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Abstract

A reliablemetoceanmodel, with its uncertainty quantified and its accuracy validated for

conditions appropriate to assessing risk, is essential to understand the risk posed by

hurricanes to offshore infrastructure such as offshorewind turbines. In this paper, three

metocean models are considered, with the seastate predicted using the commercial

software Mike 21, and the meteorological forcing defined by three conditions. The

three conditions include (1) reanalysis data within and surrounding the hurricane, (2)

predictions from the empirical Holland model within the hurricane and reanalysis data

surrounding the hurricane, and (3) predictions from the empirical Holland model within

the hurricane and wind‐free conditions surrounding the hurricane. The accuracy of the

first metocean model is validated with (1) measurements of wind speed, wave height,

wave period, and storm surge during 23 historical hurricanes from 1999 to 2012 and

(2) a comparison to hindcast data from WaveWatch III, another numerical metocean

model. The prediction performance of the second and third metocean models is then

compared with that of the first to evaluate the impact of meteorological conditions

on model predictions, as the third metocean model is necessary for risk analysis, where

reanalysis data of meteorological conditions is not available. This study shows that the

inconsistency between the modeling of meteorological conditions for risk assessment

and for validation is influential for hurricanes with low maximum wind speeds, when

model predictions are significantly better if the meteorological conditions surrounding

the hurricane wind field are included. This study also shows that this inconsistency is

effectively diminished when considering only events with high maximum wind speeds.

Since high wind speeds are what is relevant to risk assessments, the third metocean

model can be reasonably used to assess hurricane risk. Finally, the uncertainties, biases,

and correlations of uncertainties in the model predictions for wind speed, wave height,

wave period, and storm surge are quantified for the third metocean model, and a

numerical example is constructed to illustrate the impact of including uncertainty on

the assessment of risk to offshore infrastructure during hurricanes. The example dem-

onstrates how uncertainty and correlation of uncertainty influence the size and shape

of a 50‐year environmental contour of wind speed and wave height.
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1 | INTRODUCTION

The U.S. Atlantic coast is a natural location to install offshore wind turbines due to its rich wind resource, relatively shallow water, and proximity to

population centers. Offshore infrastructure installed in this region is exposed to multiple hurricane‐induced hazards, such as wind, wave, and storm

surge. The correlation among these hazards, plus the short historical record of hurricanes (~30 years for detailed records) and the relative paucity

of measurements of offshore conditions during hurricanes, make the design and risk assessment of offshore infrastructure along the U.S. Atlantic

coast a challenging endeavor.

One approach to overcome these challenges is to use numerical models to simulate metocean conditions for a catalog of synthetic hurricanes

that more completely represents potential hurricane variability by simulating thousands of years of potential hurricane activity.1-3 Before a numer-

ical metocean model is applied to hurricane risk analysis, several aspects of the model should be understood, and three of these aspects are stud-

ied here. The first aspect is the accuracy of the model, that is, the governing equations of the underlying physics to be modeled. A common

approach to measure accuracy is to validate the model predictions against measurements during historical hurricanes.4-6 The accuracy of the

model, however, must be weighed against the efficiency of the model, as risk assessments typically require the simulation of thousands of hurri-

canes. The second aspect is the degree to which the model predictions differ when the meteorological conditions in the model are based on a

simplified empirical model, such as the Holland model,7 and when they are based on reanalysis data. This distinction is important as meteorological

conditions from reanalysis data are often used for model validation, while empirical models are often used for assessing risk, which usually con-

siders synthetic hurricanes for which reanalysis data is not available. The difference between these meteorological conditions arises from simpli-

fications in the empirical model compared with reanalysis data and the inability of empirical models like the Holland model to represent

meteorological conditions surrounding the hurricane. The impact of this difference on the performance of metocean models is evaluated by sev-

eral studies for the Gulf of Mexico,8,9 but has not been well assessed for the U.S. Atlantic coast region. The third and final aspect considered here

is quantification of the overall prediction uncertainty, which includes contributions from the seastate prediction model and from the meteorolog-

ical forcing (induced either by imperfections of the numerical model in a reanalysis study or by simplification of the Holland model), and how this

uncertainty affects the assessment of hurricane risk.

In this paper, a numerical model is implemented for predicting seastates during hurricanes along the U.S. Atlantic coast. This model is imple-

mented by the authors within the commercial program Mike 21. In order to evaluate the three aspects mentioned above, three metocean models

are considered by using different meteorological conditions (i.e., the wind and pressure fields) as input to the seastate prediction model: (1) the

Mike 21 model driven by reanalysis data from the Climate Forecast System Reanalysis (CFSR) study10 within and surrounding the hurricane

(named herein as the CFSR/Mike 21 model), (2) the Mike 21 model driven by predictions from the empirical Holland model7 within the hurricane

and CFSR data surrounding the hurricane (named herein as the Hybrid/Mike 21 model), and (3) the Mike 21 model driven by predictions from the

Holland model within the hurricane and wind‐free conditions surrounding the hurricane (named herein as the Holland/Mike 21 model). Predictions

of the sustained wind speed V, the significant wave height Hs, the peak spectral period Tp, and the storm surge η are compared with corresponding

buoy measurements during a set of 23 historical hurricanes at 107 locations. The prediction performance of the CFSR/Mike 21 model is compared

with the hindcast data from another numerical metocean model, WaveWatch III (WW3),11 which uses the same meteorological forcing, for the

purpose of model validation. The Hybrid/Mike 21 model is compared with the CFSR/Mike 21 model to assess the influence of modeling meteo-

rological conditions using the simple empirical Holland model compared with reanalysis data. The Holland/Mike 21 model is compared with the

Hybrid/Mike 21 model to evaluate the impact of the meteorological condition surrounding the hurricane on metocean predictions. Since predic-

tion uncertainty affects the assessment of risk, and reanalysis data is not available for synthetic hurricanes, which are commonly used in the

assessment of risk, the Holland/Mike 21 model is also used to quantify the bias and uncertainty of the model. It is important to note that this

paper is not intended to develop a better metocean prediction model, but rather to quantify the uncertainty of practical models and evaluate

its impact on risk analysis.

