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Abstract: Small voids of varying shapes and sizes are an inherent part of the physical structure of parallel strand lumber (PSL) due to the
material’s manufacturing process. To gauge the sensitivity of the material’s mechanical behavior to these voids, this paper proposes and
evaluates finite element models that incorporate PSL voids by simulating them as equivalent ellipsoids. It is assumed that the wood phase
is a homogeneous and orthotropic continuum, while the void phase is the only source of uncertainty. Two analyses are presented: (1) linear
elastic analyses to gauge the effective modulus of elasticity and the distribution of conventional, principal, and effective stresses considering
the effect of volume fraction and void shape; (2) nonlinear analyses under uniaxial and biaxial ductile compressive loading scenarios. Linear
elastic analyses showed that representing voids as equivalent ellipsoids does not affect the effective elastic moduli and stress distributions in
the models under uniaxial loading. Nonlinear analyses confirmed that the overall nonlinear compressive behavior of the models with equiv-
alent ellipsoids are similar to that of their corresponding models with actual voids. DOI: 10.1061/(ASCE)MT.1943-5533.0001980. © 2017
American Society of Civil Engineers.
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Introduction

Parallel strand lumber (PSL) is a common engineered wood prod-
uct used primarily as beams and columns in the North American
construction sector. It is composed of parallel wood strands com-
pacted and glued together with a proprietary phenol-resorcinol
adhesive. Its strength is well-known to be more reliable than that
of traditional solid sawn lumber as a result of the reduction and
dispersion of wood knots and defects in the process of manufac-
turing. Consequently, PSL has gained popularity over past decades
as a replacement for conventional lumber in residential applications
as well as becoming direct competition for steel and concrete in
commercial and industrial applications.

PSL is made from long strands of wood veneer that are first
roughly oriented in the longitudinal direction before being glue-
laminated into large rectangular billets. The inexact nature of the
manufacturing process leads to a physical material structure that, at
a mesoscale (the scale of average strand width; i.e., millimeters
scale), contains voids of varying shapes and sizes (Fig. 1). In a pre-
vious study (Amini et al. 2014), the authors developed a statistical
characterization of this void field approximating naturally occur-
ring voids as ellipsoids.

Modeling the effect of wood composite mesostructure on
mechanical behavior has been a topic of interest to researchers
for years. In one of the first attempts to model PSL, a nonlinear
stochastic model was formulated by Clouston and Lam (2001),
who successfully simulated the stress-strain behavior of strand-
based wood composites based on orthotropic and spatially variable
constitutive properties of wood strands using probabilistic plasticity
theory and the Tsai-Wu yield surface. Further to this work, a model
for spatial variation of the elastic modulus of PSL was developed
by Arwade et al. (2009). This work included a stochastic computa-
tional model that incorporated orthotropic elasticity and uncertainty
in strand geometry and material properties. The same authors also
investigated the variability of compressive strength of PSL by con-
ducting the measurement of compressive strength on specimens of
varying size (Arwade et al. 2010) and developed a computational
model which included the strand length, grain angle, elastic con-
stants, and parameters of Tsai-Hill failure surface. Bejo and Lang
(2004) also proposed a probability-based model to study the effect
of the change in elastic properties on the performance of the prod-
uct and modeled the orthotropic behavior of wood constituents as a
result of their position in the composite employing theoretical and
empirical equations.

While these previous studies significantly advanced the meth-
odology and the accuracy of wood composite strength modeling,
no study incorporated the presence of voids in the mesostructure. In
this study, the mesostructure of PSL is first modeled based on the
methodology outlined in the previous paper by the same authors
(Amini et al. 2014). This previous work measured the void phase
of PSL through serial sectioning to produce two-dimensional (2D)
and three-dimensional (3D) distributions of the void structure.
Equivalent ellipsoids were fitted to actual void shapes. Ellipsoids
were the chosen shape because they are relatively easy and com-
putationally efficient to model given that they have well-known and
definable geometric parameters.

