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a b s t r a c t

The variability response function (VRF ) is a well-established concept for efficient evaluation of the
variance and sensitivity of the response of stochastic systems where properties are modeled by
random fields that circumvents the need for computationally expensive Monte Carlo (MC) simulations.
Homogenization of material properties is an important procedure in the analysis of structural mechanics
problems in which the material properties fluctuate randomly, yet no method other than MC simulation
exists for evaluating the variability of the effective material properties. The concept of a VRF for effective
material properties is introduced in this paper based on the equivalence of elastic strain energy in the
heterogeneous and equivalent homogeneous bodies. It is shown that such a VRF exists for the effective
material properties of statically determinate structures. The VRF for effective material properties can be
calculated exactly or by Fast MC simulation and depends on extending the classical displacement VRF to
consider the covariance of the response displacement at two points in a statically determinate beam
with randomly fluctuating material properties modeled using random fields. Two numerical examples
are presented that demonstrate the character of the VRF for effective material properties, the method of
calculation, and results that can be obtained from it.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

In many solid and structural mechanics problems the material
properties exhibit random, non-periodic, spatial fluctuations. It is
common in such problems to replace the randomly fluctuatingma-
terial properties with a deterministic, homogenized set of mate-
rial properties. The homogenized properties can be determined by
direct averaging of the randomly fluctuating properties or by con-
straining the response of the homogenized system to be equivalent
to that of the heterogeneous system in some sense such as having
equivalent strain energy. Homogenization is particularly impor-
tant in applying numerical techniques such as the finite element
method to problems with randomly fluctuating material proper-
ties since such problems typically require very refined meshes to
achieve high solution accuracy if the local material property fluc-
tuations are to be represented. Homogenization is also a key part of
upscalingmaterial properties in the context of multi-scale analysis
of solid mechanics problems (See, for one example, [1])

A key concept in homogenization is that of the representative
volume element (RVE). The concept of the RVE is that, if mate-
rial properties are homogenized over a sufficiently large volume,
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the resulting homogenized properties approach deterministic val-
ues. In other words, the variance of the estimate of the homoge-
nized properties approaches zero as the homogenization volume
increases. Practically speaking, of course, the volume ofmaterial in
any solid mechanics problem is finite, and furthermore it may be
desirable in some problems to retain medium to long range ran-
dom fluctuations in the material properties by homogenizing over
intermediate length scales. An example of the latter is evident in
the approach of the moving window generalized method of cells
which generates a smoothed version of random material property
fluctuations to ease numerical analysis [2].

In homogenization problems in which the material volume is
smaller than an RVE, it is critical to recognize that the homoge-
neous problem is itself stochastic, despite neglect of the spatial
fluctuations of the material properties. This stochasticity arises
from homogenizing over a finite volume so that the homogenized
material properties are themselves random. An important issue,
therefore, is the variance of the homogeneous, or effective, ma-
terial properties which in turn defines the uncertainty in the re-
sponse of the homogeneous system. Note that if homogenization
occurs over an RVE this variance becomes zero and the problem
is deterministic. If, on the other hand, the averaging volume is not
an RVE, then the original stochastic problem that contains random
spatially fluctuating material properties is replaced by a stochastic
problem inwhich thematerial properties are spatially constant but
random. Currently, the only practical way to evaluate the variance
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of the effective properties is throughMonte Carlo (MC) simulation,
which can be computationally very expensive. A method is intro-
duced here for evaluating the variance of the effective properties
that circumvents the need for brute force MC simulation by intro-
ducing a variability response function (VRF ) for the effective prop-
erties that connects the spectral density of the randomly fluctuat-
ingmaterial properties (that aremodeled as homogeneous random
fields) to the variance of the effective material properties.

A variability response function [3,4] describes the influence of
the spectral content of a randommaterial property field on the re-
sponse of a structural system, usually the displacement. In cases
where a VRF exists, the variance of the structural response can be
calculated by a straightforward integration of the product of the
spectral density of the material property field and the VRF, com-
pletely obviating the need for MC simulation or any other approx-
imate technique such as perturbation or expansion methods. This
results in very rapid evaluation of the response variance, and, per-
hapsmore importantly, the possibility of evaluating the sensitivity
of the response variability to the spectral content of the underlying
material property field.

