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a b s t r a c t

The computation of apparent material properties for a random heterogeneous material requires the
assumption of a solution field on a finite domain over which the apparent properties are to be computed.
In this paper the assumed solution field is taken to be that defined by the shape functions that underpin
the finite element method and it is shown that the variance of the apparent properties calculated using
the shape functions to define the solution field can be expressed in terms of a variability response
function (VRF) that is independent of the marginal distribution and spectral density function of the
underlying random heterogeneous material property field. The variance of apparent material properties
can be an important consideration in problems where the domain over which the apparent properties
are computed is smaller than the representative volume element and the approach introduced here
provides an efficient means of calculating that variance and performing sensitivity studies with respect
to the characteristics of the material property field. The approach is illustrated using examples involving
heat transfer problems and finite elements with linear and nonlinear shape functions and in one and two
dimensions. Features of the VRF are described, including dependency on shape and scale of the finite
element and the order of the shape functions.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

In the practical analysis of engineering problems using con-
tinuum approaches, apparent, effective, or homogenized material
properties must be computed to apply the governing equations of
continuum mechanics. When an apparent material property is
computed in a given domain from an underlying random field
model for a spatially varying material property the result is a ran-
dom quantity that is no longer spatially variable. For example, ap-
parent elastic modulus or thermal conductivity are random vari-
ables that are spatially constant over the problem domain as op-
posed to the underlying spatially varying random fields. As the
volume of the domain increases, the variance of the apparent
properties decreases until it becomes negligible, at which point one
is said to have reached the representative volume element (RVE).
For many structural and mechanical systems, assumption of an RVE
is appropriate, but for many others residual uncertainty in the ap-
parent properties should be considered. This situation has, to some
extent, been characterized as involving the statistical volume ele-
ment (SVE) [1–3] and addressed using Monte Carlo based finite
element approaches [4–6]. This paper describes a method for

computing the variability of apparent material properties—specifi-
cally the thermal conductivity—using variability response functions
(VRFs) that have the advantage of being analytically rather than
numerically derived and provide a method for computing the var-
iance of the apparent property that is independent of the dis-
tribution and spectrum of the underlying material property field. In
the context of this paper, the VRF formulation is developed by
imposing the shape functions of the finite element formulation on
the problem domain and computing apparent properties based on
equivalence of the finite element characteristic matrices for the
heterogeneous and homogeneous versions of the problem.

One of the challenges present in any approach to computing
apparent properties is that the apparent property obtained de-
pends on the boundary conditions applied to the heterogeneous
version of the problem in obtaining the apparent property [7,8].
Using the shape functions of a finite element formulation does not
remove this boundary condition dependence, but does allow the
obtained apparent properties to be, in a sense, consistent with the
formulation used in further finite element analysis of the problem.
Other approaches commonly used include the imposition of per-
iodic boundary conditions [9].

The VRF approach to uncertainty quantification was developed
in the context of computing the variance of the displacement
response of structural systems with spatially varying, random ma-
terial properties [10–12]. It has since been extended to the problem
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of computing the variance of apparent elastic material properties
for statically determinate, indeterminate, and continuum systems
[8,13,14]. Here, those approaches are combined with the seminal
approach to the stochastic finite element method that computes the
variability of the nodal displacements in a finite element model
based on an underlying stochastic field of material properties [12].

The remainder of the paper is organized as follows: First a
problem statement is given that defines more precisely the
notion of the apparent material property and the residual un-
certainty associated with the apparent property. Next the general
approach to computing VRFs for the apparent material properties
in a finite element context is introduced for the heat conduction
problem. Examples are then given for the linear and quadratic one
dimensional elements and the linear triangular element. Finally,
comments are provided on how this version of assessing the un-
certainty of apparent properties may find a place in a multi-scale
analysis context.

