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A B S T R A C T

This paper presents an integrated experimental and computational study of the compression behavior of in-
dividual thin-walled metallic hollow spheres (MHS) with patterned distributions of microporosity. Quasi-static
compression testing, including purely elastic loading, was conducted on two groups of individual MHS with two
different sizes to examine the entire deformation process as well as the purely elastic response. Three-dimen-
sional finite element modeling was then performed to investigate the effects of different microporosity dis-
tribution patterns on the MHS compression behavior and to understand the pertinent deformation and failure
mechanisms. Results show that the Young's modulus and collapse stress of individual MHS with a uniform
microporosity distribution decrease nonlinearly with porosity, which follows the same power-law functions
developed for the porous wall material. For other patterned (i.e., vertical, horizontal, and random) distributions
of microporosity involving localized weak wall sections, buckling commences at the weak sections, generating
“buckling lines”, followed by buckling failure along these adjacent or converged “buckling lines”. Moreover,
among the “buckling lines” generate some hinges that contribute to the increased load-bearing capability during
the densification process. These findings can shed lights on the design, manufacturing, and modeling of in-
dividual MHS and MHS-based materials with specifically tailored engineering performance.

1. Introduction

Metallic hollow sphere (MHS) structures (MHSS) are becoming in-
creasingly attractive for many applications ranging from aerospace
materials (e.g., sandwich panels), to industrial functionalities (e.g.,
energy-absorbing and damping structures), and to medical replace-
ments (e.g., biomedical artificial limbs) [1], mostly owing to their high
strength and extremely low density. To date, several novel technologies
have been developed that manufacture MHS with a wide range of
diameters (D) and wall thickness (t), such as coating styro-foam using
fluidized bed powder metallurgy or electrodeposition processes, and
coreless methods using inert gas atomization of metallic alloys [2].
MHSS are typically made of numerous MHS attached together by sin-
tering, soldering, or epoxy resin, among others, and the configuration
and arrangement of spheres in MHSS can be divided into five sub-
groups: simple cubic (SC), body-centered cubic (BCC), face-centered
cubic (FCC), hexagonal-closed packing (HCP), and random packing [3].
The majority of publications aims to understand the mechanical

properties of MHSS by studying their compressive, tensile, fatigue, and
dynamic behavior [4–10]. In general, the mechanical properties of
MHSS are dominantly dictated by the characteristics of individual MHS,
inter-sphere bonding, and packing configurations. Therefore, the me-
chanical behavior of individual MHS is of fundamental importance to
the understanding of the mechanical performance of MHSS. However,
the MHS are characterized by a high microporosity within the porous
thin wall. As a result, the dependence of the mechanical (including
elastic, plastic, collapsing, and buckling) behavior of individual MHS
upon the porosity and its distribution is worth further investigation.

A number of experimental, numerical, and analytical studies have
been reported on the quasi-static compression behavior of individual
hollow spheres. Lim studied the deformation behavior of the 405 fer-
ritic stainless steel hollow spheres (with D= 2mm and t/D=0.05) and
found that the deformation process is significantly controlled by plastic
bending and, upon densification, wall contacts [4]. Carlisle et al. ex-
perimentally measured and parametrically simulated the uniaxial
compression behavior of carbon microballoons (D = 22 µm and a
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relatively larger t/D = ~ 0.06–0.1) [11,12]. Gupta et al. extended the
investigation of quasi-static compression of large hollow aluminum
spheres (D = 40–125mm with a mixed range of t/D = 0.002–0.03) to
compression at high loading rates of up to 10m/s [13–15]. Besides,
several papers have reported the dynamic behavior of hollow spheres.
Ruan et al. reported the crushing behavior of a single ping-pong ball
compressed by point loading, rigid ball, rigid plate, rigid cap, and
double rigid balls, as well as the one-dimensional (1D) and 2D load-
deformation behavior compressed by rigid plates [6]; Dong et al. stu-
died the collapse behavior of selected ping-pong ball arrays under dif-
ferent impact velocities using a split Hopkinson pressure bar (SHPB)
system [16]; Li et al. conducted high loading-rate experiments and fi-
nite element modeling (FEM) to investigate the underlying deformation
and failure mechanisms of thin-walled hollow nickel spheres [17]. On
the other hand, these experimental, computational, and analytical
studies focusing on the quasi-static or dynamic behavior of hollow
spheres usually consider the thin wall as a nonporous and homogeneous
material, especially in the FEM simulations. In reality, some thin-walled
hollow spheres such as ping-pong balls have highly uniform sizes and
shape but a very small discrepancy in wall thickness. However, the thin
wall of most real manufactured MHS has a high to very high porosity
due to their unique metallurgical manufacturing process. Moreover,
most pores within the thin wall are irregular polygons in shape. In fact,
the MHS thin wall is a kind of highly porous material. For porous
materials, several approaches have been developed concerning the re-
lationship between their mechanical properties and porosity. For ex-
ample, Roberts and Garboczi et al. used FEM to study the influence of
porosity and pore shape on the elastic properties of some porous
ceramics, and established three types of models to assess the depen-
dence of elastic modulus and Poisson's ratio on porosity: overlapping
solid spheres, overlapping spherical pores, and overlapping ellipsoidal
pores [18]; Song et al. conducted nanoindentation testing and syn-
chrotron X-ray computed tomography (XCT) to characterize the me-
chanical properties and microstructure of porous MHS thin walls re-
spectively, then used the real microstructure obtained by XCT to build
the physical FEM models for simulation, and further developed the
nonlinear relationships linking the Young's modulus and yield strength
of the porous thin wall to its porosity, with the exact formulae for es-
timating the mechanical properties of the porous thin wall based on the
real pore morphology and microstructure [19].

With regard to the research methods, in addition to experimental
investigations, FEM has been widely used to simulate the macroscopic
response of individual MHS and MHSS under quasi-static or dynamic
compression [20,21], and even to probe the buckling and post-buckling
behavior of thin-walled shells [22–24]. In these work, one of the basic
assumptions is that the thin wall of MHS is a nonporous and homo-
genous material. However, the actual manufactured MHS always have
such features as varied wall thickness and differently-sized micropores
within the thin wall. In other words, there is a discrepancy between the
ideal MHS considered in computational and analytical studies and the
real manufactured ones used in practice. Therefore, it is necessary and
important to understand the actual deformation and failure behavior of
the manufactured MHS. One particular advantage of FEM modeling is
that insights into the physical mechanisms underlying the phenomen-
ological behavior of thin-walled MHS with different microporosities can
be elucidated, and hence FEM can be used to investigate and analyze
the compression process and failure of individual MHS with differently
patterned distributions of microporosity, prior to the development of
viable technologies for manufacturing MHS and MHSS with controlled
microporosity and specifically tailored mechanical functionalities.