The body of this paper contains: (1) A general definition of the
concept of the VRF for effective material properties and the proof
that such aVRF, if it exists, depends on theVRF for the displacement
variance and covariance; (2) proof of the existence of a VRF for the
effective material properties of a statically determinate structure
with a single applied point load and a corresponding numerical
example; (3) proof of the existence of a VRF for the effective
material properties of a statically determinate structure with an
applied uniform distributed load and a corresponding numerical
example. Item (3) requires the proof of the existence of a VRF for
the covariance of the response displacement field of a statically
determinate structure, which is also included.

2. Variability of effective properties

Consider a domain Ω ⊂ R3 with volume VΩ occupied by
an isotropic elastic continuum characterized by a second order
constitutive matrix C(x) and its inverse D(x) = C−1(x). These
matrices define the standard Hooke’s law for three dimensional
isotropic elastic solids

σ(x) = C(x)ε(x) (1)

where σ = [σ11, σ22, σ33, σ12, σ13, σ23]T and ε = [ε11, ε22,
ε33, ε12, ε13, ε23]T are the stress and strain vectors commonly used
in engineering notation. In this section we consider only C(x)
noting that C(x) and D(x) can be treated interchangeably since
they completely define each other.

If thematerial occupyingΩ is heterogeneous, C(x) is a function
of position x, and if the heterogeneity is random, then C(x) can
be considered a matrix random field with mean matrix µ that is
independent of position and matrix of spectral density functions
SC(κ1, κ2, κ3) that depend on three wave numbers κ1, κ2, and κ3 if
C(x) is stationary.

Analysis of continuummechanics problems in which the mate-
rial properties are heterogeneous poses substantial challenges, and
it is therefore often desirable to replace the heterogeneous mate-
rial with a homogeneous material that is, in some sense, equiva-
lent. This homogenization corresponds to replacing thematrix ran-
dom field C(x) with the effective constitutive matrix

C̄ = f (C(x), Ω, boundary conditions) (2)

which is a function not only of C(x) but also of the problem domain
Ω and boundary conditions. The following discussion is restricted
to fluctuations of the elastic modulus E(x) = C11(x) = C22(x) =
C33(x), noting that it could equivalently be applied to the shear
modulus G(x) = C44(x) = C55(x) = C66(x). It should be pointed

out that the elastic modulus cannot fluctuate independently of
the shear modulus and Poisson’s ratio if the material is to remain
locally isotropic.

The simplest definitions of the effective elastic modulus Ē are
based on harmonic or arithmetic averaging of E(x). These defini-
tions give the Reuss and Voigt bounds on the effective modulus
defined by
Ēr ≤ Ē ≤ Ēv

Ēr = 〈E(x)−1〉Ω = 1
VΩ

[∫

Ω

E(x)−1dV
]−1

Ēv = 〈E(x)〉Ω = 1
VΩ

∫

Ω

E(x)dV . (3)

The Voigt and Reuss bounds on the effective elastic modulus do
not depend on the boundary conditions of the problem, and there-
fore the variances var[Ēv] and var[Ēr ] depend directly on integrals
of E(x) that can be calculated using stochastic calculus [5] or esti-
mated using MC simulation.

An alternative definition for the effective elastic modulus en-
sures that the elastic strain energy in the homogenized version of
the problem is equivalent to that in the heterogeneous version. To
use this definition the problem must be defined such that the so-
lution of the homogeneous problem depends only on a single ma-
terial constant, in this case assumed to be Ē. Common examples
include a uniaxial state of stress, pure shear, or a beam bending
problem. For a set of traction boundary conditions t(x) that sat-
isfy the condition that the response of the homogeneous problem
depends only on a single elastic constant, and that result in a dis-
placement field u(x) in the heterogeneous body, the equivalence
of strain energy can be expressed as
strain energy of homogeneous problem

= strain energy of heterogeneous problem

g(Ē, Ω, boundary conditions) =
∫

Ω

ε(x)C(x)ε(x)dV

=
∫

∂Ω

t(x)u(x)ds. (4)

The boundary conditions (bcs) and Ω are usually chosen so that
an exact expression for g(Ē, Ω, bcs) is available in closed form,
in which case Eq. (4) can be solved directly for Ē. For example, if
the boundary conditions are chosen to generate a uniaxial state
of stress σ11 = σ0, g(Ē, Ω, bcs) =

∫
Ω

σ 2
0 /Ē and if the prob-

lem is a cantilever beam with a point load applied at the free end,
g(Ē, Ω, bcs) = P2L3/3ĒI with P being the applied load, L the
length of the beam, and I the moment of inertia.

