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A B S T R A C T

This paper presents a method for assessing the safety of tree branches subject to unorthodox climbing approaches
and possible falls. The method entails finite element modeling of the tree branch, experimentally or analytically
determining loads associated with an ascending or falling climber, and computing stresses and safety factor
along the length of the branch using dynamic structural analysis. A case study example is presented for an Ulmus
americana L. branch on the campus of the University of Massachusetts, Amherst. This tree and branch were
climbed using an unorthodox and controversial method during a competition in 2014. Case study models de-
monstrate that during an ascent, a climber’s skill has a significant effect on branch stresses, and during a si-
mulated fall, the climber’s mass and fall distance are the key determinants of branch stresses. For loads induced
during an ascent, safety factors for branches ranged between 3 and 4; for loads induced during a fall, safety
factors were as low as 1.2. These values are dangerously low given the uncertainty of branch material properties.
Climbers should be extremely cautious when attempting unorthodox climbing techniques.

1. Introduction

Arboriculture is a dangerous profession in which 14.1 fatalities per
100,000 workers involved in tree work [1] were reported in 2003,
much greater than the overall population rate of 4.0 fatalities per
100,000 workers (Wiatrowski, 2005). Of the 1285 arboriculture worker
fatalities between 1992 and 2007, 44% occurred while pruning or
trimming trees, and 34% involved a fall (Castillo and Menéndez, 2009).
The Center for Disease Control’s National Institute for Occupational
Safety and Health (NIOSH) explicitly recommends, “checking the con-
dition of tree branches before…climbing,” (Castillo and Menéndez,
2009), but: (1) climbers cannot carefully inspect a branch until they are
close to it, (2) climbers cannot assess internal structural defects or as-
certain the severity of external structural defects without sophisticated
measuring devices and (3) there is a lack of robust data quantifying the
safety of branches under expected or “worst-case-scenario” loads.

This paper introduces a method for assessing the safety of a branch
when loaded by an ascending or falling climber, and shows how the
stresses depend on the type of ascent and parameters of the fall.
Following description of the method, results are presented for an ex-
ample branch subject to a variety of ascending and falling loads. The
findings point to ways in which arborist safety can be enhanced even in
the absence of engineering analysis of the tree branch.

The work presented here is motivated by observations of an un-
orthodox and potentially dangerous ascending technique during a

competition in 2014 in Massachusetts. To encourage worker safety, safe
work practices are strongly emphasized at contemporary climbing
competitions (http://www.itcc-isa.com/about/missionhistory/history.
aspx, http://www.itcc-isa.com/resources/about_Eventdescriptions_
MastersChallenge.pdf). During a Masters’ Challenge event in 2014 in
Massachusetts, a competitor installed the rope over a distal portion of a
branch and footlocked the doubled rope (Adams, 2007) to reach one of
the work stations in the event rather than ascending to the top of the
tree and limb-walking in the conventional fashion (with the anchor
point over a branch and around the main stem (Fig. 1) at a central point
near the top of the crown (Lilly, 2005). Conventional limb-walking
facilitates lateral movement throughout the crown with continuous
rope support from a point higher in the crown. Limb-walking provides
maximum stability for a climber and minimizes the bending moment on
the branch (because the rope carries part of the climber’s weight).

Prior to the competitor’s ascent, judges conferred about the safety of
the unorthodox approach and allowed the competitor to continue since
the branch was large and Ulmus americana L. is considered to have
strong wood. The branch supported the applied loads during ascent and
descent without failure or apparent damage. Thankfully, the climber
did not fall, but loads induced by a falling climber would be much
greater, and the event inspired this study. The objective of this paper is
to define a method for assessing branch safety using the case study of
the U. americana branch. The results of the analyses provide guidance to
climbers about branch safety during ascent or a fall.
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2. Methods

The method used to address the objective of this paper consists of
four steps: (i) definition of general branch geometry and section prop-
erties, and the internal forces, stresses and safety factors in general
terms; (ii) description of the branch analyzed in this paper, including
wood properties; (iii) determination of ascending and falling loads by
experimental or analytical methods; (iv) development of a finite ele-
ment model for the purposes of static, modal, and dynamic time history
analysis. This method applies generally to the analysis of tree branches
subjected to loads that could occur during an ascent or a fall, and is
useful because it provides a framework for continued research into
climber safety. The following sub-sections describe the four steps.

