
Prediction of Incipient Damage
Sites in Composites using Classifiers

ARGHAVAN LOUHGHALAM

Department of Civil Engineering
Johns Hopkins University, Baltimore, MD, USA

SANJAY R. ARWADE*

Department of Civil & Environmental Engineering
University of Massachusetts, Amherst, Amherst, MA, USA

ABSTRACT: This paper describes a method for predicting locations in a two-phase
material where effective elastic strain is concentrated above a specified threshold
value by virtue of the local arrangement of phases and a specified set of boundary
conditions. This prediction is made entirely based on knowledge of the material
properties of the phases, their spatial arrangement, and the boundary conditions,
and does not require numerical solution of the equations of elasticity. The example
problem is a 2D idealization of a fiber- or particle-reinforced composite in which the
fibers/particles are randomly placed in the matrix and the boundary conditions
correspond to uniaxial extension. The method relies on a moving window
implementation of a decision tree classifier that predicts, for all points in the
material, whether the effective elastic strain will exceed a specified threshold value.
The classifier operates on a set of attributes that are the coefficients of a series
expansion of a discretized version of the phase geometry. The basis vectors appearing
in this series expansion of the phase geometry are derived from a principal
components analysis of a set of training samples for which the mechanical response is
calculated using finite element analysis. These basis vectors allow the accurate
representation of the phase geometry with many fewer parameters than is typical,
and, because the training samples contain information regarding the mechanical
response of the material, also allow prediction of the response using a classifier that
takes a relatively small number of input attributes. The predictive classifier is tested
on simulated two-phase material samples that are not part of the original training
set, and correctly predicts whether efffective elastic strain will be elevated above a
specified threshold with greater than 90% accuracy.
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INTRODUCTION

I
T IS WELL understood by engineers and materials scientists that the
initiation of failure in solid structures is often driven by heterogeneity at

the material microscale. This has been observed experimentally since the
early days of fracture mechanics, when tests showed that only when
the diameter of a glass fiber became very small did the strength approach
the theoretical strength calculated from first principles (Griffith, 1921).
Other examples of this phenomenon include the initiation and propagation
of discrete cracks in concrete materials (Hanson et al., 2004), the initiation of
shear bands in soils and ductile materials (Alsalesh et al., 2007; Voyiadjis
and Abed, 2007), the initiation of stress-corrosion cracks at stiff inclusions
in metals (Wei and Harlow, 2003), and the debonding of fiber/particle
from matrix in composite materials, etc. (Ju and Lee 2001; Liu et al., 2006;
Paulino et al., 2006)

Over the past several decades a rich variety of very successful computa-
tional methods have been developed for tracking the evolution of damage
from the microscale to the macroscale, including fracture and fatigue
analysis (Ural et al., 2005), extended finite element (Moes et al., 1999;
Sukumar et al., 2000), and quasi-continuum methods (Curtin and Miller,
2003), in which the damage processes are treated as discrete discontinuities
in the material, and continuum damage mechanics approaches (Kachanov,
1986; Voyiadjis and Kattan, 2006), in which the discrete damage processes
are averaged over the material domain to provide estimates of the damage
state without the requirement of explicitly representing the damage geometry
in the computational model.

This paper presents a new method for analyzing the response of particle-
or fiber-reinforced composites to loading up to the point in the load history
at which damage is incipient. Specifically, the approach provides predictions
of the locations at which a strain-based damage criterion is first satisfied in a
2D cross-section of a random, heterogeneous composite material subject to
deterministic loads. The method adapts tools of pattern recognition,
commonly used in face and character identification algorithms (Hastie
et al., 2001; Witten and Frank, 2005; Vapnik, 1998), to the problem of
identifying patterns in the material properties of a heterogeneous material
that indicate a high likelihood of elastic strain concentration, and, therefore,
if a strain-based damage criterion is used, a high likelihood of damage
initiation at the site where the pattern is identified. The specific tools used
are decision tree and support vector machine classifiers that are trained
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using a supervised data set consisting of sample microstructures and
strain fields resulting from application of a deterministic applied load.
After training of the classifier, a moving window technique is implemented
that allows the prediction of sites of likely incipient damage in relatively
large microstructures without the need for performing an explicit mechanics
analysis of the microstructural response.

In addition to describing a method for predicting sites of incipient damage,
this paper also describes a robust method for reducing the dimension of the
space required to describe the geometry and material properties of random
heterogeneous materials. This method, based on principal components
analysis of the sample microstructures, defines a set of basis functions for
representing the microstructure such that an approximate representation
using relatively few basis functions provides a sufficiently accurate
representation of the microstructural geometry and material properties,
and also reduces the number of variables to be used in classification.
This dimension reduction procedure contrasts with homogenization-based
methods for approximate microstructure representation (Graham et al.,
2003; Kumar and Dawson, 1998) in that the basis functions preserve
information about the local arrangement of the microstructural phases that is
lost in homogenization schemes. This preservation of local information is
particularly crucial in damage mechanics applications. The approach may
find additional use in microstructural design and optimization problems
(Ohser and Mücklich, 2000), in which the high dimension of the space
required to describe random microstructures is a consistent obstacle to
efficient problem solution.

ANALYSIS FRAMEWORK

Let D 2 R
m be a domain that contains a random, heterogeneous, solid

medium. Suppose that the microstructure of this medium can be described
using a random vector X 2 R

n, the components of which describe specific
properties of the microstructure. Examples include the location and shape of
reinforcing particles, crystallographic orientation of constituent grains of a
polycrystal, or the entries of the constitutive matrix at points in the
microstructure. In cases such as the last of these, the random variables
represent a discretized version of the random field describing the spatial
variation of the material properties. The entries of X are chosen by the
analyst according to the type of material and particular response being
considered. For example, if the linear elastic response is of interest, the
elastic material properties of the microstructures would be specified in X.