Assuming that g(Ē, Ω, bcs) is known and Eq. (4) can be solved
for Ē, the effective elastic modulus can be expressed as

Ē = g∗
(

Ω, bcs,
∫

∂Ω

t(x)u(x)ds
)

. (5)

In many cases, the effect of Ω and of the boundary conditions will
appear as a deterministic coefficient C1, so that the variance of the
effective elastic modulus can be expressed as

var[Ē] = C2
1 var

[∫

∂Ω

t(x)u(x)ds
]

. (6)

This expression suggests that the variance of the effective elas-
tic modulus depends on the variance of an integral of the dis-
placement field. Furthermore, it is known that in certain cases the
variance of the displacement depends on a variability response
function through the following integral expression
var[ui(x)]

=
∫∫∫ ∞

−∞
Sf (κ1, κ2, κ3)VRFui(x, κ1, κ2, κ3)dκ1dκ2dκ3 (7)
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where Sf (κ1, κ2, κ3) is the spectral density function describing the
spatially random fluctuations of the material property field and
VRFui(x, κ1, κ2, κ3) is the deterministic variability response func-
tion. Note that this relationship has been proven to exist only for
statically determinate problems in one dimension [3,4], although
it is written here in themore general three dimensional form. Note
also that it has been shown to be approximately valid for cer-
tain statically indeterminate problems in one and two dimensions
[6–9]. The existence of a VRF for the displacement suggests that a
VRF may exist for the effective elastic modulus such that

var[Ē] =
∫∫∫ ∞

−∞
Sf (κ1, κ2, κ3)VRFĒ(κ1, κ2, κ3)dκ1dκ2dκ3 (8)

and that it may be possible to express VRF Ē(κ1, κ2, κ3) in terms
of VRFu(x, κ1, κ2, κ3). Verifying these last two statements, that
a VRF exists for the effective material properties, and that this
VRF depends on the VRF of the response displacements, are the
two main objectives of this paper, and they are now investigated
for some specific structural mechanics problems.

3. Effective flexibility of beams

For structural beams it is convenient to consider uncertainty in
the flexibility in the form

D(x) = 1
EI(x)

= 1
EI0

(1 + f (x)) (9)

where EI0 is the nominal stiffness and f (x) is a zero mean homo-
geneous random field with spectral density function Sf (κ) that is a
function of thewave number κ . The variance of the response trans-
verse displacement u(x) of such beams can be expressed in the fol-
lowing integral form involving a VRF

var[u(x)] =
∫ ∞

−∞
VRFu(x, κ)Sf (κ)dκ. (10)

Note that this expression is exact for statically determinate beams
but only approximate for statically indeterminate beams. The
equivalent homogeneous beamhas the samegeometry and bound-
ary conditions, but has D(x) replaced with the effective flexibility
D̄ (constant along the length of the beam) which plays the role of
Ē in the previous discussions.

4. Statically determinate beams with a single point load

Consider a statically determinate beam of length L in which the
flexibility varies in theway described in Eq. (9) andwhich is loaded
with a single point load P applied at position xP . Eq. (4) expressed
for such a beam is

g(D̄, L, bcs) = C1P2D̄ = Pu(xP) =
∫

∂Ω

t(x)u(x)ds (11)

which can be solved for

D̄ = 1
C1P

u(xP) (12)

where u(xP) is the transverse displacement of the randomly het-
erogeneous beam at location xP and C1 is a deterministic constant
depending on the length L and the boundary conditions. The vari-
ance of the effective flexibility can then be expressed as

var[D̄] =
(

1
C1P

)2

var[u(xP)]

=
∫ ∞

−∞
Sf (κ)

(
1

C1P

)2

VRFu(xP , κ)dκ

=
∫ ∞

−∞
Sf (κ)VRF D̄(κ)dκ (13)

a

b

L

L

Fig. 1. Cantilever beams with point and distributed loads.

with

VRF D̄(κ) =
(

1
C1P

)2

VRFu(xP , κ). (14)

Consequently, for a statically determinate beam with a single ap-
plied point load the VRF of the effective flexibility has the same
functional form as the VRF of the displacement, but is multiplied
by a coefficient that depends on the applied point load, the geom-
etry of the beam, and the boundary conditions.