2.1. General definitions

Throughout the text, the branch described in the introduction is
referred to as the primary branch—a branch that arises from the main
stem or trunk. Lateral branches arising from the primary branch are
referred to as secondary branches. The geometry of a primary branch
can be defined by the parameterized coordinates (x(s1), y(s1), z(s1)),
where s1 is a local, curvilinear coordinate that has its origin at the at-
tachment of the branch to the trunk. The coordinate system is defined
such that z is positive upward and the x and y coordinates define a
plane parallel to the ground. The local coordinate specifies, for
0< s1< l1, position along the length of the main branch, which has a
total length l1. The geometry of secondary branches is described by (x
(s2,i), y(s2,i), z(s2,i)), where 0< s2,i< l2,i is the local curvilinear co-
ordinate for the ith secondary branch that is of length l2,i and has its
origin at the attachment point to the primary branch s1,i.

Ignoring shear deformations, the spatially varying moment of in-
ertia I(s), torsional constant J(s) and cross-sectional area A(s) are the
complete set of section properties for a circular branch, and depend on
the branch diameter d(s). Tree branches are not generally circular, with
the depth often exceeding the width. Circularity of the cross section is
assumed here, though the approach could be readily adapted to treat
branches with elliptical or other cross sections. Details about the va-
lidity of this assumption for the example tree are given in Section 2.2.

In this paper, only the response of the primary branch is considered,
and the key response quantities are the: (i) displacements (u(s1,t), v
(s1,t), w(s1,t)) corresponding to the (x, y, z) coordinate directions where
z is the downward direction and the x and y directions are in the plane
parallel to the ground, (ii) bending moments (Mp(s1,t), Mq(s1,t)) which
correspond to vertical and lateral bending of the branch, and (iii) axial
force N(s1,t). The two bending moments act with respect to orthogonal,

cross-sectional coordinates (p, q) and can be combined into a resultant
bending moment = +M s t M s t M s t( , ) ( , ) ( , )r p q1 1 2 1 2 . The axial force
and resultant bending moment generate stresses that can be combined
to yield a maximum compressive stress, which acts along the long-
itudinal axis of the branch and occurs in the outer wood fibers at the
bottom of the branch cross-section:
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The maximum stress that occurs at any point along the branch and at
any time of the analysis is =σ max σ s t( ( , ))c max s t c max, ( , ) , 11 and the location
at which that maximum stress occurs is =s σ s targmax (( ( , )))max s c max1, , 11 .
Safety is checked by evaluating the safety factor FS= σc,all/σc,max. If FS
≥ 1 the limb is safe, if FS<1 the branch is unsafe and is predicted to
fail under the current set of assumptions. Shear and torsional stresses
were neglected in this analysis because the primary branch is slender
(span:depth ratio> 30) and torsional loads are minimal since the
branch was relatively straight between the trunk and the load point.

2.2. An example tree and branch

The U. americana tree that inspired this study is shown in Fig. 2. The
branch was measured at increments of Δs1=1 m out to s1=11 m, and
a final measurement was taken at s1=11.5 m, which is the point of
load application (sload) and the point at which the primary branch di-
vided into two secondary branches. At each increment, the depth and
width, azimuth and elevation angle of the primary branch were re-
corded. Subsequently, the azimuth and elevation angle were converted
to Cartesian coordinates (x(kΔs1), y(kΔs1), z(kΔs1)), k=1, 2, …, 11,
11.5 with Δs1=1m (Table 1). The cross section is approximated as
circular and the diameter reported in Table 1 is the average of the
measured width and depth. This assumption simplifies the analysis and,
for the example tree, results in an error in cross section moment of
inertia of no more than 7% (in only 1 segment). In 3 of the measured
segments the cross section width and depth were equal.