Although the deformation and failure process of ideal MHS with the
so-assumed nonporous and homogeneous thin wall have been discussed
in the literature, little effort has been made to study the properties of
those manufactured ones with varied microporosity and wall thickness
distributions. This paper aims to fill this gap with an integrated ex-
perimental and computational study: while experimental work mainly

involves the quasi-static compression, including purely elastic loading,
of manufactured individual MHS with real but unknown microporosity
to understand their deformation process, computational work consists
of FEM modeling to fully investigate the underlying mechanisms for
quasi-static deformation and failure that make up the overall con-
stitutive behavior of MHS with differently patterned distributions of
microporosity. Results from the experimental measurements and FEM
simulations will be compared and then exploited to assess the micro-
porosity and its distribution of the manufactured MHS. Findings can
expectedly advance the design and manufacturing of individual MHS
and MHS-based foam materials as well as the modeling and prediction
of their mechanical performance.

2. Materials and methods

2.1. Materials

The studied MHS, manufactured by the Fraunhofer Institute for
Advanced Materials (Dresden, Germany), were selected from the same
batch of samples studied by Song et al. [19]. The diameter, wall
thickness, and wall porosity of these hollow spheres are slightly dif-
ferent from each another, and the two most common diameters are ~ 2
and ~ 3mm with a wall thickness ranging from 0.01 to 0.04mm. In-
terestingly, preliminary microscopic observations found that the MHS
with relatively larger diameters have thinner walls (i.e., D = ~ 3mm
with an average t=0.02mm) than those smaller spheres (i.e., D = ~
2mm with an average t=0.03mm). The MHS wall is made of medium
carbon steel with a Young's modulus of 207 GPa and a yield strength of
982MPa, as measured by prior nanoindentation testing [19]. Images
obtained by a scanning electron microscope (SEM, FEI Inc., Hillsboro,
OR, USA) clearly reveal that the MHS wall possesses randomly dis-
tributed, multiscale pores with complex morphologies and pore sizes of
1–2 to ~ 50 µm (Fig. 1). Synchrotron XCT [19] indicates that the mi-
croporosity of the MHS wall varies from ~ 5% in some local sections to
as high as ~ 42% for an entire cross-sectional surface (Fig. 2).

2.2. Quasi-static compression testing

To characterize the entire compression process of individual MHS,
unidirectional, quasi-static compression testing was conducted on eight
randomly selected MHS with carefully measured diameters (i.e., D =
2.905, 2.910, 2.945, 2.968, 1.987, 1.994, 2.009, 2.012mm), which
were divided into two subgroups based on their diameters: D =~ 2 or
~ 3mm. Each MHS was first cleaned with ethanol to remove dust and
other potential contaminants on its surface, and then subjected to
unidirectional compression testing between two smooth stainless steel
platens in a GeoJac loading system (Trautwein Soil Testing Equipment,
Inc., Houston, TX) at a displacement rate of 0.05mm/min in the am-
bient laboratory environment (i.e., at a room temperature of ~ 25 °C).
The nominal strain ε and nominal stress σ representing the measured
engineering strain and stress are defined as the vertical deformation δ
and load P normalized by the diameter and external cross-sectional area
of the MHS, respectively, which are given as [25]:

=ε δ
D (1)

= =σ P
S

P
πD
4

2 (2)

where S is the external diameter-based overall cross-sectional area of
the sphere.

Since the individual MHS was compressed unidirectionally (i.e.,
with 2 contacting points) without any lateral confinement, the hor-
izontal deformation was not explicitly considered. Moreover, the hor-
izontal deformation is nonuniform along the vertical direction, making
it difficult to measure and quantify this parameter. Nevertheless, the
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horizontal deformation will be considered in future work where an
MHS is compressed with multiple (i.e., > 2) points of contact.

2.3. Purely elastic compression testing

The aforementioned compression testing can capture the entire
deformation process of individual MHS, but is incapable of precisely
characterizing their elastic deformation, owing to the relatively low
resolutions of the conventional load cell and displacement transducers
used in the loading system. Therefore, purely elastic, unidirectional
compression testing was also conducted in a Keysight G200 na-
noindenter (Keysight Technologies, Inc., USA) at the ambient labora-
tory conditions. A cylindrical diamond punch with a smooth flat end of
1.0 mm in diameter instead of a sharp indenter tip was used as the top
platen, while a polished sapphire sheet with dimensions of
10×10×0.5mm was glued onto an aluminum puck to serve as the
smooth bottom platen. The nanoindenter has a maximum load capacity
of 500 mN with a resolution of 50 nN and a maximum displacement
of± 750 µm with a resolution of< 0.01 nm. The purely elastic com-
pression, including loading-unloading cycles, was conducted under the
load control mode on two carefully selected MHS with outside dia-
meters of 2.968 and 1.994mm, respectively. The loading-unloading
cycle used a constant loading rate of 13.33mN/s and a maximum load
of 200 mN. The corresponding vertical displacements were measured to
be< 3000 nm (as discussed later). The Hertz elastic contact theory was
used to analyze the experimental data [26]. The reduced modulus E* of
the MHS-platen contacts and the Young's modulus of the MHS (i.e., as a
thin-shelled structure), but not the porous thin wall material, was de-
termined by the following equations:

=E P
Dδ

* 3
( )3 0.5 (3)

=
−

+
−

E
ν

E
ν

E
1
*

1 11
2

1

2
2

2 (4)

where ν1 and ν2 are the Poisson's ratios of the MHS and platens; E1 and
E2 the Young's modulus of the MHS and platens, respectively; For dia-
mond, E2 = 1141 GPa, ν2 = 0.07 [27,28]; For the MHS, ν1 is taken as
0.3 [29]. Because both diamond and sapphire are much harder and
stiffer than the MHS, the MHS-diamond contact can behave very similar
to the MHS-sapphire contact.

2.4. Finite element modeling

To understand the deformation process of the MHS with varied
microporosity distribution patterns and pertinent evolution of stress
distributions, FEM modeling was performed in a commercial platform,
ABAQUS v.6.10 (Dassault Systèmes Americas Corp., Waltham, MA,
USA). A 3D hollow sphere model was first established using the S4R
shell element as the basic element type (Fig. 3a), and five different
porosity distribution patterns were independently applied to this
model, including uniform distribution of microporosity (UDM), vertical
distribution of microporosity (VDM), horizontal distribution of micro-
porosity (HDM), random distribution of microporosity (RDM), and
random distribution of wall thickness and microporosity (RDTM)
(Fig. 3b-d). In addition, for each type of the microporosity distribution
pattern, two different diameters and wall thicknesses, i.e., D =2mm
and t=30 µm as well as D =3mm and t=20 µm, were also applied to
the FEM model, so that the results from computational simulations were
comparable with the experimental ones.