The objective of this paper is, therefore, to test the hypothesis
that the virtual ellipsoidal voids defined in (Amini et al. 2014) are
appropriate replacements for the actual voids in strength modeling.

1Senior Structural Engineer, Prime AE Group, 2nd Floor, 55 Ca-
pital Blvd., Rocky Hill, CT 06067; formerly, Graduate Student, Dept.
of Civil and Environmental Engineering, Univ. of Massachusetts
at Amherst, Amherst, MA 01003 (corresponding author). E-mail:
ar.amini@gmail.com

2Professor, Dept. of Civil and Environmental Engineering, Univ. of
Massachusetts at Amherst, Amherst, MA 01003.

3Associate Professor, Dept. of Environmental Conservation, Univ. of
Massachusetts at Amherst, Amherst, MA 01003.

Note. This manuscript was submitted on August 4, 2016; approved on
February 13, 2017; published online on May 16, 2017. Discussion period
open until October 16, 2017; separate discussions must be submitted for
individual papers. This paper is part of the Journal of Materials in Civil
Engineering, © ASCE, ISSN 0899-1561.

© ASCE 04017129-1 J. Mater. Civ. Eng.

 J. Mater. Civ. Eng., 2017, 29(9): -1--1 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

A
lir

ez
a 

A
m

in
i o

n 
05

/1
6/

17
. C

op
yr

ig
ht

 A
SC

E
. F

or
 p

er
so

na
l u

se
 o

nl
y;

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

https://doi.org/10.1061/(ASCE)MT.1943-5533.0001980
mailto:ar.amini@gmail.com


It is understood that approximating randomly shaped actual voids
(that could have sharp tips, for example) as smooth ellipsoids may
affect the predicted stress distribution. The finite element model
may not detect appropriate stress concentration at the tip of an
ellipsoidal void. Also, the void tips may cause local multiaxiality
(i.e., the existence of large stresses in the directions other than the
direction of loading). The statistical void characterization presented
in Amini et al. (2014) will be implemented into finite element mod-
els to predict the effect of void shapes on the mechanical behavior
of PSL under compressive loading conditions.

Parallel strand lumber is known to exhibit different mechanical
behavior under compression (ductile) and tension (brittle). This study
considers linear elastic analyses and nonlinear plastic analyses con-
sidering both uniaxial and biaxial compression loading scenarios.

Background

Fig. 1 depicts the orthotropic mesostructure of PSL which consists
of wood strands, adhesive, and voids. The physical and mechanical
variability in the strands, along with the voids, result in material
heterogeneity. The coordinate system is defined by the axes L, T,
and TT, which represent longitudinal, transverse, and through
thickness directions of PSL, respectively.

It was shown in a previous study (Amini et al. 2014) that the
ellipsoidal shape is a good approximation for the actual void shape

in so much as the volumes, moments of inertia, and the aspect ratios
of moments of inertia of equivalent ellipsoids match well to that of
actual voids. In this previous study, the mean ellipsoid dimensions
R1, R2, and R3 were calibrated to the actual void statistics to match
at least the second moment properties of the actual void shapes.
Fig. 2(a) illustrates a T-TT section of PSL where 2D voids are re-
placed with equivalent ellipses. In Fig. 2(b), an equivalent ellipsoid
is fitted to a three-voxel void.

Linear Elastic Analysis

As a first step of this work, linear elastic analyses were conducted
to gauge whether actual voids could be replaced with equivalent
ellipsoids without compromising numerical accuracy of effective
modulus. Two sets of finite element models were created of uniaxial
compressive loadings along the three main material directions: one
set using a 3D specimen with carefully measured actual voids, and
one set whereby the actual voids were replaced with corresponding
equivalent ellipsoids. Fig. 3(a) displays schematically the dimen-
sions, loading and boundary conditions of the models. Tables 1
and 3 outline the material properties of 2.0E SP PSL material (PSL
material made of Southern pine species with 2.0 × 106 psi elastic
modulus) used in this study. The properties were taken from (or cal-
culated based on the provisions of) the previous studies Wood-
handbook (Forest Products Laboratory 2010), Janowiak et al.
(2000), and Jones (1975). The details of the analysis are provided
in Amini (2013) and are not included in this paper for sake of brev-
ity. The analyses compared (1) effective elastic constants, (2) stress
concentrations, and (3) local multiaxiality differences under com-
pressive loading for all three orthogonal directions.