4.1. Example

The beam shown in Fig. 1(a) is a statically determinate can-
tilever with a single point load P applied at the free end xP = 0.
For this particular beam

g(D̄, L, bcs) = P2L3D̄
3

(15)

as C1 = L3/3. Using Eq. (12), the expression for D̄ is

D̄ = 3u(0)
PL3

. (16)

It should be noted that as u(0) is the tip deflection of the randomly
heterogeneous beam, u(0) is a random variable and consequently
D̄ is also a random variable.

Eq. (14) leads to the following expression relating the VRF of the
displacement to the VRF of the effective flexibility

VRF D̄(κ) =
(

3
PL3

)2

VRFu(0, κ). (17)

Let P = 16,000 N, L = 16 m and EI0 = 1.25 × 107 N m2.
The variability response function VRFu(0, κ) resulting from these
numerical parameters is shown in Fig. 2. It has been estimated by
Fast Monte Carlo (FMC) simulation [10,11] though it can be calcu-
lated from a closed form expression following the procedures in
[3,4,10]. The corresponding variability response function VRFD̄(κ)
is shown in Fig. 3, has the same shape as VRFu(κ) and differs only
by the constant

(
3/PL3

)2 = 2.09 × 10−15.
For demonstration purposes, consider the two spectral density

functions

Sf ,1(κ) =
2σ 2

f β

π(κ2 + β2)

Sf ,2(κ) =
{
0.033 0 ≤ κ ≤ 3
0 otherwise (18)

with σ 2
f = 0.1 andβ = 0.25 that define the homogeneous random

field f (x). Both spectral densities correspond to the same variance
σ 2
f = 0.1. Fig. 4 displays a few samples of D(x) resulting from
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Fig. 2. VRF for cantilever tip displacement (example in Section 4.1).

Fig. 3. VRF for effective flexibility (example in Section 4.1).

each of the spectra under a truncated Gaussian assumption for the
marginal PDF. It should be noted that the results are invariant to
the choice of a marginal PDF, however, the marginal PDF should
respect physical restrictions in the numerical values allowable for
the flexibility (consequently the Gaussian is not acceptable as a
marginal PDF). Fig. 5 shows the two spectra on the same plot with

Fig. 5. VRF for effective flexibility shown with spectral densities of flexibility field
(example in Section 4.1).

VRF D̄(κ) in order to visualize the corresponding overlaps. Eq. (13)
provides the following estimates for the variance of D̄ for the two
spectral densities: var[D̄] = 3.2 × 10−16 for Sf ,1(κ) and var[D̄] =
7.2 × 10−17 for Sf ,2(κ). These values agree well with results of
direct MC simulations of the beam response with 500 samples
which yield var[D̄] = 3.1 × 10−16 and var[D̄] = 7.0 × 10−17,
respectively. Note that the VRFs use here for the effective flexibility
are exact, and any discrepancy between the prediction of the
VRF approach (Eq. (13)) and the results of MC simulations stems
from three potential sources of numerical error: (1) estimation
error associated with the finite number of samples used in the MC
simulations; (2) estimation error associatedwith the finite number
of samples used in the estimation of the VRF ; (3) error associated
with the numerical integration of the product of the VRF and the
spectral density to predict the effective property variance (Eq.
(13)). Each of these errors could be reduced to achieve an arbitrary
degree of accuracy provided sufficient time and computational
resources were available.