Three secondary branches were present, including extension of the
primary branch past the final measurement point. Secondary branch
measurements were limited to (i) the location of their attachment point
(s1,1, s1,2, s1,3), (ii) the diameter at that point, and (iii) the distance to
the distal end of the secondary branch (Table 2). This distance is used to
approximate the secondary branch lengths (l2,1, l2,2, l2,3). Since cross-
sectional measurements of the secondary branches could not be prac-
tically obtained, the secondary branches were approximated as cones
with diameter that tapered linearly from the proximal to the distal end
so that the diameter of each secondary branch is given by d(s2,i)= d
(s2,i=0) ((l2,i − s2,i)/l2,i). While this conical form does not exactly re-
present secondary branch geometry it is adopted as a simple approach
to including secondary branch mass distribution in dynamic analysis.

Branch diameters shown in Tables 1 and 2 were measured outside of
the bark. To avoid unnecessary wounding, bark thickness was measured
at four points along the branch (rather than every meter). From these
measurements, the bark thickness tb is assumed to be
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Assuming that bark does not contribute to structural stiffness, the mo-
ment of inertia is = −I s π d s t s( ) ( ( ) ( )) /32b1 1 1 4 , the cross-sectional area
is = −A s( ) π d s t s

1
( ( ) ( ))

4
b1 1 2

, and the torsional constant is= −J s π d s t s( ) ( ( ) ( )) /16b1 1 1 4 . Bark thickness was assumed constant at
0.20 cm for secondary branches.

The compressive bending strength of branch wood parallel to grain,
σc,all, was assumed to be 75% of the MOR reported in Kretschmann
(2010) for green U. americana. The reported value of MOR is 50MPa

Fig. 1. Proper tie-in for work-positioning: a climber’s rope passes over a lateral branch
(on the right) and around the main stem.
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and the reduced value is therefore σc,all=37.5MPa. The reduction was
applied because previous studies have demonstrated that the breaking
strength of trunks (Kane, 2014; Kane and Clouston, 2008) or branches
(Kane, 2007) is 20% to 40% less than the MOR of small, defect free,
specimens taken from the trunk or branch, and Okai et al. (2004) have
also reported different strengths for branch wood when compared to
trunk wood.

2.3. Applied loads

Four types of loading (all in the downward or −z direction) are
considered in this paper: (i) static self-weight of the branch, (ii) a static
point load that represents the static weight of a climber, (iii) a dynamic
time history point load that represents load applied to the branch
during an ascent, and (iv) a dynamic time history point load that re-
presents load applied to the branch during the arrest of a fall. When
loading involved a climber (types ii, iii, iv), the application point of the

load was sload=11.5 m.
Self-weight of the U. americana branch (N/m) is the product of

gravitational acceleration with the cross-sectional area and mass den-
sity of the branch wood, assumed to be 1050 kg/m3 (Glass and Zelinka,
2010). Branch cross-sectional area was calculated excluding bark.

The static point load was used to calibrate the structural elastic
modulus E* (Brüchert et al., 2003), which was used in the finite element
model (sub-section 2.4). The structural elastic modulus captures the

Fig. 2. Ulmus americana L. located on the campus of
the University of Massachusetts, Amherst, including
(a) an image from September 2016 (z direction is
positive upward), and SketchUp models from (b) the
same perspective as the image and (c) above (in the
−z direction). The (x,y) plane is parallel to the
ground, and primary and secondary branches are
indicated by yellow and red lines, respectively. The
load point is also indicated.. (For interpretation of
the references to colour in this figure legend, the
reader is referred to the web version of this article.)

Table 1
Primary branch geometry and associated Cartesian coordinates (x(s1), y(s1), z(s1)). Azimuth and elevation angle were measured at the distal point of each branch segment so no azimuth
or elevation angle was recorded for measurement location s1=0.

Measurement location − s1 (m) Diameter d(s1) (cm) Azimuth (deg) Elevation angle (deg) x(s1) (m) y(s1) (m) z(s1) (m)

0 38 N/A N/A 0 0 0
1 38 68 58 0.78 0.31 0.52
2 35 68 58 1.57 0.63 1.05
3 33.9 68 44 2.21 0.89 1.77
4 33.9 66 88 3.12 1.30 1.81
5 35.8 55 53 3.78 1.76 2.41
6 29 55 53 4.43 2.21 3.01
7 21 55 53 5.09 2.67 3.61
8 19.9 55 53 5.74 3.13 4.22
9 21.2 55 65 6.48 3.65 4.64
10 20 26 82 6.92 4.54 4.78
11 15.5 6 90 7.02 5.53 4.78
11.5 15.4 6 90 7.07 6.03 4.78

Table 2
Secondary branch geometry.