The microstructural response, defined as YðXÞ ¼ fðXÞ, cannot be evaluated
analytically in most engineering applications. Typically, to evaluate fðXÞ
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approximately, numerical methods are used to solve the differential equations
governing the response under a specified set of boundary conditions. The goal
of this study is to present an alternative approach to achieving an
approximate evaluation of Y(X) that does not rely on direct solution of the
governing equations. The method uses classifiers to predict Y(X) from X, and
has the advantage of being extremely computationally efficient. One
significant disadvantage is that it does not seem possible to formally evaluate
convergence and error of the solution, as is done for the finite element
method.

The method described here includes three types of approximation that are
called herein subdomain, dimension reduction, and classification approx-
imations. Subdomain approximation can be understood by first considering
a microstructure that can be described initially by an n-dimensional random
vector X. One approach to evaluating the microstructural response would be
to divide X into a number of ns5n-dimensional random sub-vectors fXs, ig

and evaluate the microstructural response for each subvector. The response
of the microstructural domain can be approximated using the combination
of the responses of the subdomains fYs, ig. Practically speaking, this
approach has meaning only when the subvectors represent geometric
subdomains of the microstructure because, in order to make the evaluations
fYs, iðXs, iÞg the subvectors fXs, ig must contain the same type of information
as X. For example, if X describes the elastic modulus field throughout
a material sample D, fXs, ig should describe the modulus throughout
a subdomain Ds, i � D.

Dimension reduction approximation addresses the problem that the
random vector X describing a microstructural subdomain can be of very
high dimension. The high dimensionality of the microstructure descriptor
poses difficulties in applying approximate techniques such as classification
directly to X, and also is a major impediment to the development of
microstructural design and optimization approaches that incorporate explicit
representations of the material microstructure. Therefore a dimension
reduction technique is used to represent the microstructure using the
random vector ~X 2 R

r where r� n. This reduced dimension descriptor
must be defined so that it retains most of the microstructural information
that influences the response. The dimension reduction is made by defining ~X
with respect to a new set of r basis vectors that are qualitatively different from,
and not merely a subset of, the n basis vectors on which X is defined. Here,
these basis vectors are defined by a mathematical decomposition of the
random subdomain vector Xs. Because the components of ~X do not
necessarily correspond to microstructural quantities such as material
properties and geometry, it is not usually possible to evaluate Yð ~XÞ directly
using methods such as finite elements. Furthermore, the dimension reduction
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that transforms X! ~X introduces uncertainty into the system such that the
mapping from ~X to Y is not one-to-one. Therefore an alternative function
~Y ¼ ~f ð ~XÞ is introduced that is the approximate response calculated from the
reduced order microstructural description.

An example of ~Y ¼ ~f ð ~XÞ is a classifier that maps ~X onto a set of response
classes. Consider the space � including all random vectors ~X. The classifier
divides this space into nonoverlapping subspaces �1,�2, . . .. These
subspaces correspond to similar valued regions in �y, the response space,
and are called the classes. The classes are defined using the response so that
~Xi 2 �k and ~Xj 2 �k implies that ~Yi ¼

~f ð ~XiÞ �
~f ð ~XjÞ ¼ ~Yj, and, if the basis

functions defining ~X have been chosen well, f ðXiÞ � f ðXjÞ. A simple class
definition, used herein, involves two classes, critical and non-critical, which
correspond to ~f ð ~XÞ4Y� and ~f ð ~XÞ � Y�, where Y* is a threshold value of the
response. For example, Y* might be defined to be a threshold value of the
effective strain corresponding to the onset of material damage.

It is shown later in this paper that dimension reduction error converges
quickly to zero as the number of basis functions used for describing the
microstructure is increased. The classification error, associated with the fact
that the classes are defined in the space of approximate response ~Y rather
than true response Y, is described and quantified in later sections. For the
particular application of this study it is shown how the subdomain error can
be significantly reduced by incorporating an approximate version of the
long-range microstructural mechanics into the classifier.

APPLICATION

Problem Statement

Consider a fiber-reinforced composite in which the fibers have determi-
nistic radius and are parallel to one another. A schematic cross section
through such a material, taken perpendicular to the fiber axis, is shown in
Figure 1. The loading considered in this study is transverse uniaxial
extension. The loading is applied with periodic boundary conditions along
the lateral edges, and the individual microstructural geometries are also
considered to be periodic. The geometry and boundary conditions of the
problem allow the introduction of the plane strain assumption to reduce the
problem from three to two dimensions. The inclusions are distributed
randomly throughout the material cross-section. A hard-core Poisson point
process is used to model the centers of the inclusions. The hard core Poisson
point process is defined by the intensity �, and the hard core exclusion
radius, which in this case is set to three times the fiber radius. The intensity
governs the number of inclusions in the material sample such that the
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expected number of inclusions is �N ¼ �A, where A is the area of D, the
microstructural domain. The hard-core exclusion radius is set to make
possible the generation of suitable finite element meshes used in the
calculation of microstructural response. Details of the construction of the
hard core Poisson point field are given by Stoyan et al. (1995) among others.