This paper first summarizes the information of the meteorological and seastate prediction models involved in this study in Section 2 and then

provides details on the validation of the CFSR/Mike 21 model implemented here in Section 3, including specification of the historical hurricanes

and metocean measurements used for validation. In Section 4, the impact of the meteorological forcing on the prediction performance of the Mike

21 model is discussed. In Section 5, biases and uncertainties of the Holland/Mike 21 model are quantified, followed by a numerical example show-

ing the influence of uncertainty on the assessment of offshore hurricane risk. Finally in Section 6, the conclusions of this study are summarized.

2 | MODEL BACKGROUND

This paper compares the prediction performance of three metocean models with the seastate predicted by the Mike 21 model and the meteoro-

logical conditions defined by three combinations of meteorological models. The three meteorological conditions are defined separately for loca-

tions within the hurricane (i.e., within 2Rmax, where Rmax is the radius of maximum winds) and surrounding the hurricane (i.e., outside 3Rmax), see

Table 1. Within the hurricane, two types of meteorological forcing are considered: those from CFSR and those from the empirical Holland model.
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Surrounding the hurricane, two types of meteorological forcing are considered: those from CFSR and wind‐free conditions (i.e., the field surround-

ing the hurricane is modeled as having zero wind speed and standard atmospheric pressure). More details on the meteorological conditions are

provided in Section 2.1.

In addition to the Mike 21 model, another seastate prediction model, WW3, is considered for comparison. The WW3 model only provides pre-

dictions of Hs and Tp, while the Mike 21 model provides predictions of Hs, Tp, and η. More details on the two seastate prediction models are pro-

vided in Section 2.2.

2.1 | Meteorological conditions

This section provides details on the three combinations (CFSR, Holland, and Hybrid) of meteorological models considered in this paper to define

the meteorological forcing for seastate prediction models. CFSR is implemented by other researchers,10 while the Holland and Hybrid models are

implemented by the authors.

2.1.1 | CFSR

The CFSR wind (at 10 m elevation) and pressure (at sea level) fields are generated from a global‐scale reanalysis using the CFS12 (Climate Forecast

System), which is implemented by the National Centers for Environmental Prediction (NCEP). This reanalysis assimilates data from satellite radi-

ances and all available conventional observations (e.g., buoy measurements and ship observations) at 6‐hour intervals and uses a coupled

atmosphere‐ocean‐land model for making hourly forecasts.

The reanalysis data used in this study13,14 is obtained from two separate versions of theCFS. Both versions provide information at 1‐hour intervals

and the older one, which covers the time period 1979‐2011, has a slightly coarser spatial resolution of 0.31° than the newer one, which covers the

time period 2011‐2016 with a spatial resolution of 0.21°. The information from both versions is interpolated here to the same resolution of 0.054°

using cubic interpolation. Cubic interpolation is preferred over linear interpolation to alleviate the spatial averaging effect of this mesoscale model.

However, CFSR is not sufficient to capture the full characteristics of the hurricanewind field.15 For a more accurate wave hindcast during hurricanes,

a common approach is to overlay hurricane forcing provided by either a provenmesoscale model (e.g., theWRFmodel16) or hurricane snapshots pro-

vided byNational Hurricane ResearchDivision17,18; however, this approach is not possiblewhen assessing risk using a catalog of synthetic hurricanes

which defines hurricanes in terms of several parameters, as is common in practice. The CFSR data is used here because it is readily available, andmore

importantly, because it is useful to compare the accuracy of metocean responses driven by CFSR with responses driven by empirical meteorological

models, to give practitioners a sense of the accuracy expected when using the empirical models.

2.1.2 | Holland model

The Holland model7 is a widely‐used, empirical model19-21 that estimates the meteorological conditions of hurricanes based on seven hurricane

parameters: the position of the hurricane eye (i.e., latitude and longitude), the central pressure Pc, the translation speed Vtr, the heading direction,

the radius of maximum winds Rmax, and the Holland B parameter. The model describes the hurricane pressure field P as a function of radial dis-

tance from the hurricane eye r,

P rð Þ ¼ Pc þ Pn − Pcð Þexp −
Rmax

r

! "B
" #

(1)

where Pn is the peripheral pressure. Combining this pressure field with the gradient wind equation and adding the hurricane translation speed, the

mean wind speed at gradient height Vg is expressed as,

Vg r;θð Þ ¼ B
ρ

Rmax

r

! "B

Pn−Pcð Þexp −
Rmax

r

! "B
" #

þ Vtrsin θ−rfcð Þ2

4

" #0:5

þ Vtrsin θ − rfc
2

(2)

TABLE 1 Three combinations of meteorological models used to evaluate the impact of meteorological forcing on seastates predicted by the
Mike 21 model

Name Model within hurricane Model surrounding hurricane

CFSR CFSR CFSR

Hybrid Holland CFSR

Holland Holland None
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where ρ is air density, θ is the angle measured clockwise starting from the hurricane heading direction, and f c is the Coriolis parameter. A constant

factor of 0.71 is applied to convert the wind speed from gradient height to 10 m when comparing with measurements22 and as input to the Mike

21 model. Note that Eq. 2 includes the asymmetries of the hurricane wind field, which is proposed by Georgiou et. al23 as an early improvement to

the original Holland model. Several more recent studies24-26 have further improved the Holland model.