Secondary branch
number

Attachment point
− s1,i (m)

Diameter at attachment
− d(s2,i=0) (cm)

Length l2i
(m)

1 11.5 15.4 7.3
2 11.5 12 6
3 7 21.6 11
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overall stiffness of the branch rather than representing the elastic
modulus of the wood itself, which varies spatially within the cross
secction and along the length of the branch. Structural elastic modulus
is used since it was not possible to sample wood directly from the
branch and wood properties can vary radially and axially (Niklas,
1997). To determine E*, a climber (mass= 77 kg, weight= 755 N)
suspended himself from the branch at load location sload and a branch
deflection of 7.6 cm was measured at sload. Subsequently, E* of the
branch was adjusted in the finite element model until the modeled
branch deflection at sload was 7.6 cm: E*=11,900MPa. This value is
applied uniformly throughout the branch model.

2.3.1. Loads during an ascent
To model the load experienced by the U. americana branch during

an ascent, experimental data from two male climbers (climber 1 and
climber 2) was used. Neither of these climbers was the same individual
as used in the static test to determine the structural elastic modulus.
Including gear, each climber weighed 883 N (90 kg), and each ascended
on Sterling Super Static rope (11mm diameter, 29,000 N minimum
breaking strength (MBS), and 8.5% elasticity—defined as percent strain
at 10% of MBS; https://sterlingrope.com/store/work/ropes/static/
superstatic2/7-16-superstatic2). The rope was arranged in a sta-
tionary rope system (SRS) (http://www.itcc-isa.com/resources/rules_
ITCC_v2016.pdf), and each climber ascended using two techniques:
footlocking a doubled rope and using hand and foot ascenders to ascend
a single rope anchored at the base of the tree (“single rope technique”).
Each climber performed each technique twice, while rope tensions ac-
curate to 10 N were recorded at 10 Hz using Dillon EdXtreme dynam-
ometers (Weigh-Tronix, Fairmont, MN), yielding eight load time his-
tories of an ascent.

Load time histories of climbers 1 and 2 were denoted by a three
character code specifying the technique (F= footlocking, S= single
rope), the climber (1, 2) and the trial (1, 2). For example, F-2-1 in-
dicates the first trial of the second climber using footlocking technique.

2.3.2. Loads during a fall
It was not safe to measure loads during a climber’s fall experimen-

tally; instead, they were calculated based on principles of dynamics. A
hypothetical climber was assumed to be in the process of ascending a
single or doubled rope in a SRS when a fall occurred. The arrest of the
fall caused a dynamic load on the branch. Loads induced during a fall
are defined by (i) the mass of the climber m, (ii) the length of rope
between the climber and the branch at the time the fall is arrested lr,
(iii) the fall distance lf, and (iv) the elasticity of the rope ε10mbs. The
range of values used for each of the four parameters is in Table 3. Note
that the climber described in this section is hypothetical, since physical
experiments were deemed unsafe, and therefore suitable ranges of
parameters could be chosen that do not necessarily correspond to the
actual climbers used in determination of ascending loads. Of particular
note, the climber masses of 81.6 kg (180 lbs) and 99.8 kg (200lbs) were
chosen to be broadly reflective of a range of climber-plus-gear weights
encountered in the profession. The calculation of load time histories of
a falling climber was based on a single degree of freedom system in
which the climber is the mass, the rope is the spring, and the U.
americana branch provides the boundary condition supporting the
spring. The branch is flexible, with stiffness kb (measured at 9900 N/m),

and the stiffness of the rope is:

⎜ ⎟= ⎛⎝ ⎞⎠k
f

ε l
0.1

r
mbs

mbs r10 (3)

where fmbs is the minimum breaking strength of the rope, taken as
29,813 N. The total stiffness of the system is k=(1/kb + 1/kr)−1. The
position of the climber during the fall is given by the coordinate
zc=−(z + lr + mg/k), defined so that zc=0 is the static equilibrium
position of the climber hanging on the rope and zc>0 represents dis-
placement toward the ground. During the fall, the force in the rope is f
(t)= k zc(t) + mg and the solution of the governing equation for zc(t) is

= +z t z ω t z
ω
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with initial conditions zc(0)=−mg/k and =z gl(0) 2c f
.

and natural
frequency ωn=(k/m)1/2. Gravitational acceleration is g.