2. Problem statement

Let 5nΩ ⊂ define a solid body occupied by a material with
properties defined by the spatially varying and random (hetero-
geneous) matrix 5c x x, n( ) ∈ and subject to Neumann and Di-
richlet boundary conditions on the boundary segments neumannΩ∂
and dirichletΩ∂ respectively. Consider now the case in which this
body, subject to the same boundary conditions, is occupied by a
material with properties defined by the spatially invariant
(homogeneous) matrix c. The definition of an apparent property
depends on choosing c such that

g gx x 1het homϕ ϕ( ( )) = ( ( )) ( )

where xhetϕ ( ) and xhomϕ ( ) are solution fields in the heterogeneous
and homogeneous bodies respectively and g (·) represents a
function of those solution fields that is usually chosen to have
some physical meaning. In elasticity problems the strain energy is
often chosen to act as g (·) so that the energetics of the hetero-
geneous and homogeneous versions of the problem are equivalent.
Other rational choices, however, can be made. For example, in a
heat transfer problem g (·) could be chosen to be the temperature
at a particular point of importance in the problem, and similarly in
an elasticity problem a key displacement could be selected. The
matrix c of apparent material properties is itself stochastic, unless
Ω is a representative volume element (RVE) but not spatially
varying. The primary interest in this paper is computation of the
uncertainty associated with c, when the problem domain is a finite
volume smaller than the RVE. Beyond the fact that the solution c
to Eq. (1) is itself stochastic, that solution depends on the specific
boundary conditions applied in computing xhetϕ ( ) and xhomϕ ( ). This
dependence of apparent material properties on boundary condi-
tions represents a significant challenge to developing consistent
and widely applicable definitions of apparent properties. Most
currently available approaches involve assumption of periodic
boundary conditions or the assumption of a form for the solution
field. In this paper, the second approach is taken, but in a novel
way involving the use of the shape functions associated with finite
elements used to solve practical problems numerically.

In this paper, a stochastic scheme for computing apparent
properties is proposed for the scalar field problem of heat con-
duction in one, two, or three spatial dimensions with a single
material property defining a constitutive matrix that is physically
isotropic and is also statistically homogeneous and isotropic. That
is, the solution field is the temperature tx xϕ ( ) = ( ) and the ma-
terial property is the thermal conductivity c x xλ( ) = ( ). The ran-
domness in the problem can be modeled as x xλ λλ( ) = ( ) * in which

fx x10λ λ( ) = ( + ( )) is a random field composed of a mean value λ0
and a random part f x( ), a mean zero, statistically homogeneous
and isotropic random field characterized by its spectral density

5S ,ff
nκ κ( ) ∈ where κ is a vector of wave numbers. For the case of

heat conduction, the constitutive matrix of the homogeneous
problem is λ λλ= * and the goal of this paper is to evaluate the
uncertainty in λ by developing efficient means of computing
var λ[ ]. Specifically, the goal is to develop a variability response
function for var λ[ ] such that

S dvar VRF
2ff

, n∫ κ κ κλ[ ] = ( ) ( ) ( )λ
[−∞ ∞]

where VRF κ( )λ is a VRF for the apparent conductivity that is in-
dependent of the distribution and spectrum of f x( ).

3. Finite element based VRFs for apparent conductivity

A finite element is defined by its geometry and the shape
functions used to interpolate the solution field within the element
domain. In this paper the element domain is 5nΩ ⊂ and the shape
functions are denoted by N NN x x, , m1= [ ( ) … ( )] where m is the
number of nodes the element possesses. In the case of the scalar
field heat transfer problem, m is also the total number of degrees
of freedom in the element. The gradients of the shape functions
are denoted by B, an n!m matrix with components B N xx /ij j i= ∂ ( ) ∂
for the heat transfer problem. The conductivity matrix for the
heterogeneous version of the problem is fx x I10λ λ( ) = ( + ( ))
where I is the n!n identity matrix, and the conductivity matrix of
the homogeneous version of the problem is Iλ λ= .