The effective flexibility as defined in this work differs from
the arithmetic and harmonic averages of D(x). For the same

Fig. 4. Samples of D(x) generated using spectral densities Sf ,1(κ) and Sf ,2(κ), both with the same marginal PDF (truncated Gaussian) and variance σ 2
f = 0.1.
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simulations described above, the variance of the arithmetic mean
of D(x) (Reuss) and of the harmonic mean (Voigt) are 2.4 × 10−16

and 3.3 × 10−16 for Sf ,1(κ) and 4.0 × 10−17 and 2.9 × 10−15 for
Sf ,2(κ). Note that since flexibility is considered in this case, the
Voigt average corresponds to a harmonic average of D(x) whereas
the Reuss average corresponds to an arithmetic average of D(x). In
certain cases the variance of the Voigt and Reuss averages differs
substantially from the variance of the strain energy based effective
flexibility.

5. Statically determinate beams with uniform load

Consider now a statically determinate beam identical to that in-
troduced in the previous section but with a deterministic uniform
distributed load q applied along the entire length of the beam. For
this case

g(D̄, L, bcs) =
∫ L

0
qū(x)dx

= q2C2D̄ (19)
where ū(x) denotes the transverse displacement of the homoge-
neous beam and the constant C2 represents the influence of the
beam’s geometry and boundary conditions, as before. The right-
hand side of Eq. (4) is written as
∫

∂Ω

t(x)u(x)ds =
∫ L

0
qu(x)dx (20)

where u(x) denotes the transverse displacement of the randomly
heterogenous beam. Combining now Eqs. (4), (19) and (20) leads
to the following expression for D̄

D̄ = 1
qC2

∫ L

0
u(x)dx. (21)

The variance of D̄ can be written as

var[D̄] =
(

1
qC2

)2

var
[∫ L

0
u(x)dx

]

=
(

1
qC2

)2 ∫∫ L

0
c(u(x1), u(x2))dx1dx2 (22)

where c(u(x1), u(x2)) is the covariance function of u(x) (The sec-
ond part of Eq. (22) is derived from the first part by direct calcu-
lations following equations K.1 and K.2 in [12]). The expression in
Eq. (22) suggests that if a VRF exists such that

c(u(x1), u(x2)) =
∫ ∞

−∞
Sf (κ)VRFu1u2(x1, x2, κ)dκ (23)

with Sf (κ) being the spectral density of random field f (x), then

var[D̄]

=
(

1
qC2

)2 ∫∫ L

0

∫ ∞

−∞
Sf (κ)VRFu1u2(x1, x2, κ)dκdx1dx2

=
∫ ∞

−∞
Sf (κ)

[(
1

qC2

)2 ∫∫ L

0
VRFu1u2(x1, x2, κ)dx1dx2

]

dκ

=
∫ ∞

−∞
Sf (κ)VRF D̄(κ)dκ (24)

with

VRF D̄(κ) =
[(

1
qC2

)2 ∫∫ L

0
VRFu1u2(x1, x2, κ)dx1dx2

]

(25)

What differs significantly from the previous case involving a point
load is that VRF D̄(κ) is now a function of integrals of VRFs.

The existence of VRFu1u2(x1, x2, κ)will now be established. This
in turn proves the existence of VRF D̄(κ) for statically determinate
beams loaded with a uniform distributed load. The displacement
field can be expressed as

u(x) = −D0

∫ x

0
h(x, ξ)M(ξ)[1 + f (x)]dξ (26)

where D0 is the nominal value of the flexibility (Eq. (9)), h(x, ξ)
is the deterministic Green’s function and M(ξ) is the bending
moment, which is independent of the flexibility and deterministic
since the beam is statically determinate. The correlation function
r(u(x), u(y)) is easily computed using Eq. (26),
r(u(x1), u(x2)) = E[u(x1)u(x2)]

= D2
0

∫ x1

0

∫ x2

0
h(x1, ξ1)h(x2, ξ2)M(ξ1)M(ξ2)

×
[
1 + Rf (ξ1 − ξ2)

]
dξ1dξ2 (27)

where Rf (ξ1 − ξ2) is the autocorrelation of the homogeneous, zero
mean random field f (x). The covariance function c(u(x1)u(x2)) is
therefore written as

c(u(x1), u(x2)) = D2
0

∫ x1

0

∫ x2

0
h(x1, ξ1)h(x2, ξ2)M(ξ1)