The elastic modulus of the inclusions is set to be three times that of the
matrix, Einclusion ¼ 3Ematrix, and both the matrix and the inclusions are
considered linear elastic and isotropic with Poisson’s ratio equal to 0.3.
Because only normalized versions of the strain field are used in evaluating
the microstructural response, the absolute magnitudes of the elastic moduli
do not affect results, rather only the ratio of the matrix and inclusion moduli
determines the response. The allowable effective strain in the inclusions is
five times the allowable strain in the matrix, �inclusionall ¼ 5�matrix

all . The choice of
allowable effective strain is effectively arbitrary in this illustrative example,
but in a practical engineering application would be chosen to correspond to
the onset of material damage or degradation. This definition serves to nearly
ensure that the critical locations, where elastic strain is concentrated, will
occur within the matrix. In evaluating the microstructural response, the
effective strain ratio is defined to be

�eðzÞ ¼
�effðzÞ

�allðzÞ
ð1Þ

where �eff ðzÞ is the standard effective or von Mises strain and z is a position
vector in D.

Figure 1. An example of a random microstructural domain.
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The objective of the analysis described here is to predict the locations in a
microstructural domain at which the effective strain ratio exceeds a specified
threshold value, qualitatively corresponding to the likely onset of damage,
and to do so without solving the governing equations of elasticity to obtain
the strain field resulting from the applied boundary conditions and material
properties. This is accomplished by applying classification to subdomains of
the microstructure under consideration. In the example presented here, the
microstructural domains are squares with side length equal to 40 times the
fiber radius, and the subdomains are squares with side length equal to
10 times the fiber radius. The microstructural subdomains are pixelated as
shown in Figure 2 so that they can be represented by a random vector, the
components of which are the values of an indicator function that has value 1
in the inclusions and zero otherwise. This random vector containing the
indicator function values is the high-dimensional representation of Xs, the
microstructural subdomain. In the example presented here, 2500 pixels are
used to describe the microstructural subdomain.

Generating Training Data

To develop a classifier to predict the subdomain response, 1200 random,
independent realizations of the synthetic microstructure described pre-
viously are generated. These microstructures, realizations of Xs, are called
the training set, or training data. The microstructural subdomains are also
periodic, satisfying

Mðz1, z2Þ ¼Mðz1 þ a, z2Þ ¼Mðz1, z2 þ aÞ ¼Mðz1 þ a, z2 þ aÞ ð2Þ

X =

0

0

0

1

…
…

Z2

px1

Z1

Figure 2. Representaion of microstructural subdomain.
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where M respresents the material property field, z1 and z2 are the
coordinates shown in Figure 2, and a is the length of the edge of the
subdomain. The periodicity of the subdomains removes certain boundary
effects, and by shifting of the microstructural geometry, allows the number
of training samples to be effectively increased. This procedure is described in
following sections.

The high fidelity analysis used to compute the response of the training
samples, is performed using finite element analysis with the commercial code
ABAQUS Pawtucket (2004). The finite element mesh is composed of 3-node,
right triangular, 2D solid elements with edge length equal to one-fifth the fiber
radius. Thus, the element size corresponds to the pixel size used in discretizing
the microstructural material property field, and each element is assigned
either the matrix or fiber constitutive properties. Although this modeling
approach results in sharp discontinuities in material properties at certain
element boundaries, the resulting strain fields are sufficiently smooth to allow
investigation of the strain concentration effects of the fibers. The magnitude
of the applied uniaxial elongation corresponds to an applied strain of 0.02.

Figure 3 shows one example result of the subdomain high-fidelity
analysis. The contours represent the smoothed nodal values of the effective
strain, and are shown only within the matrix. The results of the high-fidelity
finite element analysis shows that in most of the samples, the maximum
effective strain ratio is located between two closely spaced inclusions that are

10r

0
0

Maximum effective
strain

10r

Effective
strain

0.01

0.015

0.02

0.025

Figure 3. Effective strain contour. The maximum of effective strain in the subdomain occurs
between two close inclusions in the direction of applied load.
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aligned in the direction of applied displacement. The 1200 training samples
yield maximum effective strain ratios with mean 23.5 and variance 2.18.

Classification of Training Samples

In order to use the training samples in establishing a reduced order
representation ~Xs of Xs, and in training of a classifier, the training samples
must themselves be classified according to some criterion involving
the microstructural response. Here, two classes are defined, corresponding
to critical and noncritical microstructural configurations, respectively.
In defining the response classes, a threshold level, �"th , of the effective strain
ratio, is defined. Although in this example the threshold is somewhat
arbitrary, set to the mean plus one standard deviation of the maximum
effective strain ratio, in a practical engineering context it would be chosen
to correspond to the strain at which damage initiates, perhaps adjusted by a
factor of safety. Based on this threshold value of the maximum effective strain
ratio, the training data are divided into classes by the following criteria:

. A subdomain is considered critical if the maximum effective strain ratio is
above the threshold, ��4��th , and is located at the center of the random
subdomain.

. A subdomain is considerd non-critical if the above condition is not met.

Both location and magnitude of the maximum effective strain ratio are
used in the classification since the eventual goal of the approach is to identify
locations within the microstructure where large strain localizations occur, not
merely to determine whether large strain localization occurs somewhere
within the microstructure. Because the probability of the maximum effective
strain ratio occurring exactly at the center of the subdomain is zero, all of the
training samples are initially classified as noncritical.

The set of critical samples is generated by making use of the periodicity of
the microstructure as follows. For those training samples for which �"4�"th
let the coordinates of the point where the maximum effective strain ratio
occurs be z1, �max

and z2, �max
. The material property field of the corresponding

critical training sample is then given by

M�ðz1, z2Þ ¼Mðz1 � z1, �max
, z2 � z2, �max

Þ, ð3Þ

which is then pixelated to deliver fXs, crit, ig the set of critical training
subdomains. Effectively, the periodic microstructure is shifted so that the
location of the maximum effective strain ratio is at the center of the
microstructural subdomain. Although this method of generating the training
sets results in the critical and noncritical samples being nonindependent, the
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efficiency of the generation is greatly improved, and sufficient samples are
generated so that nonindependence does not significantly compromise the
approach. Of the total of 1200 training samples, 141 have maximum
effective strain ratio exceeding the threshold, and are transformed according
to Equation (3) to form the set of critical training samples.