Given these definitions, and further defining B B BT* = for
compactness of notation, the characteristic matrices of the
homogeneous and heterogeneous versions of the problem can be
defined as

dk B u u 3hom ∫λ= *( ) ( )Ω

f dk B u u u1 . 4het 0 ∫λ= *( )( + ( )) ( )Ω

Except in the case where B* is a constant matrix—corresponding to
linear shape functions—it is not possible to define a single value of
λ using k khet hom= . Therefore a matrix of apparent conductivities
λ such that

B d
B f d

u u
u u u1

5
ij

ij
ij

0 ∫∫λ λ= *( )
× *( )( + ( ))

( )Ω
Ω

defines the components of a matrix that contains a set of apparent
material properties.

The mean of ijλ is obtained by

E
B d

E B f d
u u

u u u1
6

ij
ij

ij
0 ∫∫λ λ[ ] = *( )

× [ *( )( + ( )) ]
( )Ω

Ω

E
B d

B E f d
u u

u u u1
7

ij
ij

ij
0 ∫∫λ λ[ ] = *( )

× *( ) [( + ( ))]
( )Ω

Ω

E 8ij 0λ λ[ ] = ( )

since E f u 0[ ( )] = and B uij*( ) is deterministic. The variance is

E Evar ij ij ij
2 2λ λ λ[ ] = [ ] − [ ] . Calculation of the second moment E ij

2λ[ ],
the remaining quantity needed to calculate the variance, begins
with
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B B d d

B B

f f d d

u v u v

u v

u v u v1 1 9

ij
ij ij

ij ij

2 0
2

∬
∬λ λ= *( ) *( )

× *( ) *( )

× ( + ( ))( + ( )) ( )

Ω

Ω

B B d d

B B

f f f f d d

u v u v

u v

u v u v u v1 . 10

ij
ij ij

ij ij

2 0
2

∬
∬λ λ= *( ) *( )

× *( ) *( )

× ( + ( ) + ( ) + ( ) ( )) ( )

Ω

Ω

Applying the expectation operator gives

E
B B d d

B B R d d
u v u v

u v u v1
11

ij
ij ij

ij ij ff
2 0

2 ∬∬ ξλ λ[ ] = *( ) *( )
× *( ) *( )( + ( ))

( )Ω
Ω

where Rff ξ( ) is the spatial correlation function of f x( ) and 5nξ ∈ is
a vector of separation distances with u vi i iξ = − . The variance can
therefore be expressed in terms of the shape function gradients
contained in B*, the mean conductivity λ0, and the correlation
function Rff ξ( ) as

B B d d
B B R d d

u v u v
u v u vvar .

12
ij

ij ij
ij ij ff

0
2 ∬∬ ξλ λ[ ] = *( ) *( )

× *( ) *( ) ( )
( )Ω

Ω

The Wiener–Khintchine relations allow substitution of the
spectral density for the correlation function so that the variance
can be expressed as

B B d d
B B

e S d d d

u v u v
u v

u v

var

13

ij
ij ij

ij ij

i
ff

0
2

, n

∬
∫
∬

κ κ

λ λ[ ] = *( ) *( )
× *( ) *( )

× ( ) ( )
ξ κ

Ω
Ω

[−∞ ∞]
− ·

in which it is important to note that ξ is a function of u and v for
the purposes of integration in the space domain. By changing the
order of integration and grouping terms, the variance can be ex-
pressed in the form of a VRF as

S dvar VRF
14ij ff

, n ij∫ κ κ κλ[ ] = ( ) ( ) ( )λ
[−∞ ∞]

with

B B d d
B B e d d

u v u v
u v u vVRF .