The replacement of ellipsoids does not cause a considerable
change in the effective elastic modulus, especially along L direc-
tion, which is the largest and usually the most important to engi-
neering design. The important statistical properties of the element
normalized stresses [calculated by Eq. (1)] in both actual and equiv-
alent models have been presented in Table 2. In all six simulations,
the means and medians of all types of stresses almost match with
less than 1% difference for loading in L and TT directions and less
than 10% difference for loading in T direction. For loading in TT
and L directions, the standard deviations of all types of stresses in
actual models are larger than that of the equivalent models. This
is the effect of the sharp void tips in actual models compared to

Fig. 1. Cross-sectional views of PSL specimen and definition of
the member coordinate system (dark spots are voids; L = longitudinal,
T = transverse, TT = thru thickness): (a) 3D view; (b) T-TT section

Fig. 2. 2D illustration of void replacements and a scheme of 3D replacement: (a) ellipses replaced 2D voids; (b) ellipsoid fitted to a 3-voxel void
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the smooth tips of equivalent ellipsoids. Also, no influential stress
multiaxiality state has been detected in any of actual and equivalent
void models under any defined loading scenario

σi;N ¼ σi

meanðσiÞ
− 1 ð1Þ

where i = direction of stress (i.e., T, TT, L, or 3 for the
maximum principal stress).

Nonlinear Compressive Analysis

Finite Element Formulation

A total of 60 separate finite element models were created and
analyzed for compressive loading; that is, five different geometries
(i.e., replications) were created for both actual void specimens and
corresponding ellipsoidal void specimens. Further, loading was ap-
plied in each of the three material directions for both uniaxial loading
and biaxial loading (i.e., 5 5 replications×2 void shapemodels×
3material directions×2 load cases¼60 separatemodels). Multiple
geometries were considered for each void model to investigate the
effect that void size, location, and distribution may have on the local
magnitude of stresses, potentially driving the model into nonlinear
behavior either locally or globally. Each actual void model was
picked form a random location in a 133 × 133 × 610 mm PSL billet,
which had been characterized for this project (Amini et al. 2014).
After the analysis of actual void model, the voids were replaced
by their equivalent ellipsoids, and the analysis was repeated.

To define the terminology which will be used in this section, the
scheme of the expected constitutive behavior of PSL material under
compression is illustrated in Fig. 4(a). This scheme is based on
the hypothesis that PSL’s constitutive behavior should not be very
different from that of solid-sawn lumber. The symbols σc and εc

Fig. 3. Schematic sketch of finite element models of PSL: (a) uniaxial linear and nonlinear analyses; (b) biaxial nonlinear compressive analyses

Table 1. Elastic Constants of PSL Strands (Ex: Elastic Modulus in x
Direction, νxy: Poisson’s Ratio in x and y Directions, Gxy: Shear
Modulus in x and y Directions)

Material property Value

EL (MPa) 13,000
ET (MPa) 650
ETT (MPa) 650
νTL 0.15
νTTL 0.15
νTTT 0.09
GTL (MPa) 500
GTTL (MPa) 400
GTTT (MPa) 85

Table 2. Statistics of the Normalized Element Stresses (with Zero Mean)
When Actual and Equivalent Models Have Been Loaded in Different
Material Directions (σx;N : Normalized Normal Stress in x Direction,
σ3;N : Normalized Maximum Principal Stress)