Basis Function Extraction and Microstructure Representation

In order to achieve the dimension reduction described above for the
composite material being studied here, principal component analysis is used
to derive a set of basis vectors for representation of the microstructural
subdomains. Using principal component analysis to calculate the basis
vectors assures that the geometry of the microstructural subdomains can be
captured with a minimum number of basis vectors, thereby achieving the
greatest possible dimension reduction. No such assurance is available,
however, that basis vectors obtained by principal components analysis will
best serve as attributes in the developed classifier. The investigation of the
choice of basis vectors for use in classification is a topic of ongoing research,
and is beyond the scope of the current paper. Results shown in the following,
however, indicate that the basis vectors obtained from principal components
analysis perform very well in classification.

The following procedure is followed in extracting the basis functions.
First, the random vectors representing the training samples are transformed,
under the assumption of stationarity, to have zero mean, by X̂s ¼ Xs � E ½Xs�.
The implicit assumption of stationarity in this calculation is consistent
with the construction of the random microstructures, which are based on
a spatially homogeneous Poisson point field. Next, a matrix F is constructed
that has X̂s, i, i ¼ 1, . . . , p as its columns, where p is the number of samples in
the training set, 1200 for the set of noncritical microstructures and 141 for the
set of critical microstructures. The covariance matrix of the microstructural
subdomains is estimated by

CM ¼
1

p� 1
FFT: ð4Þ

The eigenvectors of CM, denoted by ei, and the corresponding eigenvalues
�i are calculated and form the basis for representation of the microstructural
subdomains (Johnson and Wichem, 2002). These eigenvectors are the
principal components of the microstructural subdomains. It should be
noted that the dimension of F is 2500	 1200 for the non-critical set and
2500	 141, resulting in covariance matrices that are rank-deficient so that at
most 1200 and 141 independent eigenvectors exist for the noncritical and
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critical classes, respectively. It is shown in the following that, since the
microstructural subdomains can be accurately represented by linear
combinations of a relatively small number of basis vectors, this rank-
deficiency does not pose practical obstacles to implementation of this
approach.

Figure 4 shows the eigenvalues of the noncritical and critical classes in
descending order. The main observation to be made from this figure is that
the eigenvalues of the principal components decay quickly to zero. For both
classes the first 100 principal components capture upwards of 98% of the
total variance of the microstructural subomains. This observation supports
the contention that the rank-deficiency of the covariance matrices does not
significantly affect the results, and also suggests that dimension reduction is
possible by using only the first few tens of basis vectors in representing the
microstructural subdomains.

Figures 5 shows the sample mean and the first two basis vectors for the
critical data set. To generate this figure the 50	 50 pixel microstructural
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Figure 4. Eigenvalue decay for noncritical and critical training classes.
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Figure 5. Mean value and first two basis functions of critical subdomains (a) mean value,
(b) first basis function, (c) second basis function.
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subdomain has been reconstructed from the 2500	 1 basis vectors.
The sample mean shows the underlying geometry of the critical samples,
with two inclusions closely spaced and aligned with the principal load
direction. This structure is also evident in the first basis vector, but by even
the second basis vector the obvious connection to the microstructural
geometry is lost. It is shown in succeeding sections that even basis
vectors that do not have an obvious connection to the microstructural
geometry contain information that is useful in classifying the microstruc-
tural response.

The eigenvectors of the microstructure covariance matrix form a basis for
the 2500 dimensional vector space in which the vectors defining the
microstructural subdomains are described. If the eigenvectors are sorted
according to descending order of their corresponding eigenvalues a
microstructural subdomain can be approximately represented by

Xs � ~Xs ¼
�Xs

�Xs
þ
Xr
i¼1

diei ð5Þ

in which di ¼ X̂s 
 ei is the projection of the mean zero microstructure vector
onto basis vector ei and �Xs

is the mean of the microstructure vector.
If the series is truncated so that r� p then an approximate reduced order
representation of the microstructure is obtained that converges to
the exact microstructure according to limr!p

~Xs ¼ Xs. The representation
of Equation (5) gives a microstructural subdomain vector ~Xs in which each
component is a real valued number, whereas the true microstructure vectors
have components that are binary, taking values of zero or one. To improve
the accuracy of the reduced order representation, the components of the
reduced order representation shown above are rounded to obtain a
microstructure vector with binary components according to

½ ~X0s�i ¼
1 if [ ~Xs]i �0.5

0 otherwise

(
ð6Þ

in which ½ ~Xs�i is the i-th component of ~Xs.
Figure 6 shows a sample microstructure, represented on a 50	 50 grid of

pixels, along with the approximate representations defined by Equations 5
and 6 with r ¼ 10 and r¼ 20, and using the basis vectors extracted
from the noncritical members of the training set. This example shows
that a high quality representation is available with relatively few
basis vectors. Effectively, the microstructure description is given by the
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r coefficients di ¼ X̂s 
 ei, i ¼ 1, . . . , r. To state this result quantitatively,
define the representation error to be

Errs ¼ jj ~Xs � Xsjj: ð7Þ

This error, estimated from 100 randomly generated microstructures,
decays with an increase in the number of terms in the representation
(Figure 7). For this particular microstructure the representation is extremely
accurate when 50 basis vectors are included. In the following, it is shown that
even fewer than this many basis vectors may provide a representation suitable
for accurate response classification.
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Figure 7. Microstructure representation error decay with inclusion of additional basis
vectors.
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Figure 6. Reduced order representations of microstructural subdomains (a) target
microstructure, (b) 10 basis vectors, (c) 50 basis vectors.
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Classification

A classifier is a function that maps a set of independent input variables
onto a set of classes. In the context of the current micromechanics problem,
the input variables describe the microstructural geometry and the two
classes correspond to critical or noncritical microstructural response.
The classifier C(Xs) maps the microstructural subdomain vector onto the
response classes C1,C2. Here, critical microstructures are classified as
belonging to C1 and noncritical microstructures to C2.

