods;
Pj � likelihood values of the classifier;
p* � threshold likelihood;

q�Pj� � utility function;
Rcritical � microstructural subdomain in which critical

behavior occurs;

R̂critical � total classifier identified critical subregion, union
of Ri;
Ri � classifier identified potentially critical subregions;

JOURNA
Rtotal � microstructural domain;
Rwindow � microstructural subdomain used in moving

window classification;
T � classification tree;

Toptimal � optimal classification tree;
X � microstructure vector;
Xi � the ith element of a set of microstructure

vectors DX;
Xres � residual from microstructure expansion;

Yi � ith element of a set of microstructure response
vectors Yi=Y�Xi�;

Y�X� � microstructural response function;
� j � microstructure expansion coefficients;
� � ultimate strain;

��Rwindow� � central pixel of a microstructural subdomain;
 � Poisson’s ratio;

� j � entropy weight;
�� � remote applied stress;


�T� � prior probabilities for classification tree;
�X � space of all possible values of X;
�Y � space of all possible values of Y;
�Y

* � set of critical response vectors; and
� � relational operator for comparing microstructure

criticality.
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