Measure Model type

Loading in
L

Loading in
T

Loading in
TT

σL;N σ3;N σT;N σ3;N σTT;N σ3;N

Median Actual 0 0 0.01 0 0.01 0
Equivalent 0 0 0.03 0.02 0.02 0.01

Standard
deviation

Actual 0.06 0.06 0.14 0.13 0.29 0.27
Equivalent 0.04 0.04 0.30 0.29 0.24 0.23

Table 3. Strength Values of PSL Strands in Different Material Directions
(Sx: Strength in x Direction)

Strength Value (MPa)

ST in compression 6.2
ST in tension 1.5
STT in compression 6.2
STT in tension 1.5
SL in compression 53.5
SL in tension 53.7
STTT 9.2
STL 5.9
STTL 9.2

© ASCE 04017129-3 J. Mater. Civ. Eng.
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represent compressive stress and compressive strain respectively.
As shown in this figure, σyield and εyield are respectively the com-
pressive stress and strain at which the material yields (switches
from linear elastic phase with elastic modulus E to nonlinear plastic
phase with varying plastic modulus). They are called compressive
yield stress and compressive yield strain (since no yielding behav-
ior is expected under tensile loading, they are simply called yield
stress and yield strain). The maximum compressive stress which the
material bears is called compressive strength or compressive ulti-
mate stress and labeled by σu. The strain corresponding to the com-
pressive ultimate stress is called compressive ultimate strain (εu).
Note that this strain may be less than the maximum strain that the
material experiences.

For uniaxial loading [Fig. 3(a)], the specimen dimensions were
25 × 25 × 76mm. The model’s longest side was always in the di-
rection of loading. These dimensions were selected to match the
size of the specimens tested by Arwade et al. (2010) to ease the
future comparison of experimental and numerical results. The finite
element models assumed displacement control with the total dis-
placement of 1 mm (total strain of 1.3%) for the loading in T or TT
direction and 0.6 mm total displacement (0.8% total strain) for the
loading in L direction.

For biaxial loading [Fig. 3(b)], the specimen dimensions were
25 × 51 × 51mm. The two 51-mm dimensions were oriented along
the two loading directions. In the case of loading along T or TT
directions, the total applied displacement was 0.7 mm (1.4% total
strain), and the applied total displacement in L direction was
0.4 mm (0.8% total strain). The reason for this difference was that
the elastic modulus in L direction is much larger than that of T and
TT directions, and, therefore, a small strain in L direction could
cause a large stress. Also, uniaxial simulations and Winans’ tests
(Arwade et al. 2010) showed that the yield and ultimate strains of
PSL in the L direction are smaller than that of other two directions.
In all simulations, the displacements were applied in 15 steps, in a
way that the first step was large enough to cover most of the linear-
elastic deformation, and the other 14 steps were equally small to
track the nonlinear deformation.

The size of each 3D solid finite element was the same as the
digital voxels (Amini et al. 2014), 0.25 × 0.25 × 4.02mm in the
T, TT, and L directions, respectively. A convergence test confirmed
that the aspect ratio of the elements was acceptable for loadings in
T and TT directions (Amini 2013).

Boundary conditions were applied at nodes at the base of
each model. For all models, one base node was constrained for
the three displacement directions, while the other base nodes were
constrained along the direction of loading. The models consisted of
two material phases: wood strands and voids. The wood strands

were assumed to behave elastic-perfectly plastic at the yield
stress and orthotropic with properties per Tables 1 and 3. Compared
to the known constitutive behavior of PSL under compression as illus-
trated in Fig. 4(a), the assumption of perfect plasticity is a simplifi-
cation but was not expected to affect results substantially. Identical
compressive strength values taken from Wood-handbook (Forest
Products Laboratory 2010) were used as the strands’ yield stress.