×M(ξ2)Rf (ξ1 − ξ2)dξ1dξ2. (28)
If the spectral density Sf (κ) is substituted for Rf (ξ1 − ξ2) through
the Wiener–Khintchine transform, the covariance function of u(x)
becomes

c(u(x1), u(x2)) = D2
0

∫ x1

0

∫ x2

0
h(x1, ξ1)h(x2, ξ2)M(ξ1)

×M(ξ2)

∫ ∞

−∞
Sf (κ)eiκ(ξ1−ξ2)dξ1dξ2. (29)

Changing the order of integration yields

c(u(x1), u(x2)) =
∫ ∞

−∞
VRFu1u2(x1, x2, κ)Sf (κ)dκ. (30)

where the VRF is defined as

VRFu1u2(x1, x2, κ) = D2
0

∫ x1

0

∫ x2

0
h(x1, ξ1)h(x2, ξ2)

×M(ξ1)M(ξ2)eiκ(ξ1−ξ2)dξ1dξ2. (31)
Eqs. (30) and (31) are of interest for several reasons. First,

they show that a VRF exists for the covariance function of the
non-homogeneous, random field u(x). Second, the derivation of
this VRF is independent of the marginal distribution of f (x).
Third VRFu1u2(x1, x2, κ) is defined on the two-dimensional domain
(x1, x2).

In principal VRFu1,u2(x1, x2, κ) can be calculated exactly using
closed form expressions for the Green’s and moment functions
h(x, ξ) and M(ξ), but in practice it is often more convenient to
estimate the VRF using the very efficient Fast Monte Carlo (FMC)
method [10,11]:
1. Select the variance σ 2

f of the flexibility fluctuations.
2. Select the number of simulations Nsim used to estimate each

value of the VRF .
3. Fix values of x1 and x2.
4. Fix the value of κ .
5. Generate Nsim realizations of f (x) with j = 1, 2, . . . ,Nsim:

f (x) =
√
2σf cos

(
κx + θ (j))

θ (j) =
(
j − 1

2

) (
2π
Nsim

)
(32)

6. For each realization of f (x) compute u(j)(x1) and u(j)(x2).
7. Estimate the covariances using
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Fig. 6. VRFu1,u2 (x1, x2, κ) shown as surface and contour plots for fixed values of κ .

Fig. 7. VRFu1,u2 (x1, x2, κ) shown as surface and contour plots for fixed values of x1 (example in Section 5.1).

c(u(x1), u(x2))

≈ 1
Nsim

Nsim∑

j=1

(
u(j)(x1) − û(x1)

) (
u(j)(x2) − û(x2)

)

û(x1) ≈ 1
Nsim

Nsim∑

j=1

u(j)(x1)

û(x2) ≈ 1
Nsim

Nsim∑

j=1

u(j)(x2) (33)

8. Calculate

VRFu1,u2(x1, x2, κ) = c(u(x1), u(x2))
σ 2
f

(34)
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Fig. 8. VRFu1,u2 (x1, x2, κ) shown for fixed values of x1 and x2 (example in Section 5.1).

9. Repeat steps 4–8 for a number of equidistant values of κ on the
wave number domain from zero to an appropriately selected
upper cutoff wave number κu beyond which the values of the
VRF become negligibly small.

10. Repeat steps 3–9 for a number of equidistant values of x1 and
x2 on a two-dimensional grid in the 0 ≤ x1, x2 ≤ L domain.
Once VRFu1,u2(x1, x2, κ) is estimated by this FMC procedure,

VRFD̄(κ) is readily obtained by numerical integration following Eq.
(25), or, alternatively, VRFD̄(κ) can be estimated directly by an FMC
algorithm similar to that described above.

5.1. Example

Consider now the statically determinate cantilever beam in
Fig. 1(b) with a uniform load q applied over the entire length of
the beam. For the homogeneous beam, the displacement is given
by

ū(x) = qD̄
24

(
x4 − 4L3x + 3L4

)
(35)

which yields, according to Eq. (19), C2 = L5/20. Eq. (22) is then
written as

var[D̄] =
(

20
qL5

)2

var
[∫ L

0
u(x)dx

]
(36)

and Eq. (25) as
VRFD̄(κ)

=
[(

20
qL5

)2 ∫ L

0

∫ L

0
VRFu1,u2(x1, x2, κ)dx1dx2

]

. (37)