Table 1 summarizes all simulated MHS FEM models with their
characteristics. For the MHS with UDM, totally eight MHS, each with a
constant wall thickness and a constant, uniformly distributed porosity
that varies from 0% to 32.88%, were considered. For the MHS with
VDM, the sphere was segemented into 16 vertical sections that were

Fig. 1. The morphology of porous thin wall of MHS observed under a scanning electron microscope (SEM): (a) a MHS showing the imperfections and the SEM
scanning spot on its external surface; (b), (c), and (d) SEM micrographs showing differently-sized pore morphology of the MHS thin wall at different scales.
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further segemented along the equator into two parts, resulting in a total
of 32 sections. Each section was then assigned a porosity randomly
selected from the 8 values ranging from 0% to 32.88% (Fig. 3b). For the
MHS with HDM, the sphere was segmented horizontally into 10 sec-
tions, each with an assigned porosity ranging from 0% to 32.88%. For
the MHS with RDM, the model was divided into 32 vertical and 20
horizontal slices, leading to much smaller sections (i.e., a total of 640
sections); each section was then randomly assigned a porosity selected
from the 8 values ranging from 0% to 32.88%. For the RDTM, each
small section was also randomly assigned a wall thickness varying from
0.01 to 0.04mm (Table 1).

For all simulations, the explicit ABAQUS solver was used to simulate
the quasi-static compression response of individual MHS. A deformable
MHS was placed between two rigid and smooth end platens, with the
bottom one as a fixed boundary and the top one as a loading punch. All
degrees of freedom of the two end platens were constrained except the
vertical displacement of the top one, so that the compression was ap-
plied along the vertical direction via a displacement-controlled mode.

The plastic behavior of many pure and alloyed metallic materials
can be closely approximated by a power-law equation, which can de-
scribe simple elasto-plastic, true stress-true strain behavior as follows
[30]:

= ⎧
⎨⎩

≤
≥

σ
Eε σ σ
Rε σ σ

, for
, for

y
n

y (5)

where E is the Young's modulus of the metallic material, σy the initial
yield strength, εy the corresponding yield strain, n the strain hardening
exponent, and R a strength coefficient. Thus,

= =σ Eε Rεy y y
n (6)

The yield strength σy is defined at the zero offset or plastic strain,
and the total effective strain ε consists of two parts, εy and εp,

= +ε ε εy p (7)

where εp is the nonlinear part of the total effective strain accumulated
beyond εy, or the purely plastic strain. With Eqs. (6) and (7), when
σ> σy, Eq. (5) becomes

⎜ ⎟= ⎛
⎝

+ ⎞
⎠

σ σ E
σ

ε1y
y

p

n

(8)

In this paper, the relationships among the Young's modulus Ew, the
yield strength Yw, and the microporosity Φ of the MHS porous thin wall
material were taken from previous results presented in Song et al. [19].
The Poisson's ratio ν of the nonporous thin wall material was taken as
0.3, which was used to derive the Poisson's ratio νw for the porous thin
wall material by following the method developed by Roberts and Gar-
boczi [18]. The strain hardening exponent n was taken as 0.2, and a
total effective strain ε of 0.2 was adopted. A contact element approach
was used with plenty formulations on interpenetration, and the friction
coefficient between the MHS-end platen contact was taken as 0.1. To
quantify and compare the macroscopic deformation of a single MHS,
the nominal strain and stress were determined by Eqs. (1) and (2).

Fig. 2. Synchrotron X-ray computed tomography (XCT) slice images showing the geometry of the MHS cross-sections and pore morphology of the MHS thin wall.
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3. Results and discussion

3.1. Quasi-static compression testing

The nominal stress-strain curves obtained from the unidirectional
compression tests are shown in Fig. 4a and b for the two groups of MHS
with D=~ 3 and ~ 2mm, respectively. In general, similar stress-strain
and deformation features are observed for the two groups of MHS, al-
though their diameters and thicknesses are different. However, the D
=~ 2mm MHS with a higher t/D ratio exhibit stronger resistance to
compression than the other group, and their nominal stress-strain
curves are more scattered throughout the entire process of compression.
The former discrepency obviously results from the higher t/D of the
smaller MHS group, while the latter may possibly be caused by the
higher variation in the random distribution of microporosity and in the
nonuniform wall thickness of the D =~ 2mm MHS [19]. During
compression, the weaker zones generally buckle first and generate
larger deformation, and hence the nominal strain can be as high as
0.8–0.9. For both MHS groups, three distinct stages of deformation can
be observed in the nominal stress-strain curves:

• Stage I (δ/D = 0–0.5): buckling and yielding. The nominal stress σ
increases nearly linearly with increasing the nominal strain ε at this
stage. All curves show some small-scale local serrations, implying
that an MHS continuously experiences multiple local buckling and
yielding in its thin wall. In addition, a very short, purely elastic
section should exist at the onset of compression, but it is not readily
discerned in the curves, again owing to the limited resolutions of the
transducers used in the loading system.

• Stage II (δ/D = 0.5–0.8): collapse. The nominal stress σ slightly
decreases with the nominal strain ε at this stage. Prior work found
that the first self-contact of internal surface of the MHS wall occurs
at this stage, which is mainly attributed to the gradual collapse of
the MHS wall at various locations, especially around the two

contacting interfaces between the end platens and MHS. The col-
lapse characterized by a decrease in the nominal stress σ results from
the continuous local buckling failures that eventually merge to-
gether along a most likely horizontal wall section. Such a large area
of yielding and buckling of course reduces the load-bearing cap-
ability of the MHS.

• Stage III (δ/D>0.8): self-densification. The nominal stress σ in-
creases dramatically with the nominal strain ε at this stage. As the
compression continues, the majority of the thin wall has collapsed
and been densified, and the original spherical geometry of the MHS
is finally compressed to a flat and thin configuration. Therefore, in
this stage, large deformation leads to numerous self-contact points
of the MHS internal surface, and the original large spherical thin
shell is segmented into many small sections. This process is mani-
fested by the rapid increase in the nominal stress σ even with a small
increase in the nominal strain ε. At the end, the hollow chamber of
the MHS nearly disappears and the stiffness is getting close to that of
the bulk wall material.

Two sequences of snapshots of the quasi-static compression process
for two individual MHS are shown in Fig. 5a & b as examples. Clearly,
deformation commences from the two MHS-end platen contacting
points. As a result, the sphere gradually changes to a drum-shaped
configuration. Interestingly, it appears that little lateral deformation
occurs during the initial compression stage (i.e., when δ/D<0.2). At
the end of compression (i.e., when δ/D>0.8), both spheres transform
to a flat, densified sheet.