The seven input parameters required by the Holland model are obtained from multiple sources for the historical hurricanes considered in this

study. Hurricane eye position is taken from the International Best Track Archive for Climate Stewardship (IBTrACS) database,27 which provides

historical hurricane track data at 6‐hour intervals. The translation speed Vtr and heading direction are derived from the eye position in the IBTrACS

database. Pc and Rmax are obtained from the H*wind database,28 which provides one‐minute maximum wind reanalysis data at 10 m height for

hurricane wind fields at 6‐hour intervals and a spatial resolution of 0.054°. The Holland B parameter represents the rate of decay of the wind field

of the hurricane with respect to position relative to the eye, and several approaches have been proposed to calculate this parameter.29,30 In this

study, a method similar to that proposed by Vickery and Wadhera,30 wherein the B parameter is selected by minimizing the root mean square error

between the wind field of the Holland model and the H*wind reanalysis over the range of 0.5 Rmax to 1.5 Rmax, is adopted. Since both the wind

measurements (see Section 3.2) and the H*wind used to determine the parameters for the Holland model are near the sea surface level (within 50

m), the simple conversion factor of 0.71 from gradient height to 10 m does not affect the results here. A factor of 0.90 is used to convert the

H*wind reanalysis from one‐minute maximum wind to mean wind.31

For many hurricanes in this study, Pc, Rmax and the Holland B parameter need to be specified for times in addition to those provided by

H*Wind. In these cases, Pc is taken from IBTrACS database, Rmax is estimated using the equation proposed by Vickery and Wadhera,30

ln Rmaxð Þ ¼ 3:421 − 4:600 × 10−5 Pn−Pcð Þ2 þ 0:00062ψ2 (3)

where ψ is latitude, and the Holland B parameter is estimated using the following equation,7

B ¼ ρeV2
max

Pn − Pc
(4)

where e is the base of the natural logarithm and Vmax is the maximum gradient wind speed provided by the IBTrACS database. Note that Eq. 3

represents the statistical mean of the sample and that the H*wind reanalysis has significant variation about this mean. However, since the results

compared in this paper (see Section 3) are within the period provided by H*wind, the impact of this error is minor. The seven hurricane parameters

are linearly interpolated to 1‐hour intervals to provide a smoother transition of the meteorological conditions for use as inputs to the Mike 21

model.

2.1.3 | Hybrid model

The Holland model does not include any information on the meteorological conditions surrounding the hurricane. Metocean conditions at a par-

ticular location are influenced by the meteorological conditions both within and surrounding the hurricane, and it is not clear the extent to which

the surrounding conditions influence the prediction of metocean conditions at locations within the hurricane. To examine this question, a hybrid

model, with the Holland model defining conditions within the hurricane and CFSR defining conditions surrounding the hurricane, is considered in

this study. The specific hybrid model used here is similar to the one proposed by Tanemoto and Ishihara,32 and the hybrid wind field is expressed

as,

Vhybrid ¼ W·VHolland þ 1 −Wð Þ·VCFSR (5)

where W is a weighting function, which is defined here as,

W ¼

1 r ≤ 2Rmax

1
2

cos
r − 2Rmax

Rmax
π

! "
þ 1

# $
2Rmax < r < 3Rmax

0 r ≥ 3Rmax

8
>>>><

>>>>:

(6)

and the transition range between 2Rmax and 3Rmax is determined from the prediction performance of the Holland/Mike 21 model (see Section 4).

The hybrid pressure field is calculated in a similar manner following Eq. 5.
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2.2 | Seastate prediction models

This section provides details on the Mike 21 model implemented by the authors, and the WaveWatch III (WW3) model implemented by NCEP.33

The WW3 model is selected for comparison with the Mike 21 model because it is a widely‐studied model with a similar resolution over the model

domain and because the 30‐year hindcast data based on this model is publicly available.

2.2.1 | Mike 21

The commercial program Mike 21 is a coastal model that includes separate modules for multiple phenomena. In this study, two coupled modules,

Mike 21 HD and Mike 21 SW, are used to predict metocean conditions during hurricanes. Mike 21 HD is the hydrodynamic module and the phys-

ics of this module is based on the depth‐integrated, incompressible, Reynolds‐averaged Navier‐Stokes equations.34 Mike 21 SW is the spectral

wave module which simulates the growth, propagation, and decay of wind‐generated waves and swells based on a wave action conservation

equation.35 These two modules are coupled in a way that wave radiation from the SW module is included in the HD module for flow calculations,

and water level and current from the HD module are included in the SW module for wave calculations. Both modules take mean wind speed at 10

m height as input.