Let q = 1000 N/m, L = 16 m and EI0 = 1.25 × 107 N m2, and
consider again the two spectral density functions defined by Eq.
(18). Using the FMC algorithm described above, VRFu1,u2(x1, x2, κ)
has been estimated using Nsim = 50. FMC simulations were
carried out for 25 × 25 values of x1 and x2 evenly spaced in the
two-dimensional interval [0, 16], and for nκ = 50 values of κ
evenly spaced in the interval [0, 3]. Consequently, the complete
procedure requires the generation of nκNsim = 2500 samples of
D(x) according to Eqs. (9) and (32) and the subsequent solution for
u(x) for each one of these samples. Using the finite elementmethod
to calculate u(x) with 100 Euler–Bernoulli beam elements, the
entire FMC estimation requires approximately 75 seconds when
executed in MATLAB on a MacBook Pro laptop computer with a 2.6
GHz Intel Core 2 Duo processor and 4 GB of RAM.

The FMC algorithm provides an estimate of VRFu1,u2(x1, x2, κ)
which depends on three input arguments, making it difficult to
visualize. Fig. 6 shows VRFu1,u2(x1, x2, κ) as surface and contour

Fig. 9. VRFD̄(κ) shown with spectral densities Sf ,1(κ) and Sf ,2(κ) (example in
Section 5.1).

plots for κ = {0.86, 1.5, 3.0}. This figure shows that the general
shape of the VRF is similar at different values of κ , with the peak
value always occurring at x1 = x2 = 0, corresponding to the tip
of the beam. As κ increases towards its maximum value of 3.0, the
magnitude of the VRF decreases, which is in agreement with the
general form of VRFu(κ) (Fig. 2) which has a maximum at κ = 0
and approaches zero as κ increases.

In Fig. 7, sections through VRFu1,u2(x1, x2, κ) at fixed values of
x1 are shown. Sections through these surfaces at constant x2 are
shown in Fig. 8, and show a shape similar to that in Fig. 2, with the
magnitude of the VRF decreasing as |x1 − x2| increases.

Fig. 9 shows VRFD̄(κ), calculated using Eq. (37), together
with the two spectral density functions of Eq. (18). Numerical
integration of the third line of Eq. (24) with Sf ,1(κ) gives var[D̄] =
4.3×10−16 and directMC simulations of the beam’s responsewith
1000 samples gives 4.4×10−16, a reasonably good agreement. For
Sf ,2(κ) the agreement is also good, with the VRF approach giving
1.2 × 10−16 and direct MC simulations yielding 1.2 × 10−16. Note
again that the VRF s used here for the effective flexibility are exact,
and any difference between the VRF-based predictions for the
variance of D̄ and the correspondingMC results ismerely an artifact
of various estimation and numerical integration errors that can be
reduced to arbitrarily small values given sufficient computational
resources.

6. Conclusion

A variability response function (VRF ) has been introduced for
the effective elastic material properties of a heterogeneous body.
This VRF depends directly on the boundary conditions and geom-
etry of the body, as well as on the VRF for the displacement re-
sponse, when the homogenization of the medium is defined based
on equivalence of elastic strain energy in the heterogeneous and
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homogeneous bodies. For the case of a statically determinate beam
subject to either a single point load or a uniformly distributed load
the VRF for the effective flexibility exists and can be calculated by
scaling the displacement VRF (point load case) or scaling and in-
tegrating the VRF for the covariance of displacements along the
length of the beam (uniform load case). In order to demonstrate
the second result, the existence of a VRF for the covariance of dis-
placements at points along a statically determinate beam has been
proven. Two numerical examples demonstrate the efficacy of the
VRF approach for predicting the variance of the effective flexibility.
The VRF for effective material properties introduced here is useful
for efficiently evaluating the variance of effective material prop-
erties averaged over finite material volumes and also for conduct-
ing studies on the sensitivity of the effective property variability
to the spectral contents of the underlying material property ran-
dom field. The calculation of the VRF is done using a very efficient
Fast Monte Carlo algorithm. Once the VRF is calculated, the evalua-
tion of effectivematerial property variability and sensitivity can be
accomplished without recourse to any additional MC simulation,
requiring only simple numerical integration of a one dimensional
integral in the wave number domain.
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