3.2. Elastic properties of individual MHS

Fig. 4c shows the load-displacement curves of two selected MHS
with D =2.968 and 1.994mm under purely elastic compression, and
each curve involves a loading-unloading cycle. All curves are slightly
concave-shaped and show nearly reversible deformation (i.e., the

Fig. 3. Different models used for FEM simulations with various microporosity distribution patterns within the thin wall of individual MHS (D = 3 and 2mm): (a)
uniform distribution of microporosity (UDM); (b) vertical distribution of microporosity (VDM); (c) horizontal distribution of microporosity (HDM); (d) random
distribution of microporosity (RDM) and random distribution of wall thickness and microporosity (RDTM).
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loading-unloading hysteresis is nearly invisible). Noteworthy are the
very small maximum load and displacement (i.e., ~ 200mN and ~
3000 nm) involved in the loading. The very small nominal strains (<~
0.15%), reversible loading and unloading curves, and completely re-
covered deformation demonstrate that nearly purely elastic, but no
plastic, deformation occurs during the extremely low load compression.
Based on the theory of Hertz elastic contact, Eq. (3) can be rewritten as:

= ×P D E δ3 /
1
2 * 3

2 (9)

To extract the reduced modulus of the MHS-end platen contacts, the
loading-unloading curves in Fig. 4c are replotted in Fig. 4d with 3 P/D1/

2 and δ3/2 as the two axes. The linear fitting to the experimental data
shown in Fig. 4d yields the reduced modulus E* (i.e., the slopes of the
two linear lines) as 8.33 and 9.13 GPa for the two tested MHS, re-
spectively. According to Eq. (4), their Young's moduli are determined as
7.64 and 8.37 GPa, respectively. Since each MHS behaves as a thin-
shelled structure, the larger MHS (D = ~ 3mm) with a smaller t/D
ratio of course exhibits a smaller Young's modulus than the smaller one
with a larger t/D ratio. The elastic moduli obtained from these ex-
periments can be compared with those from the FEM simulations, and
hence can be further used to estimate the microporosity of individual
MHS.

3.3. Validation of the FEM model

The purpose of this section is to validate the entire FEM simulations,
including the accuracy of the finite element mesh size and the cap-
ability to simulate the effective mechanical response of individual MHS.
In all validation simulations, the 3D MHS model (Fig. 3a) was meshed
with massive hexahedra. Since the hexahedra size is directly related to
the accuracy of simulation results, it is necessary to optimize the
number of hexahedra to save the computing time based on the premise
that the simulation accuracy is sufficient. A number of calculations
were performed on the same MHS with the same boundary conditions
and material properties. To analyze the convergence of the simulation
results for the D =3mm MHS, the selected number of hexahedra de-
creased from 85,344 to 3459 quadratic elements (i.e., including 85,344,
53,016, 37,592, 20,992, 13,336, 5092, and 3459); For the D =2mm
MHS, the number of hexahedra decreased from 37,594 to 1536 quad-
ratic elements (i.e., including 37,594, 23,928, 13,826, 9192, 5816,
2400, and 1536). Furthermore, a porosity of Φ=0 was applied to the
two simulated MHS (i.e., D = 2 and 3mm).

The nominal strain ε and stress σ were calculated by following Eqs.
(1) and (2) respectively. The spent computing time was recorded and
the first-collapse stress C can be obtained from the nominal stress-strain
curves (Fig. 6a and b). To choose the optimal mesh size that balances
the efficiency and accuracy in the FEM simulations, the first-collapse
stress of the MHS for each mesh size is compared with the one obtained
from the finest mesh size, Cfinest. The relative difference between the
two collapse stresses is defined as (C - Cfinest)/Cfinest, and the results are
summarized in Table 2. Both Fig. 6c and Table 1 show that the calcu-
lations converge to a constant value when the number of hexahedra has
reached 53016 and 23,928 elements for the D =3 and 2mm MHS,
respectively. Therefore, in subsequent simulations, a total of 53016 and
23,928 elements are eventually adopted for the D =3 and 2mm MHS,
respectively.

3.4. FEM simulations of the compression of individual MHS with patterned
porosity distributors

In this section, individual MHS FEM models with five differently
patterned microporosity distributions were used to simulate the quasi-
static compression and to probe the effects of different porosity dis-
tributions on the deformation and failure of individual MHS. While
Table 1 summarizes all 10 different FEM models with different porosityTa

bl
e
1

Su
m
m
ar
y
of

th
e
fi
ve

di
ff
er
en

t
m
ic
ro
po

ro
si
ty

di
st
ri
bu

ti
on

pa
tt
er
ns

us
ed

in
th
e
FE

M
m
od

el
s.

D
is
tr
ib
ut
io
n
pa

tt
er
n

FE
M

M
od

el
D

(m
m
)

t
(m

m
)

Φ
(%

)
C
ha

ra
ct
er
is
ti
cs

of
po

ro
si
ty

di
st
ri
bu

ti
on

U
ni
fo
rm

(U
D
M
)

U
D
M
-M

H
S-
1

3
0.
02

0–
32

.8
8

Th
e
en

ti
re

w
al
l
ha

s
th
e
sa
m
e
th
ic
kn

es
s
an

d
a
un

if
or
m

po
ro
si
ty

of
0–

32
.8
8%

;T
ot
al
ly

8
m
od

el
s,

ea
ch

w
it
h
a
co

ns
ta
nt

po
ro
si
ty
,w

er
e

si
m
ul
at
ed

fo
r
ea
ch

of
th
e
tw

o
M
H
S.

U
D
M
-M

H
S-
2

2
0.
03

0–
32

.8
8

V
er
ti
ca
l
(V

D
M
)

V
D
M
-M

H
S-
1

3
0.
02

0–
32

.8
8

Th
e
M
H
S
is

cu
t
in
to

ve
rt
ic
al

se
ct
io
ns
,e

ac
h
w
it
h
a
di
ff
er
en

t
po

ro
si
ty

se
le
ct
ed

fr
om

th
e
ei
gh

t
va

lu
es

ra
ng

in
g
fr
om

0%
to

32
.8
8%

.
V
D
M
-M

H
S-
2

2
0.
03

0–
32

.8
8

H
or
iz
on

ta
l
(H

D
M
)

H
D
M
-M

H
S-
1

3
0.
02

0–
32

.8
8

Th
e
M
H
S
is

cu
t
in
to

ho
ri
zo

nt
al

se
ct
io
ns
,
ea
ch

w
it
h
a
di
ff
er
en

t
po

ro
si
ty

se
le
ct
ed

fr
om

th
e
ei
gh

t
va

lu
es

ra
ng

in
g
fr
om

0%
to

32
.8
8%

.
H
D
M
-M

H
S-
2

2
0.
03

0–
32

.8
8

R
an

do
m

(R
D
M
)

R
D
M
-M

H
S-
1

3
0.
02

0–
32

.8
8

Th
e
M
H
S
is
cu

ti
nt
o
m
an

y
sm

al
ls
ec
ti
on

s
bo

th
ho

ri
zo

nt
al
ly

an
d
ve

rt
ic
al
ly
,e

ac
h
w
it
h
a
di
ff
er
en

tp
or
os
it
y
ra
nd

om
ly

se
le
ct
ed

fr
om

0%
to

32
.8
8%

.
R
D
M
-M

H
S-
2

2
0.
03

0–
32

.8
8

R
an

do
m

di
st
ri
bu

ti
on

of
th
ic
kn

es
s
&

po
ro
si
ty

(R
D
TM

)
R
D
TM

-M
H
S-
1

3
0.
01

–0
.0
4

0–
32

.8
8

Th
e
M
H
S
is
cu

t
in
to

m
an

y
sm

al
ls
ec
ti
on

s
bo

th
ho

ri
zo

nt
al
ly

an
d
ve

rt
ic
al
ly
,e

ac
h
w
it
h
a
ra
nd

om
ly

se
le
ct
ed

po
ro
si
ty

an
d
w
al
lt
hi
ck
ne

ss
.