If the climber-branch-rope system is elastic and undamped, the
climber will rebound to a position higher than the point at which the
fall begins to be arrested (x(t)<−mg/k). At that point, the force in the
rope becomes zero until the line becomes taut again. The time at which
the rope force becomes zero due to this rebound is tf=argmint (x
(t)<−mg/k), the minimum value of t at which the rope becomes slack,
and the load history applied to the branch is

= ⎧⎨⎩ + ≤ ≤<f t
kz t mg t t

t t( )
( ) 0

0
c f
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Load time histories were calculated for every combination of para-
meters in Table 3: 100 load time histories in total. Each load time
history was identified by a 4-number code where the numbers, in order,
denote the climber mass (kg), fall distance (m), rope length (m), and
rope elasticity (%) (from Table 3). For example, 81.6-1.32-1.52-3 de-
notes a case with a climber mass of 81.6 kg, a fall distance of 1.32 m, a
rope length of 1.52 m, and a rope elasticity of 3%.

2.4. Finite element modeling and analysis

A finite element model of the U. americana branch was developed to
calibrate the structural elastic modulus (E*) of the branch wood and to
model the dynamic response of the branch to loads induced during an
ascent or fall. The finite element method is the primary tool used by
engineers to simulate the performance of structural and mechanical
systems under load.

This section describes idealizations and assumptions used to con-
struct a finite element model of the U. americana branch. Attachment of
the primary branch to the trunk was assumed to be fully fixed, its cross
section is assumed circular, and bark contributions to cross-sectional
properties were neglected.

The finite element model was constructed in the commercial ana-
lysis package ADINA (Bathe 2006, Fig. 3) using three-dimensional
Euler-Bernoulli beam elements with constant cross section. Matching
the element length to the distance between measurement points (1 m in
all cases except the two measurement points at s1=11m, 11.5 m)
provided converged results. Therefore, node locations correspond to
measurement points in Table 1 for the primary branch and were spaced
in increments of Δs2,i=1m for the secondary branches. Section prop-
erties for each finite element were computed based on the average of
the diameter at each end of the element.

Three types of analysis were performed on the finite element model:
static analysis, modal analysis, and dynamic time history analysis.
Details on the mathematics of these analyses can be found, for example,
in Bathe (2006), and summaries of the key features of each analysis
type are provided here. Static analysis provides displacements and in-
ternal forces (moments, shears, and axial force) at each node of the
model for without consideration of dynamic effects. This analysis type
was used to calibrate E* of the branch wood. Modal analysis provides

Table 3
The range of values in each parameter needed for the theoretical calculation of the load
induced during a climber’s fall.

Climber mass, m
(kg)

Fall distance, lf
(m)

Rope length, lr (m) Rope elasticity,
ε10mbs (%)

81.6, 99.8 0.99, 1.32 1.52, 3.05, 6.10,
9.14, 12.14

1, 2, 3, 4, 5

I. Cetrangolo et al.
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the frequencies or periods at which the modeled U. americana branch
naturally vibrates, and their corresponding mode shapes. Modal ana-
lysis is independent of the loading and the results depend only on the
geometry, boundary conditions, and material properties of the branch.
Modal analysis was used to aid in understanding of branch behavior
and to provide insight into the role of load duration in generating
branch response. Dynamic time history analysis directly integrates the
dynamic equation of branch motion and provides nodal displacements
and internal forces at each time step of the simulation. Dynamic time
history analysis was used here to model the response of the branch to
measured (sub-section 2.3.2) and calculated (sub-section 2.3.1) loads
induced during an ascent and fall, respectively. In the dynamic time
history analyses, damping of 5% was assumed, and a time step of
0.005 s provided converged results.