In practice, classifying the microstructures based on the raw microstru-
cture vectorsXs is inefficient and inaccurate due to the high dimensionality of
Xs. Therefore, using the reduced order description described above, an
approximate classifier ~Cð ~XsÞ is derived that takes as its input variables the
coefficients di of the reduced order representation of Equation 5. Here, two
types of classifier, a decision tree and a support vector machine are described
and trained using the training samples already introduced for basis vector
extraction.

DECISION TREE CLASSIFIERS
A classification tree is a directed graph model consisting of a finite set

N ¼ fn1, n2, . . . , nkg whose elements are called nodes and a set of ordered
pairs of nodes called edges that connect two nodes to each other. The node
on the highest level is called the root node, and the nodes at the lowest level
of the tree are called the leaves. Every node except the leaves is connected to
nodes at a lower level that are called children, and every node except the
root is connected to a node at a higher level that is called a parent. Each
node contains a binary logical operator evaluating one of the input
variables. The leaves contain assignments to a particular class. In the current
application, the input variables are the representation coefficients di and the
classes are C1 ¼ critical and C2 ¼ noncritical.

There exist a variety of established algorithms for deriving a decision tree
from a set of training data and assigned classes. The algorithm used here is
the C4.5 algorithm (Kohavi and Quinlan, 2002) that attempts to maximize
the gain ratio at each node. One problem that can arise when deriving a
decision tree from data is overfitting. An overfit decision tree contains too
many nodes, and, although it achieves very high accuracy in placing the
training data into the correct classes, it may perform very poorly when asked
to classify sets of input variables not drawn directly from the training set.
The C4.5 algorithm prunes the decision tree resulting from gain ratio
maximization to overcome the problem of overfitting.

Here, the decision tree classifier is trained using the set of 1200 noncritical
and 141 critical training samples. It is found that using only 20 input
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variables, di, i ¼ 1, . . . , 20, obtained by projection of the microstructure
onto the noncritical basis vectors, provides very high classification accuracy
as well as efficient classification as manifested in a relatively compact
decision tree. The inclusion of additional input variables di, i ¼ 21, . . . is
found to have negligible effect on the accuracy of the decision tree. It is
possible to achieve such high classification accuracy using only 20 input
variables because the basis vectors have been extracted using principal
components analysis. Note that the 20 variables required for accurate
classification is significantly fewer than the 50 required for accurate
geometric representation.

In order to test the accuracy of the classifier a 10-fold cross validation
test is performed. In a 10-fold cross validation the training data set is
divided into 10 subsets containing equal numbers of samples, and
sequentially one subset is used to test the classifier trained by the remaining
nine subsets. The cross validation accuracy is the percentage of the data
which are correctly classified (Sundararaghavan and Zabaras, 2005).

A number of decision trees are constructed using the program WEKA
with a variety of control parameters (Witten and Frank, 2005). Of those
investigated, the best performing decision tree is constructed by limiting the
number of training samples assigned to each leaf to one for initial tree
construction, and then pruning the tree using a pessimistic pruning
algorithm with confidence factor 0.25. The resulting, heavily pruned,
decision tree has 24 leaves and gives a net accuracy, estimated by 10-fold
cross validation, of 98:06%. The confusion matrix for the decision tree
classifier is shown in Table 1. All confusion matrices shown are computed
from 10-fold cross validation on the 1200 training samples. This type
of classifier is referred to from here forward as a Near Field Decision
Tree classifier (NF DT) because the input variables quantify only the
geometry of the microstructural subdomain, which, in the moving window
approach described later, corresponds only to the portion of the
microstructural domain within the current window. If prediction of critical
response is considered a positive result, the false positive and false negative
error rates of the decision tree are 1:1 and 9:2%, respectively. Although the
total accuracy of the classifier is high, the false negative error rate is higher
than would be desired in an engineering application since false negative

Table 1. Confusion matrix for NF DT.

True class
Classified as

noncritical
Classified as

critical

Noncritical 1187 13 (1.1%)
Critical 13 (9.2% ) 128
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errors are unconservative. Finding methods for decreasing the false negative
error rate is a topic of current investigation (Tan and Arwade, 2008).

SUPPORT VECTOR MACHINE
A support vector machine (SVM) is a classification method that provides

an alternative to the decision tree classifier described in the previous section
that has shown promising empirical results in many applications such as
handwriting recognition and text categorization (Vapnik, 1998). SVMs also
perform particularly well when the dimension of the input data is very high
(Tan et al., 2005). The general idea of an SVM is, as in the case of a decision
tree classifier, to predict the class to which a point in the input data space
belongs. Instead of using a series of logical operations on the input variables,
as in the decision tree classifier, in the SVM approach a hyperplane is
defined in the input data space that separates the two classes with a
minimum of misclassifications. There are three types of input data that
require somewhat different treatment within the SVM approach, linear
separable data, linear nonseparable data, and nonlinear separable data. The
training data developed here are linear nonseparable. Since the linear
nonseparable case is an extension of the linear separable case, brief
descriptions of both are provided.