The domain of the Mike 21 HD/SW model implemented here includes the majority of the U.S. Atlantic coast, see Figure 1(a). The domain is

extended southward beyond the Atlantic coast to include regions where the propagation of swells may contribute significantly to the metocean

conditions along the Atlantic coast. The spatial resolution of the non‐structured mesh within the model domain is approximately linear to the

water depth, varying between 20 km for deep water areas and 5 km for shallow water areas, and totaling ~66,000 triangular elements, see

Figure 1(b). Such resolution is sufficient for modeling metocean response in the offshore area36,37 and meanwhile ensuring computational effi-

ciency for thousands of synthetic hurricane simulations. The bathymetry in the model is linearly interpolated from the Global Relief Model38

for most of the model domain and the Coastal Relief Model39 for the portions of the domain with shallow water. In the HD module, sea bed resis-

tance is modeled with a constant Manning number of 32 m1/3/s for the entire domain.40 Wind friction is modeled using the drag coefficient pro-

posed by Wu.41 Tide levels during historical hurricanes are specified along the open boundary of the HD module using the DHI Global Tide

Model.42 In the SW module, wave direction is discretized into 36 bins, each with an angle of 10°, and frequency is discretized into 40 bins loga-

rithmically between 0.03 Hz and 1.42 Hz. The dissipation of energy by depth‐induced breaking waves is modeled following the formulation by

Battjes and Janssen43 and therefore the Hs values predicted by the model are influenced by breaking waves. Bottom friction is modeled using

a constant Nikuradse roughness44 of 0.04 m for the entire model domain. The equation proposed by Bidlot et al.45 is used to describe the dissi-

pation of energy due to white capping. The model boundaries in the SW module are the same as those in the HD module, see Figure 1(a), how-

ever, for the SW module, a lateral boundary is applied, meaning that the effect of waves propagating from outside the boundary is neglected.

2.2.2 | WaveWatch III

WW3 is a wave model developed by NCEP.11 The model predicts metocean conditions considering the actions of wind, bottom friction, and

breaking waves. The implementation of the model considered here33 has a domain spanning the entire globe, with three levels of nested grid res-

olution: a global grid with 0.50° resolution, an intermediate grid with 0.17° resolution covering the area between ~200 km and ~500 km from

shore, and a nearshore grid with 0.067° resolution covering the area within ~100 km from shore.46 Note that the 0.067° resolution of the near-

shore grid is close to the resolution of the Mike 21 model in the same area, and most of the buoy measurements for validation are within this area.

Hindcast data from Version 2.22 of WaveWatch III,33 which does not include any data assimilation, is used in this study. This version covers

the time period 1979‐2015 and provides information at 3‐hour intervals. The data with a nested grid resolution of 0.067° and 0.17° is only avail-

able since 2005.

3 | MODEL VALIDATION

All models considered in this study are compared for the same set of historical hurricanes and corresponding measurements. The prediction error

is expressed in terms of the logarithmic error,

εx ¼ lnbx − lnx (7)

where x is the measurement and bx is the corresponding prediction. As such, a positive prediction error indicates overestimation. The overall pre-

diction performance is evaluated using the standard deviation of the considered prediction errors, expressed as,
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σεx ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n
∑n

i¼1 εx;i−εx
& '2

r
(8)

where n is the number of comparisons between prediction and measurement. To provide some context for the meaning of the numerical value of

εx, it is noted that the percentage values corresponding to εx are asymmetric, with a value of εx equal to ±0.5 corresponding to 40% overestimation

and 65% underestimation of the prediction result compared with the measurement, and a value of εx equal to ±0.25 corresponding to 22% over-

estimation and 28% underestimation. Logarithmic error is widely used in Earthquake Engineering, and this metric is preferred here over the bias

error (i.e., εx ¼ bx − x) because its variance shows less dependency on the prediction (see Section 5.1).

For the four types of metocean measurements considered in this study, the maximum values of sustained wind speed V, significant wave

height Hs, and storm surge η, and the values of peak spectral period Tp corresponding to the maximum Hs are compared. As such, the synchroni-

zation in time both between hazards and between prediction and measurement is not considered in this paper. Maxima values are compared in

this paper rather than time series because 1) extreme values are more influential for risk analysis than low or moderate values, and thus the

FIGURE 1 The Mike 21 model domain shown with (a) a contour plot of bathymetry, (b) the mesh, and (c) the locations of offshore buoys and
what they measured (wind, wave, or storm surge), superimposed with the paths of the 23 historical hurricanes considered here, with the color
of the path showing hurricane intensity per the Saffir‐Simpson scale (TS: tropical storm, TD: tropical depression, ET: extra‐tropical cyclone)
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comparison of maxima is more relevant in this context, and 2) a time series comparison includes errors in magnitudes and in time, and only the

former one is relevant to synthetic hurricanes.

3.1 | Historical hurricanes

A total of 23 historical hurricanes are considered for validation of the models considered in this study. The selection of these 23 hurricanes is

determined by the availability of data in H*wind,28 as gridded hurricane wind field data, which is required in this paper for fitting the Holland B

parameter, is not provided for events prior to 1998. The selection is also constrained by the requirement that each hurricane must include at least

one metocean measurement during the storm. The characteristics of the 23 hurricanes, selected based on these constraints, are listed in Table 2

and their paths are plotted in Fig 1(c). Note that the hurricanes considered here refer to tropical cyclones that reach the intensity of tropical storm

or above per the Saffir‐Simpson category. It is also noted that, although the paths cover most of the model domain and the hurricane intensities

vary from tropical depression to Category 5, most of these hurricanes are low intensity when approaching the nearshore region.