3. Results and discussion

3.1. Loads induced during an ascent

The load time histories of all eight trials (Fig. 4) show a rapid in-
crease in load as the climber begins his ascent followed by a period of
cyclic loading as the climber incrementally hauls himself up the rope,
and then a rapid decrease in loading as the branch is reached and the
rope is unloaded. The mean load during the footlocking ascent is ap-
proximately equal to the climber’s weight and the mean load during the
single rope ascent is related to the climber’s weight, the angle of the
anchor end of the rope, and frictional losses at the rope-branch inter-
face. There was significant variation in the characteristics of the loading
histories due to each climber’s proficiency with each ascent technique.
For example, although mean loads were similar in the footlocking trials
for climber 1 and climber 2, climber 1 caused significantly larger cyclic
amplitudes while ascending. The duration of load also varies, particu-
larly when ascending a single rope, when climber 1 took significantly
longer to ascend. In one of the footlocking trials, data logging failed
before completion of the ascent.

3.2. Loads induced during a fall

Fig. 5 shows the 100 load time histories corresponding to every
combination of the parameters in Table 3. Only loads for a fall induced
during a single rope ascent are shown; the effects of falling while foo-
tlocking a doubled rope are included in the Discussion. The load time
histories cover a realistic range of fall distances, rope lengths, climber
masses, and rope elasticities, and have a range of peak loads and
durations. The maximum peak load of 6000 N reflects a dynamic am-
plification of 6 times with respect to the static load for the equivalent
climber. Fig. 5 is annotated with text and lines to show the branch
vertical mode half period and the cases that lead to the maximum force
and maximum and minimum branch stresses (sub-section 3.4).

Fig. 3. Finite element model of Ulmus americana L. branch shown in Fig. 2, including
twelve elements used to mesh the primary branch. Load application is at the distal node of
element 12, where the primary branch divided into two secondary branches. Nodes are
shown on secondary branches.

Fig. 4. Load time histories for ascent on a stationary
rope system. Two climbers performed two trials each
(a) by footlocking a doubled rope and (b) on a single
rope using ascenders. Each time history is labeled by
three-character code representing, in order, the as-
cent method (F= footlocking, S= single rope),
climber (1, 2) and trial (1, 2).

I. Cetrangolo et al.



3.3. Modal analysis

Modal analysis of the U. americana branch model provided the first
vertical bending mode shape shown in Fig. 6. The corresponding fre-
quency of the first vertical bending mode was 0.95 Hz (1.06 s period).
The frequency was comparable to the cycle frequency of loads induced
during an ascent (Fig. 4), and the natural period was roughly twice the
duration of the load pulse in the falling case (Fig. 5).

3.4. Dynamic time history analysis

Dynamic time history analysis of the loads measured during an as-
cent or calculated during a fall on a single rope yielded two responses in
each element in the modeled U. americana branch: vertical displace-
ment and σ t( ).c max, Examples of displacement time histories generated
by the finite element model from load time histories of a measured
ascent (F-1-1) and a calculated fall (81.6-0.99-1.52-1) are shown in
Fig. 7. The displacement time histories show the vertical branch dis-
placement at sload. For F-1-1, oscillations in the displacement closely
matched the cycles in the applied load, and the response to 81.6-0.99-
1.52-1 corresponded to that of a simple harmonic oscillator forced by
an impulse load. In Fig. 7, branch response to the load induced by a fall
after t=0.65 s was neglected in the analysis since it corresponds to the
time when the climber has rebounded upward from the initial fall ar-
rest. Time histories of σ t( )c max, , closely follow those in Fig. 7.

Table 4 shows σc,max that occurred during the measured ascent trials
shown in Fig. 4. Loads measured during single rope technique ascents
induced σc,max, that is, on average, 37% greater than footlocking.
Climber proficiency also had a strong effect on σc,max, with climber 1
inducing greater stress than climber 2. The difference between climbers

is 6.5% for single rope ascent and 19% for footlocking. Since the
climbers’ masses were within 1 kg of each other, differences in σc,max

reflect differences in proficiency. Climber 1 had much less experience
footlocking, and struggled to ascend smoothly. Lack of smoothness
during ascent induced greater loads, evident in Fig. 4. Training to im-
prove a climber’s proficiency may meaningfully reduce the stress during
ascending, enhancing worker safety.