Hill’s failure criterion has been selected to model wood’s non-
linear compressive behavior at the time of failure. This failure
criterion is given by reference (ADINA R&D 2012) as follows:

fyield ¼ Fðσbb − σccÞ2 þ Gðσcc − σaaÞ2 þHðσaa − σbbÞ2
þ 2Lσ2

ab þ 2Mσ2
bc þ 2Nσ2

ac − 1 ¼ 0 ð2Þ
where (a, b, c) = material principal axes, and F, G, H, L, M,
N = material constants given by

F ¼ 1

2

�
1

Y2
bb

þ 1

Y2
cc
− 1

Y2
aa

�
ð3Þ

G ¼ 1

2

�
1

Y2
cc
þ 1

Y2
aa

− 1

Y2
bb

�
ð4Þ

H ¼ 1

2

�
1

Y2
aa

þ 1

Y2
bb

− 1

Y2
cc

�
ð5Þ

L ¼ 1

2Y2
ab

ð6Þ

M ¼ 1

2Y2
bc

ð7Þ

N ¼ 1

2Y2
ac

ð8Þ

where Yaa, Ybb, Ycc = yield stresses in the material directions a, b,
c and Yab, Yac, Ybc = yield stresses for pure shear in the planes
(a, b), (a, c), and (b, c). fyield = dimensionless. In SI, the
units of F, G, H, L, M and N are all 1=MPa2.

Compression Analyses Results

Uniaxial Loading
Fig. 5 illustrates the mechanical behavior of actual versus ellipsoi-
dal void models for loading in the three material directions, and

(a) (b)

Fig. 4. Schemes of the expected stress-strain relationship of PSL: (a) under compression; (b) under tension

© ASCE 04017129-4 J. Mater. Civ. Eng.

 J. Mater. Civ. Eng., 2017, 29(9): -1--1 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

A
lir

ez
a 

A
m

in
i o

n 
05

/1
6/

17
. C

op
yr

ig
ht

 A
SC

E
. F

or
 p

er
so

na
l u

se
 o

nl
y;

 a
ll 

ri
gh

ts
 r

es
er

ve
d.



Table 4 lists the corresponding mean and standard deviation values
for yield stress, ultimate stress, and strain to compare both void
models and loading directions.

For loading in the L direction, the behavior is almost elastic
perfectly-plastic, and the two void models are in good agreement.
The mean and standard deviation of the longitudinal strength
(i.e., ultimate stress) for actual models are 50.4 and 1.8 MPa,
respectively, while the corresponding values for equivalent models
are 51.3 and 1.0 MPa. Yield stresses [calculated using the 0.2%
offset yield strain method (Hibbeler 2011)] has mean and standard
deviation values of 49.6 and 1.8 MPa (actual) versus 51.0 and

1.1 MPa (ellipsoidal). The difference between mean ultimate
and yield stress values is 1.8 and 2.8%, respectively.

The standard deviation of stresses in actual models are more
than that in equivalent models, which is expected considering the
fact that there is more variation in the arbitrary shape of the actual
voids compared to the smooth shape of the ellipsoids.

As for loading in the T and TT directions, slightly larger differ-
ences were found between the strength and yield stress of the two
void models. The values for the actual void models were, on aver-
age, larger than that of the ellipsoidal void models, which is con-
trary to the expectation that the smooth shape of ellipsoids would
lead to lower stress concentrations and consequently higher total
strength.

Loading in T direction, there was approximately 19 and 22%
difference between mean strength and yield stress, while loading
in TT direction, there was approximately 12 and 10% difference
between mean strength and yield stress comparing the two void
models.

A possible reason for such differences between actual and ellip-
soidal void models loaded in T and TT directions is that, in some
cases, the method of fitting ellipsoids to the actual voids explained
in Amini et al. (2014) changes the aspect ratio of voids in the T-TT
plane. Since the main objective of the mentioned method is to gen-
erate an ellipsoid with similar volume and length to the actual void,
the distortion of aspect ratio in T-TT plane is possible. The statis-
tical tests explained in the next section show that the ellipsoids are
still good replacements for the actual voids even when the loading
is along the T or TT direction.