3.2 | Metocean measurements

Metocean measurements from the NDBC (National Data Buoy Center) and the NOS (National Ocean Service) network are considered in this

study. All measurements within 250 km from the hurricane trajectories are carefully inspected, and those missing peak values are discarded,

TABLE 2 Number of relevant measurements from offshore buoys and water level stations by hurricane and measurement type

Year Hurricane Category*
Pc*
(mb)

Vmax*
(m/s)

Rmax*
(km)

Measurement type

V Hs Tp η

1999 Dennis 2 963 46 188 10 7 7 4

1999 Floyd 4 921 69 145 16 8 8 14

1999 Irene 2 959 49 216 11 5 5 7

2001 Gabrielle 1 978 36 203 7 3 3 3

2003 Isabel 5 933 72 121 4 3 3 0

2004 Alex 2 970 44 78 17 8 8 8

2004 Charley 3 948 54 82 9 7 7 7

2004 Frances 4 935 64 85 5 1 1 1

2004 Jeanne 3 950 54 68 4 2 2 1

2005 Ophelia 1 976 39 239 33 16 15 9

2005 Wilma 3 929 57 116 4 2 2 0

2006 Beryl TS 1001 26 91 32 16 16 9

2006 Ernesto TS 988 31 106 20 12 11 8

2007 Gabrielle TS 1004 26 120 13 7 7 4

2007 Noel 1 965 39 408 1 6 6 0

2008 Fay TS 986 31 145 8 6 6 3

2008 Hanna 1 978 39 149 17 23 23 7

2009 Bill 3 948 54 61 1 1 1 0

2009 Danny TS 1005 26 215 1 1 1 0

2010 Earl 4 931 64 118 14 10 10 5

2011 Irene 3 942 54 249 35 23 23 11

2012 Beryl TS 993 31 76 12 13 13 3

2012 Sandy 3 944 51 281 17 11 11 3

Total 291 191 189 107

*Characteristics of the hurricane when its trajectory is within the region plotted in Figure 1(a), where Pc represents the minimum recorded value, Vmax and
Rmax represent the maximum recorded values, and Vmax is provided here as the 1‐min averaged wind speed at an elevation of 10 m.
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resulting in measurements from a set of 107 buoys and water level stations during hurricanes, see Figure 1(c). It is worth noting that a potential

bias is introduced during this process since missing data is more likely to happen during intense seastates.

The number of relevant measurements recorded for each of the 23 hurricanes and their associated water depths are listed in Tables 2 and 3,

respectively. The measurements of storm surge, which are made by water level stations not buoys, are only recorded along the coastline, and no

wave measurements, which are made by buoys, are collocated with storm surge measurements. Metocean measurements are recorded at various

intervals, ranging from five minutes to one hour, and measurements of wind speed are averaged over a period of either two minutes or eight

minutes and recorded at various elevations, varying from 1 m to 50 m. When comparing with model predictions, all measurements are converted

to 1‐hour intervals, and wind speeds are converted to values at 10 m elevation, using the logarithmic law profile.47

3.3 | Performance of metocean prediction models

The prediction performance of the WW3 model is compared with that of the CFSR/Mike 21 model (i.e., the Mike 21 model using CFSR as the

meteorological forcing) in Table 4 and in Figures 2 and 3 for 155 measurements of Hs and 153 measurements of Tp. These measurements do

not match exactly with those in Table 2 because some of the measurements in shallow water areas are not included in the WW3 model domain.

It is important to note that the WW3 model is a global‐scale model, while the CFSR/Mike 21 model is a regional model with no waves propagating

from outside the domain boundaries. As mentioned earlier, predictions of the WW3 model are provided in 3‐hour intervals, and the predictions of

the CFSR/Mike 21 model are compared with measurements at the same time instances as the WW3 model. The results indicate that both the

CFSR/Mike 21 and WW3 models show a bias, tending to underestimate Hs. The parameters σεHs and σεTp for the WW3 model are 15% higher

and 5% lower than those for the CFSR/Mike 21 model, respectively.

A total of 155 measurements of the logarithmic error of Hs are shown in Figure 2. The figure shows that the CFSR/Mike 21 model performs

notably better than the WW3 model for measurements of Hs in shallow water, where the WW3 model significantly underestimates Hs in many

cases. One explanation for this is that the simulation of Hs in the CFSR/Mike 21 model is coupled with the simulation of storm surge, which allows

the water depth to increase and, in turn, allows higher Hs predictions than WW3, which does not include coupling with storm surge. In Figure 3,

the logarithmic error of Tp is plotted in terms of Hs measured at the same time and location. The error is plotted in terms of Hs instead of Tp

because, in risk analysis, it is common to model Tp conditioned on Hs, so it is useful to observe in Figure 3 that, at high Hs, the prediction error

TABLE 3 Number of relevant measurements from offshore buoys and water level stations by water depth and measurement type

Category Depth Number of buoys or stations

Measurement type

V Hs Tp η

Shallow d ≤ 20 m 69 184 53 53 107

Medium 20 m < d ≤ 60 m 20 62 74 72 0

Deep 60 m < d ≤ 1000 m 13 27 42 42 0

Very deep d > 1000 m 5 18 22 22 0

TABLE 4 The prediction performance of the WW3 and CFSR/Mike 21 models.