For values of σc,max during ascent, FS=3 for single rope and FS=4
for footlocking. On a decayed branch, FS would be less because decay
reduces the moment of inertia I s( )1 (Kane and Ryan, 2004). Other de-
fects (e.g., cracks, weak attachments) also reduce FS, and may not be
visible during a pre-climb inspection from the ground. If the defects
occur on the upper surface of an anchor point, even using binoculars
might not reveal the defects. Given that FS for engineered civil struc-
tures are often close to 2 (Salmon and Johnson, 1990) 3< FS<4
should not be considered excessive. For comparison, FS for the com-
ponents of a climbing system are 13 (Anonymous, 2013).

Fig. 8 shows σc,max for all of the falling load cases, organized by fall
parameter values: climber mass, fall length, rope length, and rope
elasticity. The range of maximum stresses is significant, with a
minimum value of 23.6 MPa giving FS=1.6 (case 81.65-0.99-1.52-1)
and a maximum value of 32.4 MPa giving FS=1.2 (cases 99.8-1.32-
6.1-3 and 99.8-1.32-9.14-2). The safety factors are dangerously small
given model and analysis uncertainties, and the range of stresses re-
presents 24% of the allowable stress of 37.5MPa, meaning that differ-
ences in climber mass and fall distance and other parameters over
ranges that could be expected to occur in practice may be sufficient to
determine whether a branch fails during fall arrest. There were 16
falling load cases that produce maximum stresses within 1% of the
maximum value of 32.4MPa, all involving the heavier climber falling
the longer distance. The values of rope length and rope elasticity that
result in maximum and minimum stress are not at the extremes, and
each value of those parameters is represented in the group of 18 cases
that produce stresses within 1% of the maximum. Neither the longest
most compliant rope, nor the shortest, stiffest rope consistently corre-
sponded to maximum or minimum stress in the branch during a fall.
Rope properties cannot be directly connected to branch stresses because
of the dynamic character of the problem. Dynamic response and stresses
are maximized when the loading duration coincides with half of the
first vertical mode period of the branch. Therefore, a rope that is very
stiff will result in a loading duration that is too short to generate
maximum stress and a rope that is very flexible will result in a loading
duration that is too long to generate maximum stress. For this branch,
coincidence of the loading duration and branch half period occurred for
intermediate values of rope stiffness.

The interplay between loading parameters and response parameters
is also shown graphically in Fig. 4, which shows that the fall that in-
duced the maximum force on the branch did not induce maximum
stress in the branch because the load duration was significantly shorter
than the branch half period. Minimum branch stress was induced by the
fall that resulted in the shortest duration load (this case also had a low
amplitude of maximum force), and the maximum branch stress was
induced by falls that generated loads with durations very close to the
branch half period. Branch stresses were highly sensitive to the overall
dynamics of the climber-rope-branch system, with coincidence between
the load duration and the branch half period being a key determiner of
response magnitude.

Though climber mass and fall length both significantly controlled
stresses, mass was the most important factor. Mass and fall length de-
fine the energy of the fall that must be arrested by the rope, and the
rope length and rope elasticity define the stiffness of the rope kr. The
mass contributed to branch response by increasing, linearly, the am-
plitude of the dynamic oscillation (x(0) ∝ m) and by increasing the
static force mg. The fall length (lf), on the other hand, appears only to
the ½ power in =x gl˙ (0) 2 f , meaning that branch response is more
sensitive to climber mass than fall length, although fall length is still

Fig. 5. Load time histories (light grey) calculated for every combination of parameters
listed in Table 3. Load time histories have a significant range of durations and amplitudes.
Amplitudes are well in excess of the assumed static weight of the climbers and durations
span across the first vertical mode period of the branch. Annotations indicate the fall
parameters (numbers separated by dashes that correspond to values in Table 3) that lead
to the largest force and the maximum and minimum branch stresses.