Statistical Testing
The Student’s T-test and Wilcoxon signed rank test (Mc Clave
2012) were conducted to evaluate whether replacing actual voids
in a PSL specimen by equivalent ellipsoids significantly altered
the material’s predicted ductile behavior under uniaxial compres-
sive loading along each material direction. Specifically, the null hy-
pothesis (H0p) is that the distributions of the yield and ultimate
stresses of the corresponding sets of actual and equivalent models
are equivalent. The Student’s T-test performs a paired test of the
null hypothesis that the difference xa − xe is a random sample from
a normal distribution with mean zero and unknown variance,
against the alternative that the mean is not zero. Here, xa and xe
are the arrays containing the values of yield (or ultimate) stresses
of the corresponding actual and equivalent models, respectively.
Wilcoxon test performs a paired, two-sided signed rank test of
the null hypothesis that data in the array xa − xe come from a con-
tinuous, symmetric distribution with zero median, against the al-
ternative that the distribution does not have zero median. The
hypothesis of zero median for xa − xe is not necessarily equivalent
to the hypothesis of equal median for xa and xe. In this study, be-
cause it is not known whether the distribution of xa − xe is normal
or not, both the Student’s T (parametric) and Wilcoxon (nonpara-
metric) tests are employed to arrive at a more inclusive conclusion.

The p-value of a T or a Wilcoxon test is the probability, under
the null hypothesis, of observing a value as extreme or more ex-
treme of the test (in our case: simulation) statistics. The bigger
the p-value, the higher the probability that the two arrays are the
samples taken from the same distribution. Usually, a p-value less
5% leads to the rejection of the null hypothesis.

Table 5 lists the p-values calculated by the Student’s T and
Wilcoxon tests. All the p-values are above 5%, indicating that
the uniaxial simulations do not provide evidence to reject H0p.
Especially for loading in the L direction, the p-values are quite
high, so there is a high level of confidence that distributions of the
yield and ultimate stresses of the corresponding sets of actual and

(a)

(b)

(c)

Fig. 5. Comparison of normal stresses along the direction of loading in
the corresponding actual and equivalent models under uniaxial com-
pressive loading in each material direction (σx: normal stress in x di-
rection; εx: normal strain in x direction): (a) loading in L direction;
(b) loading in T direction; (c) loading in TT direction

© ASCE 04017129-5 J. Mater. Civ. Eng.
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equivalent models are equivalent. An increase in the number of
replications may change p-values, but it is unlikely that such high
p-values would drop to under 5%.

Biaxial Loading
Fig. 6 and Table 6 present the biaxial compressive loading model
results. When loaded along Tþ TT directions, there is 6% differ-
ence between the maximum stresses along the T direction compar-
ing actual and ellipsoidal models and just about 1% difference
between those along the TT direction. Loading in the Tþ L direc-
tions, the results are less reassuring, with the difference between the
mean maximum stresses along the T direction being 20%. Along
the TTþ L directions, the difference amounts to 6 and 2% in the
values of mean maximum stresses along TT and L directions re-
spectively in the actual and ellipsoidal models.

Interestingly, softening behavior is predicted when models are
loaded biaxially in Tþ L or TTþ L directions [Figs. 6(a and c)].
In these two cases, the induced stresses in L direction are much larger
than the stresses in the perpendicular directions. The cause of soften-
ing here ismost likely due to the interaction of stresses (i.e., Poisson’s
effect), since the wood strand constitutive model is still considered
elastic-perfectly-plastic, and no softening behavior was observed
for the uniaxial simulations. Also, the Poisson’s ratios in T-L and
TT-L planes are rather large (0.15). Therefore, the longitudinal axial
stress interacts with the axial stress in Tor TT direction (based on the
direction of loading) causes the reduction in the ultimate stress of PSL
material in T or TT direction and ultimately results in softening.

Another interesting point is that although the strands yield stress
in both T and TT directions is 6.2 MPa and the material models are
elastic perfectly-plastic, stresses induced by the loading in Tþ TT
directions reach 8 MPa and then tend to increase if more displace-
ment is applied [Figs. 6(e and f)]. It seems that Poisson’s effect here
acts positively, and results in the strength increase.