εHs σεHs εTp σεTp

WW3 ‐0.18 0.23 ‐0.04 0.20

CFSR/Mike 21 ‐0.12 0.20 0.02 0.21

FIGURE 2 The logarithmic error of Hs for
the (a) WW3 and (b) CFSR/Mike 21 models
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on Tp is low. Overall, for the conditions considered here, the CFSR/Mike 21 model implemented by the authors shows comparable performance

with that of WW3, and the remainder of the results in this paper will be based on the Mike 21 model.

4 | IMPACT OF THE METEOROLOGICAL FORCING ON THE MODEL PERFORMANCE

The modeling of hurricane conditions for assessing risk is usually based on a catalog of synthetic hurricanes because of the relatively short dura-

tion of the historical record of hurricanes. For synthetic hurricanes, a reanalysis of meteorological conditions, such as CFSR, is not available and so

a common approach is to use an empirical model such as the Holland model to estimate meteorological conditions based on a set of parameters

describing the hurricane. The Holland model influences metocean predictions compared with reanalysis data in two ways: (1) the simplified shape

for the hurricane wind and pressure profiles and (2) the absence of an estimate of meteorological conditions surrounding the hurricane. Three

meteorological models (see Table 1) are considered in this section as input to the Mike 21 model to evaluate the impact of the meteorological

forcing on metocean predictions, especially to assess the performance of the Holland model without a surrounding wind field, since these condi-

tions are commonly used in assessing risk.

The prediction performance for these three models is summarized inTable 5. The data in this table is slightly different than that in the previous

section because of the difference in time intervals for comparing the maximum values (i.e., a 3‐hour interval when compared with WW3 in the

previous section and a 1‐hour interval in this section). The values of σεη are the largest among the four measurements for all three models, how-

ever, the absolute values of the logarithmic error for storm surge are relatively low (~0.3 m) due to the low values of the measurements. The

Hybrid/Mike 21 model shows similar values of σεx (defined in Eq. 8) compared with the CFSR/Mike 21 model, indicating that the simplified hur-

ricane model yields a similar performance as the CFSR reanalysis data. It is important to note that the CFSR data used here does not represent the

cutting‐edge meteorological forcing due to its limitation in characterizing hurricanes.15 As such, one can speculate that a precise hurricane reanal-

ysis would outperform the Holland model. Nevertheless, the CFSR results are a useful reference for interpreting the accuracy of the Holland

model in characterizing hurricane effects. Compared with the Holland/Mike 21 model, the values of σεx are noticeably lower for the

Hybrid/Mike 21 model, indicating that the absence of the meteorological forcing surrounding hurricanes has a significant impact on the metocean

responses.

For a closer look at the impact of the meteorological forcing, a total of 291 comparisons between predictions and measurements of V are

shown in Figure 4 in terms of the normalized distance r/Rmax, where r is the distance from hurricane eye and Rmax is the radius of maximum wind

speed of the hurricane. The figure shows that the Holland model performs better than the CFSR model for wind speeds over 20 m/s, while, for

wind speeds less than 20 m/s, the Holland model tends to overestimate the wind speed within ~2Rmax and underestimate the wind speed outside

~3Rmax. The better performance of the Holland model for high wind speeds reflects the limitation of the mesoscale meteorological model, such as

CFSR, in modeling hurricane activities. It is also important to note that the measurements here are susceptible to the uncertainties induced by the

boundary layer model and averaging time, and for the Holland model, the parameters estimated from the H*wind database are influenced by the

factor used to convert from the one‐minute maximum wind to mean wind speed. A total of 105 pairs of εHs and εV, corresponding to all measure-

ments from buoys measuring both V and Hs, are plotted in Figure 5, for all three metocean models. Even though the maxima of V and Hs might not

occur concurrently, a significant correlation is still apparent, showing that an underestimation of V is correlated with an underestimation of Hs and

vice versa. The correlation coefficient for V and Hs for the Holland/Mike 21 model is 0.72, and, for the CFSR/Mike 21 and Hybrid/Mike 21 models,

FIGURE 3 The logarithmic error of Tp for
the (a) WW3 and (b) CFSR/Mike 21 models

TABLE 5 The prediction performance of the Mike 21 model using the CFSR, Holland and Hybrid meteorological forcing

σεV σεHs σεTp σεη

CFSR 0.24 0.22 0.19 0.33

Hybrid 0.23 0.23 0.18 0.34

Holland 0.36 0.31 0.24 0.38
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it is ~0.50. It is important to note that if measurements with wind speed lower than 20 m/s are excluded, the correlation coefficient is ~0.50 for all

three models, and the values of σεx for the Holland/Mike 21 model decrease to 0.17, 0.25, 0.23, and 0.33 for V, Hs, Tp, and η, respectively. As such,

the high correlation and uncertainty of the Holland/Mike 21 model are mainly caused by the high prediction error for low wind speeds.

In summary, the empirical Holland model shows a similar performance in characterizing hurricanes compared with the CFSR reanalysis, and the

inclusion of meteorological conditions surrounding the hurricane is found to significantly improve the performance of the metocean model. How-

ever, the negative impact of not including meteorological conditions surrounding a hurricane is effectively diminished by excluding prediction

results corresponding to low wind speeds. This makes sense as measurements of V, Hs, Tp, and η during low wind speeds are influenced signifi-

cantly by conditions outside of the hurricane wind field, while, for high wind speeds, the measurements are dominated by conditions within

the hurricane wind field.