Linear Separable Case
Figure 8 shows a data set in a 2D input data space containing

observations xi belonging to two different classes C1 and C2. The data are
linear separable if there exists a hyperplane that divides the input data space
into two regions !1 and !2 such that

CðxiÞ ¼ C1! xi 2 !1, ð8Þ

CðxiÞ ¼ C2! xi 2 !2, ð9Þ

with no error. The figure illustrates that the definition of this hyperplane, the
decision boundary, is not, in general, unique. The classifier performs best in
classifying observations that are not part of the training set if the margin, the
distance from the separating hyperplane to the nearest observations, is
maximized (Tan et al., 2005).

The decision boundary can be written as w 
 xþ b ¼ 0, in which the
parameters w and b are chosen so as to maximize the margin. Thus, the
operation of classification is reduced to the simple algebraic operation of
determining on which side of the decision boundary an observation lies. This
evaluation can be substantially more efficient than evaluation of the large
number of logical operations in a decision tree with many nodes.
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Non-separable case
Figure 9 shows a case in which the data are not linearly separable. Even in

this case, it is possible to construct a decision boundary that is optimal in the
sense that now, instead of simply maximizing the margin, a tradeoff must be

w.xi + bi = 0

w.xi + bi = −1 wxi + bi = −1+x

w.xi + bi = 1 w.xi + bi ≥ 1

w.xi + bi ≤ −1

Margin

Class I
Class II

xi

Figure 9. Support vector machine for nonseparable case [after Sundararaghvan and
Zabaras (2005) and Tan et al. (2005)].

B1 B2

Margin for B2

Margin for B1

Figure 8. Decision boundaries (after Tan et al., 2005).
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considered between the margin width and the training error. Choice of the
appropriate decision boundary reduces to a constrained optimization
problem solved using Lagrange multipliers. Once the optimal decision
boundary has been obtained, it can be expressed in the same form as for the
linear separable case, and the classification operation again reduces to
determining on which side of the decision boundary an observation lies.

SUPPORT VECTOR MACHINE CLASSIFIER
An SVM classifier is trained on the same training data as used to train the

decision tree classifier described previously. These training data are linearly
nonseparable. This classifier, which takes as input the representation
coefficients di, which quantify only the local material arrangement, is called
the Near Field Support Vector Machine (NF SVM). The NF SVM classifier
is trained using the software package WEKA (Witten and Frank, 2005)
which uses sequential minimal optimization (SMO) (Platt, 1999) to solve the
optimization problem that leads to the appropriate choice of decision
boundary. Table 2 shows the confusion matrix for the NF SVM classifier,
which yields a total accuracy of 94.85% and false positive and false negative
rates of 2.92 and 24.11% respectively. In comparison to the NF DT
classifier, the overall performance of the NF SVM is slightly worse in terms
of the total accuracy and false positive rate, but significantly worse in terms
of the false negative rate, which is 9.22% for the NF DT classifier. The
performance of the near field classifiers is summarized in Table 3.

Near Field Moving Window Classification

In this section, a moving window technique is used to extend the classifier
approach developed in the preceding to predict the locations where strain

Table 2. Confusion matrix for NF SVM.

True
class

Classified as
noncritical

Classified as
critical

Noncritical 1165 35 (2.9%)
Critical 34 (24%) 107

Table 3. Compare classification error for
different classifiers.

Classifier
Overall

error (%)
False positive

error (%)
False negative

error (%)

NF DT 1.9 1.1 9.2
NF SVM 5.2 2.9 24
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concentration is likely to occur in a microstructure that is qualitatively
similar to the training microstructures, but is substantially larger. Here, the
larger microstructures are square with side length of 40 times the fiber
radius. The moving window is a square with side length equal to 10 times the
fiber radius, and is the same size as the training samples. The moving
window algorithm is defined as follows.

Let zi be a position in the large microstructural domain described by the
microstructure vector X that lies at the corner of a pixel used in defining
the random vector representation of the microstructure. This point defines
the center of a microstructural subdomain described by Xs,i that is a square
with side length of 10 times the fiber radius and contains 2500 square pixels.
The classifier developed previously is applied to Xs,i and provides a
prediction of whether the effective strain ratio at zi exceeds the threshold
value. The moving window classification, in which each pixel corner in D is
treated as the center of a microstructural subdomain, produces a binary
response field Cw(z). In this binary response field, CwðziÞ ¼ 1 indicates that
subdomain Xs,i has been classified as critical.

Figures 10(a) and (b) show the result of moving window classification
on a single realization of X, using the NF DT and NF SVM classifiers,
respectively. The white regions are regions in which Cw ¼ 1, that is,
the subdomains centered at points colored white in the figures are classified
as critical. No moving window classification is possible for points that
are closer than five fiber diameters to the boundary of D since a full-sized
microstructural subdomain cannot be defined that is centered at
these locations. For comparison, the effective strain ratio field as determined
by finite element analysis is converted to a binary field using a
threshold value of the effective strain ratio. This binary field, shown in
Figure 10(c), indicates regions in which the effective strain ratio exceeds
the threshold by white.

(a) (b) (c)

Figure 10. Critical regions of microstructure using moving window classification or finite
element analysis: (a) NF DT, (b) NF SVM, (c) FEA.
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The confusion matrices for the NF DT and NF SVM classifier (Table 1
and 2) show that the false positive rate for the NF SVM classifier is
essentially twice that of the NF DT classifier. This is manifest in the moving
window results, which show that the NF SVM classifier predicts a
dramatically higher proportion of the microstructural domain to be critical.