A possible explanation why a biaxial state of stress (and Pois-
son’s effect) may cause softening in the case of loading in Tþ L

and TTþ L directions, but hardening in the case of loading in
Tþ TT directions is as follows:

Considering Eq. (2) in which directions a, b, c are, respectively,
X (or T), Y (or TT), Z (or L) directions, Yaa, Ybb, Ycc are assumed
equal to SX ¼ 6.2 MPa, SY ¼ 6.2 MPa, SZ ¼ 53.3 MPa (Table 2).
It is noted that in (Amini 2013), the stress multiaxiality is negligible
if PSL is loaded uniaxially.

Here, multiaxiality is even less probable since the biaxial load-
ing is present in the boundary conditions. Thus, under biaxial load-
ing, all shearing stresses, as well as normal stresses in the unloaded
direction, are zero. Loading in the T þ L directions, fyield becomes

fyield ¼
ðσ2

X þ σ2
Z − σXσZÞ

ð53.5 MPaÞ2 þ ðσX − σZÞ2
ð6.2 MPaÞ2 − 1 ð9Þ

The first term in Eq. (9) is much smaller than the second term
because it has a much larger denominator, so drop the first term and
assume

fyield ¼
ðσX − σZÞ2
ð6.2 MPaÞ2 − 1 ð10Þ

With the same reasoning, if the model is loaded uniaxially in the
T direction, the approximate Hill’s yield function will be

fyield ¼
σ2
X

ð6.2 MPaÞ2 − 1 ð11Þ

Since EL is 20 times ET , the change in σZ (ΔσZ) in each loading
step is much larger than the change in σX (ΔσX). Remember that
this analysis is displacement control, and, in fact, in each loading
step certain displacements are applied in the T and L directions.
Also, the applied displacements in L direction are always smaller
than those in the T direction but not 20 times smaller; they are about
half of the displacement steps in the T direction. Hence

ΔσZ ≈ 10ΔσX ⇒ ΔðσZ − σXÞ > ΔσX ð12Þ

One can conclude from Eqs. (10)–(12) that in the case of biax-
ial loading in the Tþ L directions, fyield approaches zero much
faster than it does in the case of uniaxial loading in the T direction.
Therefore, comparing these two loading scenarios, the model’s
yield stress must be lower in Tþ L loading. Also, large values of
ΔðσZ − σXÞ cause softening in the model.

On the other hand, under biaxial loading in the Tþ TT direc-
tion, the approximate Hill’s yield function is

Table 5. p-Values of Student’s T and Wilcoxon Tests under the Null
Hypothesis H0p Evaluated for the Uniaxial Loading Scenarios

Loading
direction

Yield stress Ultimate stress

T-test
(%)

Wilcoxon test
(%)

T-test
(%)

Wilcoxon test
(%)

T 9.0 15.1 10.5 15.1
TT 27.9 54.8 11.0 22.2
L 19.1 31.0 27.5 54.8

Table 4. Mean and Standard Deviation of the Yield and Ultimate Stresses and Strains of the Corresponding Actual and Equivalent Models Taken from the
Same Position in the Parent Billet under Uniaxial Compressive Loadings in Three Material Directions

Loading direction T TT L

Model type Actual Equivalent Actual Equivalent Actual Equivalent

σyield
Mean (MPa) 4.6 3.6 4.1 3.7 49.6 51.0
Standard deviation (MPa) 0.7 1.1 0.6 0.6 1.8 1.1

εyield
Mean (%) 1.01 0.99 0.98 0.92 0.41 0.41
Standard deviation (%) 0.07 0.07 0.04 0.05 0 0

σu
Mean (MPa) 4.7 3.8 4.3 3.8 50.4 51.3
Standard deviation (MPa) 0.7 1.1 0.5 0.6 1.8 1.0

εu
Mean (%) 1.31 1.31 1.31 1.31 0.79 0.79
Standard deviation (%) 0 0 0 0 0 0
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fyield ¼
ðσX − σYÞ2
ð6.2 MPaÞ2 − 1 ð13Þ

But equal displacement steps and elastic moduli in loading
directions result in

ΔσX ≈ΔσY ⇒ ΔðσX − σYÞ < ΔσX ð14Þ

Therefore, hardening is predictable in case of loading in Tþ TT
directions because the change in ΔðσX − σYÞ is very small.