R
D
TM

-M
H
S-
2

2
0.
01

–0
.0
4

0–
32

.8
8

J. Song et al. Materials Science & Engineering A 734 (2018) 453–475

458



distributions, D, t, and Φ, Fig. 7 compares the simulated results in terms
of the nominal stress-strain curves. The simulated MHS compression
behavior for each type of patterned porosity distribution is further
discussed in detail in the following sections.

3.4.1. Behavior of MHS with uniform distribution of microporosity (UDM)
For the FEM model, UDM-MHS-1 (i.e., D = 3mm, t=0.02mm,

Table 1), a total of 8 different microporosities ranging from 0% to
32.88% (Fig. 7a), each with a uniform distribution, were simulated.
While Fig. 7a compares the eight simulated nominal stress-strain

Fig. 4. Results of quasi-static compression testing and purely elastic compression testing: (a) and (b) nominal stress-strain compression curves for eight selected
individual MHS with D =~ 3 and ~ 2mm, respectively; (c) Experimental curves for two purely elastically compressed individual MHS (D = 2.968 and 1.994mm);
(d) Fitting of the purely elastic load-displacement curves with Hertz elastic contact theory.

Fig. 5. Snapshots of the deformation process of a single MHS during quasi-static compression testing at a displacement rate of v =8×10−7 m s−1：(a) D
=2.968mm; (b) D =1.994mm.

J. Song et al. Materials Science & Engineering A 734 (2018) 453–475

459



curves, Fig. 8 highlights, with selected snapshots of the simulated de-
formation process for the MHS using Φ=0 as an example, the von
Mises stress evolution in the thin wall (where the blue colors represent
the elastic zones, and the red ones represent the plastic (or yielded)
zones) as well as the change in MHS geometry during compression. The
entire compression process can be divided into the following five stages
(Fig. 7a):

• Stage I (δ/D = 0–0.55): elasto-plastic deformation. This stage is
mainly characterized by the nearly linear nominal stress-strain
curves but with many small serrations (Fig. 7a). It can be observed
that, after a very small elastic deformation commencing im-
mediately with the onset of compression, localized plastic de-
formation occurs near the wall-platen contacts, resulting in a wall-
buckling failure at the center line (Fig. 8 at δ/D = 0.1). As the
compression continues, two indents develop on the top and bottom

contacts, and the contacts between the MHS and two platens
transform from point to circular line contacts. Although the stresses
at the two contact interfaces increase, the equator of the MHS re-
mains a circular shape still with elastic deformation. These ob-
servations are consistent with previous work [17]. Moreover, the
stress distribution at the contact perimeters are axisymmetric. That
is, a linear work-hardening rate is applicable until the nominal
strain reaches up to 0.55. It is noteworthy that the first self-contact
of the MHS internal surface is suggested by several researchers to
occur at δ/D =0.5 based on their dynamic and quasi-static com-
pression testing [4,17]. However, this study demonstrates that such
a phenomenon can actually occur before or after δ/D =0.5, which
will be further discussed later.

• Stage II (δ/D = 0.55–0.7): buckling and yielding of the upper wall.
Buckling failure first occurs at the region of the side wall that is
closer to the top platen at δ/D =0.6 (Fig. 8). Then further

Fig. 6. Effects of FEM mesh size or the number of elements on the simulated stress-strain response of individual MHS: (a) and (b) nominal stress-strain curves of
individual MHS with D=3 and 2mm respectively obtained by different mesh resolutions; (c) the relationship between the collapse stress and number of elements for
the two simulated MHS.

Table 2
Effect of mesh resolution on the collapse stress and computing time of two MHS with different diameters and wall thicknesses.

MHS (D = 3mm, t=0.02mm, Φ=0) MHS (D = 2mm, t=0.03mm, Φ=0)

Number of elements Collapse stress Computing time (h) Number of elements Collapse stress Computing time (h)
difference (%) difference (%)

85,344 0 65.0 37,594 0 10.0
53,016 1.63 30.0 23,928 1.58 3.5
37,592 19.44 10.5 13,826 4.58 1.2
20,992 26.44 3.5 9192 8.46 1.0
13,336 26.91 1.0 5816 4.83 0.5
5092 30.02 0.5 2400 9.87 0.3
3459 40.90 0.2 1536 16.82 0.1
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compression changes the circular line contact to a quadrangular line
contact and thus the stress within the wall are redistributed. The
buckling failure ends until δ/D =0.7, causing a remarkable drop in
the nominal stress (Fig. 7a).

• Stage III (δ/D = 0.7–0.8): transition stage. After the upper portion
of the MHS wall collapses, the contact area between the MHS and
top end platen increases, and a short densification process com-
mences. Therefore, the stiffness of the MHS increases at this stage
due to the occurring of more self-contacts of the MHS as well as the
enhanced upper contacts.

• Stage IV (δ/D = 0.8–0.84): buckling and yielding of the lower wall.
New buckling failures occur at the lower wall after Stage III finishes.
This stage is very similar to, but lasts much shorter than, Stage II.

• Stage V (δ/D>0.84): densification. Further compression is mainly
dominated by the continuous increase in the number of self-contact
points of the MHS as well as the number of MHS-end platen contact
points after the majority of the wall collapses. The densification
process continues to the end of compression, and the stiffness of the
densified MHS increases significantly with further deformation.