Fig. 6. First vertical bending mode shape of the tree branch at 0.95 Hz (Period= 1.05 s).
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more important than rope length or elasticity.
Even though the response was primarily governed by m and lf, kr (as

defined by lr and ε10mbs) did play a role in determining the stress in the
branch. In Fig. 8, within each mlf group, the maximum stress varied by
as much as 1.25MPa over the range of lr and ε10mbs considered in this
study, 3% of the allowable stress.

Stresses for a fall during footlocking can be obtained from those for
a fall during a single rope technique ascent with an effective rope
elasticity of 2ε10mbs since footlocking involves a doubled rope.

The range in maximum branch stresses induced during a fall cor-
responded to a range in FS from 1.6 (case 81.65-0.99-1.52-1) to 1.2
(cases 99.8-1.32-6.1-3 and 99.8-1.32-9.14-2), which are dangerously
small.

Fig. 7. Examples of Ulmus americana L. branch dis-
placement time histories at the load application
point sload=11.5 m for loads measured during an
ascent (the first trial of climber 1 footlocking a
doubled rope (F-1-1)) and calculated for a fall on a
single rope anchored in the crow (assuming a
climber of mass 81.6 kg who falls 0.99 m with 1.5 m
of rope with 1% elasticity in the system (81.6-0.99-
1.5-1)). The top frame shows the complete time
history of displacements for both cases. The bottom
frame shows case 81.6-0.99-1.5-1 in detail. Since the
bouncing of the falling climber on the rope is not
simulated in the load time histories, the part of the
response to a load induced during a fall after the
displacement up-crosses 0 m (t=0.65 s) was ne-
glected.

Table 4
Maximum stresses (MPa) induced during eight ascents: two trials of two climbers using
two techniques. In each trial, maximum stress occurred in element 7 (Fig. 3) of the finite
element model. Shaded cells contain the maximum stress values from each ascent trial.
Unshaded cells contain averages for each climber using each technique and of each
technique for both climbers.

Fig. 8. Influence of fall parameters on maximum
combined stress in the branch (σc,max) in MPa, which
always occurred in segment 7, regardless of the
combination of parameters. Parameter values are
shown in groups along the horizontal axis. Four
horizontal bands of data correspond to pairs of mass
and fall length (m, lf) as shown along the left vertical
axis.
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3.5. Further discussion

In the finite element model, σc,max occured in element 7 (6
m< s1<7 m) for all loads induced during an ascent or fall. Bending
moment and branch diameter increased toward the proximal end of the
branch (i.e., decreasing s1), but the increase in bending moment is
linear, while I∝ d4, c∝ d, and A∝ d2, so σc,max (Eq. 1) is more sensitive
to changes in diameter. Origination of a secondary branch in element 7
means that the change in diameter there (from 29 cm to 21 cm) is
markedly greater than in any other segment (Table 1) causing σc,max to
occur in element 7. Stresses in other branch elements are not negligible,
however, with the smallest value of σc being approximately one-third
that of σc,max. Therefore, defects in the branch could cause other ele-
ments to pose the greatest risk to the climber.

4. Conclusions

A method for assessing branch safety during ascending and during
falls has been demonstrated. The method involves finite element
modeling of the branch, determination of ascending and falling loads,
and the computation of safety factors. The method has been illustrated
for an example branch and a range of ascending techniques and profi-
ciencies, and a range of fall characteristics, all with an unorthodox
anchor point 11.5 m from the trunk. Safety factors during an ascent and
fall were as small as 3 and 1.2, respectively. Both safety factors are
considered small because of potentially large uncertainties in the
climber-rope-branch system, particularly with respect to branch mate-
rial properties and unobservable branch defects like decay or cracks.
Even though the branch did not fail during the unorthodox ascent, the
small safety factors may have compromised climber safety. The un-
orthodox ascent indicates that arborists may not fully appreciate the
potential for failure of an anchor point. A better understanding of loads
during an ascent or fall, as well as of basic mechanical concepts (e.g.,
leverage, momentum, acceleration, potential and kinetic energy, etc.)
may improve recognition of possibly dangerous situations before a
climber ascends, reducing risk.
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