15ij ij
ij ij

i0
2

ij ∬∬
λ= *( ) *( )

× *( ) *( )
( )

ξ κλ
Ω

Ω
− ·

This key expression allows the variance of the apparent con-
ductivity within the finite element to be calculated exactly with-
out Monte Carlo simulation or the application of any approxima-
tions, many of which limited to situations in which the magnitude
of the uncertainty is relatively small. Furthermore, the VRF is in-
dependent of the spectrum and marginal distribution of f x( ) and
therefore the VRF need only be calculated once and can then be
used to compute the variance of the apparent conductivity for any
underlying stochastic field with minimal computational effort
provided the spectral properties are available.

A significant issue with the results of Eqs. (14) and (15) is that,
in general, ij klλ λ≠ and therefore the approach of equating com-
ponents of khet and khom does not provide a unique definition of
the apparent conductivity. One approach to establishing a single
value for the apparent conductivity is to define a linear combi-
nation of the components of λ such that

W W, 1
16i j i

m

ij ij
i j i

m

ij
1, 1,
∑ ∑λ λ

__
= =

( )= = = =

where Wij are weights that could be computed, for example, to
minimize the error in the apparent conductivity across a range of
applied boundary conditions. As before, the primary interest of
this paper is in the variance of λ

__
which, since it is a linear com-

bination of the components of λ , is

Wvar var
17i j i

ij ij
1,

2∑λ λ[
__

] = [ ]
( )= =

implying that a VRF exists for the variance of λ
__
such that

S dvar VRF
18ff

, n∫ κ κ κλ[
__

] = ( ) ( ) ( )λ
[−∞ ∞]

__

and

WVRF VRF
19i j i

m

ij
1,

2
ij kl∑κ κ( ) = ( )

( )
λ λ λ
__

= =

with

B B d d
B B e d d

u v u v
u v u vVRF

20ij kl
ij kl

i0
2

ij kl ∬∬κ λ( ) = *( ) * ( )
× *( ) * ( )

( )
ξ κλ λ

Ω
Ω

− ·

and VRF VRFij kl ij=λ λ λ when k l i j, ,( ) = ( ). Thus, the VRF for the
combined apparent conductivity is simply the weighted sum of
the VRFs for the individual components of λ .

4. Examples

4.1. One dimensional linear element

For a one-dimensional element (n¼1) with two linear shape
functions (m¼2), the terms Bij* become constants and can be taken
outside the integrals in Eqs. (5) and (15), meaning that ij klλ λ= and

⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝⎜

⎞
⎠⎟

L
e du dv

L
L

VRF VRF

2 sin
2 21

L L
i u v0

2

2 0 0

0
2

2

ij ∫ ∫κ κ λ

λ
κ

κ

( ) = ( ) =

= ( )

λ λ κ− ( − )

where L is the length of the element. This VRF is shown in Fig. 1.
Note that for the linear one dimensional element, the VRF is a
function of Lκ , the number of waves of property variation

Fig. 1. VRF for the one dimensional linear heat element.
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contained in the element. As is typical of VRFs, the spectral
contribution to variance peaks at κ¼0 and exhibits a decaying
sequence of peaks with increasing wave number.

4.2. One dimensional quadratic element

Consider now a one dimensional (n¼1) element with 3 nodes
and quadratic shape functions (m¼3). In this case, since the
components of B* are not constants, the term B u B vij kl*( ) * ( ) cannot be
brought outside the integral in Eq. (15) and ij klλ λ≠ . Let the co-
ordinates of the three nodes of the element be x 01 =( ) ,

x x0 2 3< <( ) ( ), and x L3 =( ) . This section describes the form of the
VRFs for 11λ , 22λ , and 33λ and the dependence of those VRFs on the
location of x 2( ), the interior node of the element. It is also shown
how a linear combination of those three apparent conductivities
also has a VRF for its variance. The diagonal terms of λ are chosen
for examination because they are the terms corresponding to the
characteristic matrix coefficients that capture the work done in
applying the canonical boundary conditions for computation of
the component of the characteristics matrix. That is, k11 is derived
by setting T 11 = , T T 02 3= = and computing the heat flux needed at
node 1 to maintain that temperature distribution. Similar calcu-
lations are performed for k22 and k33. Fig. 2(a) shows the VRFs for
the diagonal entries of λ for the case when x L/22 =( ) . It can be seen
that due to symmetry in the problem VRF VRF11 33κ κ( ) = ( )λ λ . Fig. 2
(b) shows the same VRFs computed for an element with the in-
terior node located at x L/32 =( ) . Note that when x L/32 =( ) , the
symmetry of the element is broken and VRF VRF11 33κ κ( ) ≠ ( )λ λ .