However, the MHS with a smaller diameter (D = 2mm,
t=0.03mm, designated as UDM-MHS-2, Table 1) behaves differently
during the compression process. This MHS only experiences four stages
of compression deformation (Figs. 7b and 9). In Stage I (δ/D= 0–0.55),
the same compression behavior, but with a much higher nominal stress
obviously owing to a higher t/D ratio, is observed when compared with
the compression of the UDM-MHS-1. Stage II (δ/D = 0.55–0.6) is the
same as the one discussed above. In Stage III (δ/D = 0.6–0.8), the
buckling failure takes place at the equator rather than at the sphere-end
platen contacting interfaces when δ/D =0.6. More importantly, de-
formation occurs synchronously at both the top and bottom contact
interfaces, and hence the equator wall buckling is axisymmetric. In

Stage IV (δ/D>0.8), the MHS starts to become densified and this
process lasts to the end of compression. In summary, these modeling
results demonstrate that the t/D ratio can affect significantly the com-
pression and failure behavior of individual MHS when the thin wall has
a uniform distribution of microporosity and uniform wall thickness.
These findings agree well with previous work concluding that a critical
t/D ratio significantly affects the deformation mechanisms of the MHS
thin wall after buckling occurs [17]. On the other hand, microporosity
has little effect on the overall compression and failure behavior for the
UDM-MHS with a certain t/D ratio, but it reduces the overall load-
bearing capability (Fig. 7a and b). The relative collapse stress decreases
with porosity, because the mechanical properties are weakened by the
increase in microporosity. For instance, the modeling results show that
the UDM-MHS-1 with a porosity Φ=32.88% loses 80% of the load-
bearing capability of the same sized MHS with zero microporosity.
Therefore, microporosity is still of vital importance for the structural or
functional applications of MHS as well as MHS-based materials, parti-
cularly for their load-bearing performances.

3.4.2. Behavior of MHS with vertical distribution of microporosity (VDM)
The compression behavior of a single VDM-MHS-1 (D = 3mm,

t=0.02mm, Table 1) with VDM is shown in Figs. 7c and 10. As the
compression commences, both the top and bottom end platens are in
contact with the wall with varied material properties (i.e., due to dif-
ferent porosities, Fig. 3b) at the same time. Compared with the UDM-
MHS-1, the VDM-MHS-1 exhibits different deformation and failure
behavior. First, during initial compression (δ/D<0.5), the shape of the
two indents at the top and bottom contacting interfaces is irregular
instead of a regularly-shaped circle. The reason is that, in the early
compression, the wall sections with relatively higher porosities (e.g.,
26.08% and 32.88% in this model) have smaller Young's moduli and
yield strengths, and hence they can be regarded as weak regions within

Fig. 7. Nominal stress-strain curves obtained by FEM simulations: (a) and (b) individual MHS of D =3 and 2mm respectively with different UDM (Φ=0–32.88%);
(c) and (d) individual MHS of D =3 and 2mm respectively with VDM, HDM, RDM and RDTM (Φ=0–32.88%).
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Fig. 8. Snapshots of simulated deformation process of a MHS with UDM (D = 3mm, t=0.02mm, Φ=0) during quasi-static compression at v =8×10−7 m s−1

where the von Mises stress distributions are shown for each stage of deformation. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
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Fig. 9. Snapshots of simulated deformation process of a MHS with UDM (D = 2mm, t=0.03mm, Φ=0) during quasi-static compression at v =8×10−7 m s−1

where the von Mises stress distributions are shown for each stage of deformation.

J. Song et al. Materials Science & Engineering A 734 (2018) 453–475

463



Fig. 10. Snapshots of simulated deformation process of a MHS with VDM (D= 3mm, t=0.02mm, Φ=0–32.88%) during quasi-static compression at v=8×10−7

m s−1 where the von Mises stress distributions are shown for each stage of deformation.
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the MHS wall. Fig. 7a and c show that the nominal stress in this MHS
with mixed microporosities is higher than that of UDM-MHS-1 with a
porosity of 26.08% or 32.88% when δ/D is < 0.25. Upon further
compression, the sections with higher microporosities (e.g., 32.88%
and 26.08%) first undergo buckling failure, leading to a change in the
wall-end platen contacting geometry. It is clearly seen that the weaker
sections buckle first and buckling lines occur in the middle of the
weaker sections, so there is a “line” in each weaker buckling segment.
Furthermore, after δ/D =0.5, the first self-contact of the MHS internal
surface occurs, and the nominal stress then increases, indicating that
the first self-contact improves the load-bearing capability remarkably.
At δ/D =0.6, buckling failures occur around both the MHS-top platen
and MHS-bottom platen contacts, but not the equator. Since all buck-
ling failures occur in the side wall under the “buckling line” of the two
indents, it means that the weaker sections on a single MHS always first
suffer from buckling failures during the entire compression process.
After a large section of the wall collapses, the final densification stage
appears. In general, if a relatively high microporosity exists in some
sections of the MHS wall, it will affect the overall compression behavior
as well as the load-bearing capability of individual MHS significantly.

For the single VDM-MHS-2 (i.e., D = 2mm, t=0.03mm, Fig. 11),
its compression behavior is similar to that of the UDM-MHS-2. Although
the “buckling lines” existing within the two indents are obvious, overall
buckling failure still occurs at the equator and under the “buckling
lines” of the weaker sections. The nominal stress σ is higher than that of
UDM-MHS-1 with a porosity of 26.08% and 32.88%, and this is perhaps
caused by the higher t/D ratio. In general, when t/D is higher, the MHS
is not so prone to buckling failure, and the overall buckling failure still
occurs at the equator.

3.4.3. Behavior of MHS with horizontal distribution of microporosity
(HDM)

The compression behavior of the HDM-MHS-2 (D = 2mm,
t=0.03mm, Table 1) is shown in Figs. 7d and 12. It can be seen that
the HDM-MHS-2 exhibits the same deformation behavior as the UDM-
MHS-2 when δ/D< 0.15. However, at δ/D =0.2, the horizontal sec-
tion with a porosity of 32.88% first deforms outward with significant
lateral deformation, which is quite different from the behavior of other
MHS described above. As the compression continues, the sections with
other porosities experience buckling failures, typically starting succes-
sively from sections with relatively higher porosities to these with
smaller ones (i.e., from 26.08% to 5.41%). In Fig. 7d, each mutational
site represents one buckling section with a certain porosity. In the
meanwhile, the top and bottom indents do not contact until the com-
mence of the densification process. In Fig. 5, the two experimental
samples show a similar deformation process, and their experimental
stress-strain curves show multiple zigzags or serrations (Fig. 4b). Be-
cause of the similar behavior, the “zigzag” phenomenon can be ex-
plained by the fact that several tested MHS contain imperfections in
their thin walls, such as a large weak section of wall with a higher
porosity or a thinner thickness, leading to the pre-matured buckling of
the weakest regions, followed by the continuous buckling of other
weaker regions. It can be inferred that the number of zigzags in the
stress-strain curves indicates the number of weaker regions. It is worth
pointing out that, in the experimental results, some weak regions in the
MHS wall have poor ductility, and hence some fractures occur during
compression. The simulated compression behavior of HDM-MHS-1 (D
= 3mm, t=0.02mm, Table 1) is nearly the same as that of the HDM-
MHS-2, so it is not discussed here in detail.