5 | UNCERTAINTY QUANTIFICATION AND ITS IMPACT ON ASSESSING RISK

In this section, the results of the Holland/Mike 21 model (i.e., the Mike 21 model using the Holland model for the meteorological forcing) are ana-

lyzed to estimate and correct for biases and to quantify uncertainties in simulation results for the 23 historical hurricanes and the corresponding

measurements. Following this, a numerical example is provided to demonstrate the impact of prediction uncertainty on the assessment of risk.

5.1 | Bias and uncertainty quantification

Figure 6 shows the logarithmic errors of the Holland/Mike 21 model versus the magnitude of the prediction value. For all measurement types, the

standard deviation of the error is higher for low prediction values and tends to stabilize at higher prediction values. As such, lower bounds of Vmin

= 20 m/s, Hs,min = 2 m, and ηmin = 1 m are applied in the uncertainty quantification presented here, because, above these lower bounds, the log-

arithmic error is reasonably stable. Risk analysis is generally more concerned with high values rather than low values, so quantifying the uncer-

tainty in a way that is more representative of high values is reasonable. Note that the lower bound of 20 m/s applied on bV is consistent with

the threshold discussed in Section 4, above which the prediction performance using the Holland model is comparable with using reanalysis mete-

orological forcing. Lower bounds of bHs and bη are chosen here as independent of V, because many of those measurements are not collocated. No

lower bound is applied to bTp, but only those values corresponding to bHs ≥ Hs;min are considered.

Linear regression analyses are conducted for the logarithmic error as a function of the prediction value to check for prediction biases for the

four measurement types. The analyses indicate that the hypothesis of a zero slope for the relationship of logarithmic error versus prediction for V

and η passes a T‐test at a significance level of 5%. Thus, for V and η, only the mean logarithmic error is subtracted from the predictions to correct

the biases in these two predictions. A Kolmogorov–Smirnov test is conducted on the bias‐corrected predictions, and all pass at a 5% significance

FIGURE 5 The correlation of the logarithmic error of Hs and V for the (a) CFSR/Mike 21, (b) Hybrid/Mike 21, and (c) Holland/Mike 21 models

FIGURE 4 The logarithmic error of V for the (a) CFSR/Mike 21, (b) Hybrid/Mike 21, and (c) Holland/Mike 21 models
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level, suggesting that it is reasonable to use a normal distribution to model the logarithmic prediction uncertainties in V, Hs, Tp, and η. As such, the

following equations are suggested here for modeling prediction uncertainties,

Vc ¼ V
^
·
eN−0:055;0:17

2 (9)

Hs;c ¼ H
^
s

·eN−0:036H
^

sþ0:38;0:222 (10)

Tp;c ¼ T

^
p

·eN−0:040T
^
p þ0:51;0:182 (11)

ηc ¼ η
^
·
eN−0:11;0:27

2 (12)

where bV, bHs, bTp, and bη are prediction results from the Holland/Mike 21 model without biases corrected, Vc, Hs,c, Tp,c, and ηc are prediction results

including bias corrections and uncertainty, and N(μ, σ2) is a normal random variable with mean μ and variance σ2. Note that, linear regression anal-

yses are also conducted for εV as a function of r/Rmax, and for εHs and εTp as a function of water depth, but none of these analyses resulted in biases

that passed a T‐test at a significance level of 5%.

The correlation coefficients of the paired logarithmic errors after bias correction are provided in Table 6. The results show a significant corre-

lation between εV and εHs and between εHs and εTp at a significance level of 5%, while the correlation between εV and εTp and between εV and εη is

not significant at a significance level of 5%. It is noted that correlations between εHs , εTp and εη are not available, because wave characteristics and

storm surge are never measured at the same location for the measurements considered here.

FIGURE 6 Bias and uncertainty
quantification for (a) bV, (b) bHs, (c) bTp and (d) bη,
with red crosses indicating low values of data
that are excluded from the regression
analyses, blue circles indicating data included
in the regression analyses, red solid lines
indicating the results of the linear regression
analyses, and red dashed lines indicating the
moving standard deviation with a window size
of 30 adjacent data

TABLE 6 Correlation coefficients of the logarithmic error for the Holland/Mike 21 model

εV 0.69 ‐0.05 ‐0.03

εHs 0.26 ‐

εTp ‐

Sym. εη
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5.2 | Numerical example

A numerical example is provided here to illustrate the importance of considering uncertainty in the assessment of offshore hurricane risk. The

example considers two sites: one located off the coast of South Carolina (SC) and one off the coast of Massachusetts (MA), with water depths

of ~16 m and ~50 m, and with distances to the shore of ~30 km and ~60 km, respectively. Both sites are locations where the development of

offshore wind farms has been proposed.

This example follows a similar approach to that by Valamanesh et al.29 and uses a stochastic hurricane catalog developed by Liu20 to consider

100,000 years of potential hurricane activity. Such a catalog aims to provide more accurate long‐term predictions of hurricane wind, since rare

synthetic hurricanes can be constructed using hurricane parameters with relatively high and statistically confident probabilities.48 However, this

approach also introduces uncertainties from storm statistics, and these uncertainties are not considered in this paper. Hurricanes that pass within

250 km from these two sites are selected from the catalog, resulting in an arrival rate v of 1.69 year‐1 for SC and 1.29 year‐1 for MA. The arrival

rates calculated in this paper are slightly higher than those in Valamanesh et al.29 since a new version of the catalog, based on a database of his-

torical hurricanes with a longer period, is used here. For each site, 1,000 hurricanes are randomly picked from the set of storms passing within 250

km and are analyzed using the Holland/Mike 21 model.