The differences between the predictions of the NF DT and NF SVM
classifiers [Figure 10(a) and (b)] can be quantified using the same vocabulary
as is used in the confusion matrices described above. For the moving
window classifications, the total error is the fraction of D in which the
classifier and finite element results disagree. The false positive error is
the fraction of the area that is classified as critical that is not critical in the
finite element result, and the false negative error is the fraction of the area
that is classified as noncritical that is critical in the finite element result.
Table 4 shows the error rates for the NF DT and NF SVM classifier in
moving window implementation. The results of Table 4 are based on
analysis of 150 samples. The results show that the performance of both
classifiers degrades when implemented in a moving window algorithm. The
quantitative performance of the NF DT classifier is considerably better than
the NF SVM classifier, though qualitative inspection of Figure 10(a), (b),
and (c) shows that the NF SVM classifier performs poorly by severely
overpredicting the region of the sample that is critical, which is a
conservative error, but one which severely reduces the information gained
by application of the classifier.

Inclusion of Far-field Material Effects

The results of the moving window classification presented in the previous
section show clearly that the near field pattern recognition algorithms,
taking as input only the reduced order representation of the local
microstructural geometry, are inadequate for identifying sites of strain
concentration in fiber-reinforced composites subject to transverse uniaxial
load. Two possible approaches to improving the performance of the
classifier are: (1) to increase the number of input variables considered by the
classifier, that is, to include more than 20 coefficients from the approximate

Table 4. Compare moving window classification
error for classifiers.

Classifier
Overall

error (%)
False positive

error (%)
False negative

error (%)

NF DT 5.40 3.06 18.59
NF SVM 27.84 28.15 5.37
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representation of the classifier [Equation (5)], or (2) increase the size of
the moving window so that a larger local material subdomain is considered
in making response predictions. As stated previously, the inclusion
of additional input variables does not significantly improve classifier
performance. In general, an increase in the number of input variables may
actually degrade classifier performance due to resultant overfitting of the
classifier. Increasing the size of the moving window, on the other hand,
while it should result in improved performance, results in a significant
reduction of efficiency due to the increased domain size.

Here, an alternative approach is introduced that relies on a heuristic
incorporation of the effect of the microstructure in the far field on the local
effective strain ratio through a single additional input variable. Consider
Figure 11, showing the moving window, with side length a, at a particular
location in the microstructure and the applied uniaxial elongation �. If the
material domain were occupied by a homogeneous isotropic material
the strain at all locations would be simply �avg ¼ �=L. If, as is the case in the
example material of this study, the material is heterogeneous in its elastic
properties, the strain field itself becomes heterogeneous. In the example
material considered here, the fiber inclusions are much stiffer than the
matrix. If regions S1 and S2 contain more than the expected number of
inclusions, the effective stiffness of these regions will in turn be higher than
expected, and the average strain in the moving window subdomain, denoted

L

S1

S2

a

d

Figure 11. A strip of microstructure including the moving window.
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by �̂, would be expected to be greater than �avg ¼ �=L. Conversely, if S1 and
S2 contain fewer than the expected number of fiber inclusions it would be
expected that �̂5�avg. This uncertainty in the average strain within the
moving window subdomain is the main contributor to loss of classifier
accuracy when implemented in a moving window algorithm. Essentially, the
boundary conditions applied to a window do not correspond to those used
to generate the training data used in training the classifier.

Assuming that the effective elastic modulus within the moving window
subdomain is equal to the ensemble average Voigt average elastic modulus
of the microstructure Ev, the average strain in the moving window
subdomain is given approximately by

�̂ ¼
�

ððL� aÞE=EsÞ þ a
ð10Þ

where Es is the Voigt average elastic modulus of the material occupying
S1 and S2.

This average strain in the moving window subdomain, �̂, is a random
variable by virtue of the uncertainty in Es brought on by the Poisson hard-
core field model for the inclusion locations. A Monte Carlo simulation
of 100,000 samples of Es, and subsequent computation of the corresponding
values of �̂ yields a probability mass function (pmf) with mean value
2.0e�2, and standard deviation 8.6e�4. The skewness of the data is 0.20 and
the kurtosis is 3.03 indicating that the distribution is close to Gaussian, but
with a small positive skewness.

To incorporate information about the far-field material properties into
the classifer, a new set of training data is generated in which the training
samples are subject to a uniaxial deformation corresponding to a random
average strain �̂ that is drawn from the empirical pmf estimated as described
above. Because the response considered here is linear, the finite element
simulations used to generate the original training set can be reused by
performing the following operations:

1. Generate a sample of �̂ from the empirical pmf,
2. Compute the effective strain field in the training sample by
�̂eff ðzÞ ¼ ð�̂=�avgÞ�eff ðzÞ, where �eff is the effective strain field determined
by finite element analysis for an applied uniaxial elongation correspond-
ing to �avg ¼ 0:02.

At this point the 1200 training samples are divided into classes as
previously, with the difference that the set of input variables to the classifier
now consists of the first 20 principal components and the average applied
strain �̂. This single additional input variable is designed to provide an
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approximate characterization of the effect of the far-field material properties
on the state of strain in the training sample.

Using this training data, both a decision tree and support vector machine
classifier are trained using the same procedures and software as described
previously. These classifiers are here called the NF FF DT and NF FF SVM
classifiers, where the ‘FF’ stands for ‘far field’. As with the NF DT and
NF SVM classifiers accuracy is evaluated using 10-fold cross validation on
the 1200 training samples, the results of which are shown in Table 5 and 6, and
are summarized in Table 7, which also shows the 10-fold cross validation
accuracies for the NF DT and NF SVM classifiers. These results show that
the decision tree classifier performs significantly worse when uncertainty in
the applied deformation is included in the training samples. The worsening of
performance is particularly striking in the false negative error rate, which
jumps from 9% to 21%. The support vector machine classifier, on the other
hand, performs better in classifying the training samples that include defor-
mation uncertainty. This is an indication that the NF FF SVM classifier may
provide significantly improved performance in a moving window context.