3.4.4. Behavior of MHS with random distribution of microporosity (RDM)
and random distribution of wall thickness and microporosity (RDTM)

As shown in Figs. 13 and 14, the compression process of RDM-MHS-
1 and RDM-MHS-2 seems identical to that of UDM-MHS when δ/
D< 0.5. However, the indented surfaces of the RDM-MHS are not
smooth, and the shape of the contact line is an irregular polygon instead

of either a circle or a regular polygon. With further compression, the
randomly distributed weaker zones with higher porosities (e.g.,
Φ=32.88% or 26.08%) buckle first and become indented. Adjacent
buckled zones are then linked, forming “buckling lines” on the MHS
surface, as indicated by the dotted red lines in Figs. 13 and 14. In fact,
subsequent buckling failure occurs along these “buckling lines”. In
contract, those relatively stronger regions (i.e., sections with a lower
porosity) transform into some hinges that fail during the final stage of
densification and make contributions to the increased load-bearing
capability before the MHS eventually becomes a thinly compressed
sheet.

For the RDTM-MHS, it can be observed that the compression process
of the RDTM-MHS is similar to that of the RDM-MHS, but the failure
process is different (Figs. 15 and 16). The two controlling factors for
buckling failure are porosity and wall thickness, and thus the sections
possessing combinations of a higher porosity and a thinner wall
thickness are more prone to buckling. For example, the section with
Φ=32.88% and t=0.01mm is most prone to buckling, and the one
with Φ=0 and t=0.04mm is least prone to buckling. On the other
hand, the porosity and wall thickness have mutual and coupled influ-
ences, and the “buckling lines” similarly occur at those adjacent sec-
tions with the weakest combinations of porosity and wall thickness.
Therefore, the RDTM-MHS has the highest degrees of random proper-
ties and is the most complex case than any other aforementioned cases.

Although prior effort was made to characterize quantitatively the
microstructure and microporosity of MHS thin walls [19], it requires
some specialized facilities (e.g., XCT, SEM) and is time-consuming (e.g.,
image-processing). Even with the XCT or SEM techniques, only can a
small section of the MHS be studied. The integrated experimental and
computational study presented herein can help us assess quickly but
qualitatively the overall porosity and wall thickness distributions for
some manufactured MHS. For instance, comparison between the ex-
perimental and simulated nominal stress-strain curves (Figs. 4 and 7)
can help understand roughly the variations of the porosity and wall
thickness distributions. In fact, the compression behavior of the RDTM-
HMS is likely the most presentative of the actual manufactured MHS.
However, a few curves shown in Fig. 4b indicate that the MHS with D
=~ 2mm and t=~ 0.03mm have a higher degree of variability in
both porosity and thickness distributions, and some even contain a
relatively large weaker sections such that it behaves similarly to the
HDM-HMS models (e.g., HDM curves in Fig. 7c and d vs. #3 and #4
MHS curves in Fig. 4b). On the other hand, the MHS with D =~ 3mm
and t=~ 0.02mm have smaller variability in porosity and thickness
distributions.

3.4.5. Self-contacts of individual MHS with different microporosity
distribution patterns

Some prior work concluded that the first self-contact of internal
surface of a hollow sphere occurs at δ/D =0.5 under the quasi-static or
dynamic compression [4,17]. However, based on the results discussed
above, the first self-contact can actually take place either before or after
the defined critical compression at δ/D =0.5. Figs. 17 and 18 show the
deformed geometry of individual MHS with D =3.0 and 2.0 mm re-
spectively as well as varying porosity distribution patterns and wall
thicknesses at δ/D =0.5, where one can find that the first self-contact
occurs at δ/D> 0.5 for most cases. For the HDM-MHS-1, the first self-
contact begins at δ/D< 0.5 due to the early buckling failure occurring
at a large horizontal weak section with a high porosity (Φ=32.88%). It
should be noted that the VDM-MHS does not exhibit the same phe-
nomenon because other strong sections surrounding the weak zones
take most of the applied load. These observations suggest that the or-
ientation of porosity distribution relative to the loading direction and
the location and distribution of weak zones both have significant effects
on the occurrence of first self-contact within the MHS. Besides, other
MHS with different porosity distribution patterns and varied wall
thicknesses can have the first self-contacts at δ/D> 0.5. For example,
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Fig. 11. Snapshots of simulated deformation process of a MHS with VDM (D= 2mm, t=0.03mm, Φ=0–32.88%) during quasi-static compression at v=8×10−7

m s−1 where the von Mises stress distributions are shown for each stage of deformation.
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Fig. 12. Snapshots of simulated deformation process of a MHS with HDM (D= 2mm, t=0.03mm, Φ=0–32.88%) during quasi-static compression at v=8×10−7

m s−1 where the von Mises stress distributions are shown for each stage of deformation.
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Fig. 13. Snapshots of simulated deformation process of a MHS with RDM (D= 3mm, t=0.02mm, Φ=0–32.88%) during quasi-static compression at v=8×10−7

m s−1 where the von Mises stress distributions are shown for each stage of deformation.
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Fig. 14. Snapshots of simulated deformation process of a MHS with RDM (D= 2mm, t=0.03mm, Φ=0–32.88%) during quasi-static compression at v=8×10−7

m s−1 where the von Mises stress distributions are shown for each stage of deformation.
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Fig. 15. Snapshots of simulated deformation process of a MHS with RDTM (D = 3mm, t=0.01–0.04mm, Φ=0–32.88%) during quasi-static compression at v
=8×10−7 m s−1 where the von Mises stress distributions are shown for each stage of deformation.
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the first self-contacts of the RDM-MHS and RDTM-MHS with D =3 and
2mm all occur at δ/D> 0.5.

3.5. Effect of porosity distribution patterns on elasticity and collapse stress
of individual MHS

To evaluate the effects of different porosities on the elastic and
collapse behavior of individual porous MHS, the eight UDM-MHS-2

Fig. 16. Snapshots of simulated deformation process of a MHS with RDTM (D = 2mm, t=0.01–0.04mm, Φ=0–32.88%) during quasi-static compression at v
=8×10−7 m s−1 where the von Mises stress distributions are shown for each stage of deformation.
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FEM models (Table 1) are chosen as examples with the wall porosities
ranging from 0% to 32.88%. In these simulations, the mechanical
properties of the MHS thin wall are assumed to be the same as the local
porous MHS thin wall in Song et al. [19]. For consistency with the
purely elastic compression testing, a displacement-controlled method is
adopted in these simulations and the maximum displacement is set to
2000 nm, almost the same as the one used in the purely elastic com-
pression experiments.

Fig. 19a shows the simulated purely elastic loading-unloading
curves of eight individual UDM-MHS-2 models with different porosities.