Statistical Testing
Table 7 contains the p-values evaluated by the Student’s T and
Wilcoxon tests for the maximum stresses obtained from the sim-
ulations with biaxial loading scenarios. As expected, for the Tþ L

(a) (b)

(c) (d)

(e) (f)

Fig. 6. Comparison of normal stresses along the directions of loading in the corresponding actual and equivalent models under biaxial compressive
loading in each pair of material directions (σx: normal stress in x direction; εx: normal strain in x direction): (a) loading in Tþ L directions; (b) loading
in Tþ L directions; (c) loading in TTþ L directions; (d) loading in TTþ L directions; (e) loading in Tþ TT directions; (f) loading in Tþ TT
directions

Table 6. Mean and Standard Deviation of the Maximum Stresses of the Corresponding Actual and Equivalent Models Taken from the Same Position in the
Parent Billet under Biaxial Compressive Loadings

Loading directions Tþ TT Tþ L TTþ L

Model type Actual Equivalent Actual Equivalent Actual Equivalent

Maximum stress 1
Mean (MPa) 7.9 7.4 3.5 2.9 3.4 3.6
Standard deviation (MPa) 0.6 1.3 0.2 0.5 0.3 0.1

Maximum stress 2
Mean (MPa) 8.0 7.9 49.9 47.3 50.1 50.9
Standard deviation (MPa) 0.4 1.2 0.4 6.3 1.2 0.4
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loading, there is uncertainty if ellipsoids are good replacements for
actual voids. When the maximum stresses along the T direction
are considered, the Student’s T test rejects the null hypothesis
(H0p) that the distributions are the same, while Wilcoxon test does
not. Neither method rejects the null hypothesis when the maximum
stresses along the L direction are taken into consideration. It is
speculated that if more samples were considered with the Student’s
T test, like the Wilcoxon test, it would not reject the null hypoth-
esis. The other possible reason why the Student’s T test rejected the
null hypothesis is that the distribution of xa − xe is probably not
a normal distribution. That is why more consistent results were
obtained with the nonparametric Wilcoxon test.

In summary, (1) the ellipsoidal replacement acts sufficiently
well under uniaxial loading in L direction; (2) a proper consistency
is seen between actual and ellipsoidal models under biaxial loading;
(3) with just one exception, the Student’s T and Wilcoxon tests did
not reject the null hypothesis; and that (4) the material strength in T
direction (the most problematic direction) is so low that even 15%
difference of strength estimation means less than 1 MPa difference.
Our opinion is that ellipsoids are effective replacement shapes for
actual voids in modeling PSL under compression.

Conclusions

The focus of this paper was on the linear and nonlinear compres-
sive behavior of parallel strand lumber when actual voids are mod-
eled by equivalent ellipsoids. The motivation for such replacement
was to gain insight into the void shape effect on PSL mechanical
behavior. In all simulations, the wood phase was assumed con-
tinuum and deterministic, while the void phase was the only source
of uncertainty.

Linear analyses indicated that for all uniaxial loading scenar-
ios, comparing corresponding models containing actual voids and

equivalent ellipsoids, the effective moduli of elasticity and the dis-
tributions of element stresses of different types matched acceptably.
For ductile compressive behavior, when nonlinear uniaxial and
biaxial compressive loading scenarios were studied, virtual ellip-
soids were also found to be appropriate model representations
for actual voids of PSL. The statistical study presented in the paper
supports this conclusion.
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