The goal of including the effects of the far-field microstructure is to
improve the performance of the moving window classifier at predicting

Table 7. Compare classification error
for different classifiers.

Classifier
Overall

error (%)
False positive

error (%)
False negative

error (%)

NF DT 1.9 1.1 9.2
NF SVM 5.1 2.9 24
NF FF DT 4.1 1.7 21
NF FF SVM 2.5 1.3 11

Table 6. Confusion matrix for NF FF SVM.

True
class

Classified as
noncritical

Classified as
critical

Noncritical 1041 14 (1.3%)
Critical 16 (11%) 129

Table 5. Confusion matrix for NF FF DT.

True
class

Classified as
noncritical

Classified as
critical

Noncritical 1037 18 (1.7%)
Critical 31 (21%) 114
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locations of strain concentration in large microstructures. In order to
implement the NF FF DT and NF FF SVM classifiers as moving window
classifiers, an estimate of �̂ must be obtained. This is accomplished through
Equation (10), in which Es is replaced by the Voigt average elastic modulus
of regions S1 and S2 that are determined by the current position of the
moving window.

Example results of the moving window classification using the NF FF DT
and NF FF SVM classifiers are shown in Figure 12, and numerical results
generated from 150 samples are shown in Table 8. The figure shows that the
NF FF DT performs poorly, and the inclusion of the far-field material
characteristics in the classification scheme results in essentially no
improvement in performance. The NF FF SVM classifier, on the other
hand, yields a quite satisfactory classification. Although the total area
classified as critical is substantially smaller than indicated by the finite
element result, the location of the critical regions corresponds quite closely
to the finite element result. The quantitative results of Table 8 shows that
for the SVM classifier the inclusion of the far-field effect results in a
dramatic decrease in the false positive error, and a corresponding increase in
the false negative error. Because the critical area is only a small fraction of
the total area of the microstructural domain, the total accuracy of the
NF FF SVM classifier is substantially better than that of the NF SVM

Table 8. Compare moving window classification
error for classifiers.

Classifier
Overall

error (%)
False positive

error (%)
False negative

error (%)

NF DT 5.4 3.1 18
NF SVM 28 28 5.4
NF FF DT 5.6 3.7 94
NF FF SVM 1.9 0.39 39

(a) (b) (c)

Figure 12. critical regions of microstructure using moving window classification or finite
element analysis: (a) NF FF DT, (b) NF FF SVM, (c) FEA.
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classifier in a moving window implementation. One outstanding question
is how best to quantify the performance of the moving window classifiers.
Visual inspection of Figure 12 indicates that the performance of the NF
FF SVM classifier is satisfactory, yet this conclusion is not supported by
the very high false negative error rate shown in Table 8. One approach
that is currently being investigated is to use clustering techniques to assess
whether the classifier correctly identifies the locations, if not the sizes, of the
critical regions.

CONCLUSION

For the problem of identifying sites of elastic strain concentration in a 2D
cross-section of a fiber-reinforced composite subject to deterministic,
transverse, uniaxial loading, a support vector machine classifier, implemen-
ted in a moving window scheme, is able to predict sites of strain
concentration with an accuracy of greater than 95%. The classifier operates
on a set of microstructural descriptors that are obtained by projecting the
microstructure onto a set of basis functions that are obtained by principal
components analysis of the training samples. Simulation results indicate
that, for this particular application, a support vector machine classifier
performs significantly better than a decision tree classifier trained on the
same set of training data. Despite the limitations imposed on these
conclusions by the highly simplified character of the problem studied, this
use of pattern recognition techniques to solve mechanics problems, along
with recent work by the current research team (Arwade, 2006; Loughalam
et al., 2006; Liu et al., 2007; Tan and Arwade, 2008), constitutes, to the
authors knowledge, the first times that classifiers and pattern recognition
algorithms have been used to obtain predictions of the mechanical response
of solids to loads without the solution of the governing equations.

The example given here of the application of classification to micro-
mechanics problems is essentially a proof-of-concept, and suffers from the
following limitations. The predicted response is elastic strain concentration,
and therefore does not actually capture any of the response of the material
once damage has begun to occur. Even this prediction of elastic response may
prove useful in identifying sites within a random heterogeneous material at
which damage is likely to initiate due to the wide acceptance of strain-based
criteria for damage initiation. Once such sites have been identified using the
classifier, it should be possible to simulate the actual initiation and evolution
of damage using established damagemechanicsmodels. The knowledge of the
location of likely damage initiation provides the opportunity to deploy
computational resources (mesh refinement, cohesive elements, multiscale
formulations) only in those regions of the studied body in which they are
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likely to be necessary. The classifier shown here is valid only for the specific
example microstructure shown, subject to uniaxial loading. Indeed the only
uncertainty in the problem is the location of the inclusions. Ongoing research
seeks to extend the application of classifiers to other materials such as ductile
polycrystalline materials, to develop classifiers that can account for
uncertainty in loading, and finally to develop classifiers that directly predict
the onset of nonlinear damage responses, such as fracture, material phase
debonding, and plastic strain localization.

An ancillary benefit of the work presented here is the development of an
efficient dimension reduction technique for material microstructures. In the
example shown here, the random microstructure, originally described by
2500 components of a random vector, is shown to be well represented by 20
coefficients of a series expansion of the microstructural geometry in a set of
basis functions obtained by principal components analysis. This dimension
reduction approach is generally applicable to any material in which the
material properties exhibit spatial variation, and the benefits would be
expected to be even more dramatic when applied to richer microstructures
such as polycrystals or functionally graded materials. While this dimension
reduction procedure is crucial to the success of the classification presented
here, it also has potential application in material design and optimization
problems, in which the search space is often of very high dimension, thereby
hindering the application of traditional design and optimization approaches.
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