For each of the 1,000 hurricanes at each of the two sites, the maximum wind speed Vmax and the significant wave height Hs,max are

extracted from the Holland/Mike 21 model and plotted in Figure 7. The black dots in this figure correspond to data that has been corrected

for bias but does not include uncertainty (i.e., substituting σ2 = 0 in Eqs. 9 and 10). The Inverse First Order Reliability Method (IFORM)49 is

applied to these results to determine combinations of V and Hs at a mean recurrence period (MRP) of 50 years. In this method, the original

data is transformed into uncorrelated random variables u1 and u2, each with a marginal standard normal distribution. Combinations of u1

and u2 with radial distance β relative to u1 = u2 = 0 are related to an MRP by β ¼ Φ−1 1 −
1

v·MRP

! "
, where v is the annual arrival rate of hur-

ricanes and Φ‐1 is the inverse of the cumulative standard normal distribution. An environmental contour associated with the same MRP

is obtained by transforming this circle back to the original data space. In this paper, the Rosenblatt transformation50 is used to transform

the original data to uncorrelated standard normal data and the Generalized Extreme Value (GEV) distribution is used to model the

distributions of Vmax and Hs,max conditioned on Vmax. Environmental contours corresponding to an MRP of 50 years are plotted in Figure 7

as green lines.

To consider the effect of uncertainty, 100 realizations of Vmax and Hs,max are sampled for each of the 1,000 hurricanes at each of the two

sites using the normal distributions indicated by Eqs. 9 and 10, and the corresponding 50‐year environmental contours are shown in Figure 7,

with semi‐transparent red lines indicating realizations with correlated prediction uncertainties (based on the correlation coefficient in Table 6),

and semi‐transparent blue lines indicating realizations with uncorrelated prediction uncertainties. The median of the 100 realizations is deter-

mined for V and Hs respectively for each pair of u1 and u2, shown as a solid red line for correlated uncertainties and as a solid blue line for

uncorrelated uncertainties. For both the SC and MA sites, the 50‐year environmental contour with uncorrelated uncertainty is larger than the

contour without uncertainty. This is not surprising because the 50‐year value becomes more extreme as the variance increases. In particular,

the independent maximum values of V and Hs for the median 50‐year environmental contour increase by ~3 m/s and ~1 m, respectively.

Considering the correlation of the uncertainty changes the shape of the median 50‐year environmental contour compared with the median

50‐year contour without correlation of uncertainty, with the contour with correlation becoming longer along its principal axis and shorter along

its secondary axis. The difference is determined by the scale of the covariance of V and Hs relative to the uncertainty. If the uncertainty

is relatively large, the contour will be reshaped significantly when the correlation of uncertainty is included. In this example, the

uncertainty is relatively small and so the upper right tip of the median 50‐year environmental contour changes negligibly when the correlation

is included.

FIGURE 7 Combinations of V and Hs with a
50‐year mean recurrence period for the (a) SC
and (b) MA sites. Black dots are bias‐corrected
data from a total of 1,000 numerical
simulations of hurricanes. Green lines indicate
the corresponding environmental contours.
Red and blue lines indicate the contours with
correlated and uncorrelated uncertainties
respectively, with semi‐transparent lines
indicating 100 specific realizations and solid
lines indicating the median of these
realizations
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6 | CONCLUSION

Three metocean models are presented in this paper for the U.S. Atlantic coast and the results are validated with (1) measurements of sustained

wind speed V, significant wave height Hs, peak spectral period Tp, and storm surge η during 23 historical hurricanes from 1999 to 2012 and (2)

hindcast results from the WaveWatch III model. The seastates for the three metocean models are predicted by a numerical model implemented

in the commercial software Mike 21, and the meteorological conditions (i.e., the wind and pressure fields) are defined by three combinations of the

models within and surrounding the hurricanes. The first uses reanalysis data from CFSR within and surrounding the hurricane, the second uses

predictions from the empirical Holland model within the hurricane and CFSR data surrounding the hurricane, and the third uses predictions from

the Holland model within the hurricane and wind‐free conditions surrounding the hurricane. The first two models show a similar prediction per-

formance, indicating a similar performance of the Holland model in characterizing hurricanes compared with the CFSR reanalysis, which, as men-

tioned earlier, has important limitations in characterizing important features of hurricane wind fields.15 The performance of the model is found to

be significantly worse when the wind field surrounding the hurricanes is not modeled, however, this negative impact is diminished if predictions

during low wind speeds (less than 20 m/s) are excluded from the prediction set. Since risk is influenced more by high wind speeds than by low

wind speeds, these results suggest that a metocean model, which considers the Holland model within the hurricane and wind‐free conditions sur-

rounding the hurricane for its meteorological forcing, can be reasonably used to assess hurricane risk. Uncertainty is quantified for this model, and

the impact of including uncertainty in model predictions and of including correlation of uncertainty in model predictions is demonstrated for a

numerical example at two sites along the Atlantic coast. For both sites, including uncertainty is found to increase the size of the 50‐year environ-

mental contour of V and Hs compared with a contour without uncertainty, while including correlation for uncertainties is found to change the

shape of the contour (the principal axis becomes longer while the secondary axis becomes shorter) compared with a contour with uncorrelated

uncertainty, though the upper right tip of the contour changes negligibly.
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