For comparison, the two experimental curves obtained from the purely
elastic compression of two MHS (Fig. 4c) are also included in this
figure. It can be seen that the loading segments overlap with the un-
loading segments for both the FEM simulations and experimental data
under the controlled displacement of< 2000 nm. Therefore, both the
eight UDM-MHS-2 FEM models and two experimentally tested MHS
experience purely elastic compression and recovery. Fig. 19b shows the
reduced moduli of the eight MHS with different porosities obtained
from the simulation results obtained by using Hertz elastic contact
theory. Obviously, with the thin wall porosity increasing, the reduced

Fig. 17. Deformed geometry of individual MHS (D = 3mm) with different porosity distribution patterns and thickness at δ/D =0.5.
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modulus E* decreases. To probe the relationship between the wall
material's properties and the mechanical response of a whole MHS (i.e.,
the MHS as a thin-shelled structure), the FEM simulation results are also
summarized in Table 3 and re-plotted in Fig. 19c. The Young's moduli of
individual MHS decrease nonlinearly with increasing porosity, and
these values can be fitted by the following equation:

= ⎛
⎝

− ⎞
⎠

E
E

Φ1
0.847s

2.31

(10)

where E and Es are the Young's modulus of individual MHS with porous
and non-porous thin wall, respectively; the coefficient of determination
(i.e., R2) for the fit equation is 0.9734. In fact, this equation is the same

as the one used to describe the dependence of the Young's modulus on
microporosity for the porous MHS wall material studied in Song et al.
[19], indicating that the Young's modulus of the porous wall also
dominates the elastic behavior of individual MHS.

In addition to elastic behavior, the microporosity also plays an
important role in the collapse of individual MHS. The collapse stress of
each MHS with different porosities is extracted from Fig. 7b. By com-
paring the combined data in Table 3 and Figs. 7b and 19c, it is noted
that the collapse stress of individual MHS is affected by the initial yield
strength of the thin wall, and the collapse stress of MHS can be de-
scribed by the same power-law function developed for the yielding of
the porous MHS wall material [19]:

Fig. 18. Deformed geometry of individual MHS (D = 2mm) with different porosity distribution patterns and thickness at δ/D =0.5.
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= ⎛
⎝

− ⎞
⎠

C
C

Φ1
0.847s

4.051

(11)

where C and Cs are the collapse stress of individual MHS with porous
and non-porous thin wall, respectively; the microporosity Φ in the
range of 0≤Φ≤ 50% is considered in this study; the coefficient of
determination (i.e., R2) for this fit equation is 0.9830.

In general, the microporosity directly affects both the elastic and
plastic behavior of individual MHS, and all of above results are con-
sistent with the relationships linking the Young's modulus and yield
strength with the thin wall microporosity. Therefore, during manu-
facturing, the microporosity should be well controlled as much as
possible to tailor the desired mechanical properties of individual MHS
and MHS-based foam materials.

Finally, the simulation results can also be used to quantitatively

estimate the porosity of manufactured MHS based on either the mea-
sured Young's modulus or collapse stress. Here is given a simple ex-
ample. Fig. 19d compares the fit curves of two experimental compres-
sion curves and FEM simulation results for a UDM-HMS with a
microporosity of 32.88%. Apparently, the thin wall microporosity of
the two tested MHS is slightly smaller than 32.88% if the wall thickness
is uniform, assumed to be 0.03mm. In fact, it can be seen that there is
little difference between the experimental and simulated results. This is
attributed to the fact that, for the real manufactured MHS, the wall
thickness is not uniform and microporosity is not homogeneously dis-
tributed. Instead, both the wall thickness and microporosity distribute
randomly for the real manufactured MHS. In addition, the manu-
factured MHS also possess geometry imperfections, and are not a per-
fectly round hollow sphere as assumed in the FEM simulations.
Nevertheless, this real manufactured MHS can still be simulated by the
FEM MHS models with a wall thickness of 0.03mm and a uniformly
distributed porosity that is slightly lower than 32.88% (e.g., 30% or
31%). With Eq. (10), one can estimate the microporosity of the two
tested MHS as ~ 33–34%.

Based on the above discussion, it is logical to conclude that the foam
materials manufactured based on this kind of MHS can be studied and
modeled using the aforementioned individual MHS models and perti-
nent mechanical properties. The results from this study can be exploited
to model the real MHS-based materials as well as the design and
manufacturing of porous MHS.

Fig. 19. (a) Simulated loading and unloading load-displacement curves of single UDM-MHS (D = 2mm) with different porosities, compared with two experimental
curves (D = 2.012mm and 1.994mm under purely elastic compression; (b) Fitting of the load-displacement curves with Hertz elastic contact theory; (c) Dependence
of Young's modulus and collapse stress on microporosity, including FEM simulated results and fitted curves. (d) Fitting of the experimental curves of MHS (D= 2.012
and 1.994mm) and the simulated curves for UDM-MHS (D = 2mm, Φ=32.88%) under purely elastic compression.

Table 3
Effect of microporosity on the Young's modulus and collapse stress of individual
MHS with different but uniformly distributed porosity.

Sample ID Φ (%) E/Es C/Cs

1 0.00 1.00 1.00
2 5.41 0.90 0.77
3 9.53 0.79 0.62
4 13.60 0.66 0.49
5 15.92 0.61 0.46
6 19.22 0.59 0.41
7 26.08 0.52 0.36
8 32.88 0.29 0.20
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4. Conclusions

This paper presents an integrated experimental and computational
study to understand the effects of microporosity distribution in the thin
wall on the overall deformation and failure behavior of MHS under
quasi-static compression. Based on the above results and analyses, im-
portant conclusions can be drawn as follows:

• The entire deformation process of individual MHS with microporous
thin wall under quasi-static compression can be subdivided into
three different stages: buckling and yielding, collapse, and self-
densification, and the failure is dominated by the buckling of its
porous thin wall. The Young's moduli of two individual MHS with
diameters of 2.968 and 1.994mm are 7.64 and 8.37 GPa, respec-
tively, obtained by purely elastic compression testing.

• The pattern of microporosity distributions within the thin wall sig-
nificantly affects the deformation and failure behavior of individual
MHS. The weak regions that have relatively high porosity and/or
relatively small wall thickness buckle first, followed by sinking in-
wards, and those adjacent weak regions then form the “buckling
lines” indicating the locations of buckling failure during the quasi-
static compression, which is accompanied by generating hinges that
contribute to the increased load-bearing capability toward the final
densification stage.

• Depending upon the patterns of microporosity distribution in the
thin wall, the self-contact of a single MHS during quasi-static com-
pression can take place at either smaller or greater than the pre-
viously observed or defined boundary δ/D =0.5.

• The Young's modulus and collapse stress of the individual UDM-
MHS are consistent with the Young's modulus and yield strength of
the porous MHS thin wall, both of which decrease nonlinearly with
increasing microporosity, and this relationship can be described by
two power-law functions similar to those developed for the porous
thin wall.
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