Finally, since for the quadratic one dimensional element,
ij klλ λ≠ , it is instructive to see the form of a VRF for the apparent
conductivity λ as defined in Eq. (16) with W W W 1/3,11 22 33= = =
W W W 012 13 23= = = so that the apparent property is the ar-
ithmetic average of the diagonal entries of λ . Fig. 3 shows VRF κ( )λ
both for the case when x L/22 =( ) and when x L/32 =( ) . The aver-
aging procedure renders the VRFs very similar in this case.

4.3. Two dimensional linear element: Linear triangle

The simplest two dimensional n 2( = ) finite element is the
linear triangle (also known as the T3 element) which has three
nodes, (m=3), located at x x x, ,1 2 3{ }( ) ( ) ( ) and three associated shape
functions

N
A

x x x x x x x x x x

N
A

x x x x x x x x x x

N
A

x x x x x x x x x x

x

x

x

1
2
1

2
1

2
. 22

1 1
2

2
3

1
3

2
2

2,2
2

2
3

1 1
3

1
2

2

2 1
3

2
1

1
1

2
3

2
3

2
1

1 1
1

1
3

2

3 1
1

2
2

1
2

2
1

2
1

2
2

1 1
2

1
1

2

( ) = (( − ) + ( − ) + ( − ) )

( ) = (( − ) + ( − ) + ( − ) )

( ) = (( − ) + ( − ) + ( − ) ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

For this element, as for the one dimensional linear element, the
shape functions are linear in x and therefore B is a constant matrix
and Bij* can be taken outside the integrals in Eqs. (5) and (15). This
results in direct calculation of the VRF for the linear triangle as

A
e du du dv dvVRF 23

i u u v v0
2

2 1 2 1 21 1 2 2 1 2∬κ λ( ) = ( )λ
Ω

κ κ− ( ( − )+ ( − ))

where A dx∬= Ω
is the area of the element. For a two dimen-

sional element, the VRF is a function of two wave numbers κ1 and
κ2 and may in general depend on the shape and size of the ele-
ment. In the following, therefore, VRFs for a series of example
triangular elements are presented to illustrate these dependencies.
An obvious and potentially useful extension to the current work
would be to develop the apparent property VRF in the natural
coordinate system of the family of isoparametric elements. De-
veloping such an isoparametric formulation is planned by the

Fig. 2. VRFs of diagonal components of λ for the one dimensional quadratic ele-
ment. (a) VRFs for diagonal components of λ for x L/22 =( ) . (b) VRFs for diagonal
components of λ for x L/32 =( ) .

Fig. 3. VRFs for λ for x L/22 =( ) and x L/32 =( ) for the one-dimensional quadratic
element.
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authors.
Consider first the right triangular element T1 with vertices at

x 0, 01 = ( )( ) , x 1, 02 = ( )( ) , and x 1, 13 = ( )( ) . The apparent property
VRF, VRF κ( )λ , is shown in Fig. 4(a) with sections through the sur-
face obtained by setting 1 2κ κ κ= = and 0iκ = , jκ κ= shown se-
parately in Fig. 4(b). Results show most of the usual characteristics
of VRFs with a peak at κ¼0 and asymptotic values of
lim VRF 0κ( ) =κ λ| |→∞ . A significant contrast with the VRFs developed
for one dimensional elements is that for the linear triangle, the
decay of the VRF towards its asymptotic value is essentially
monotonic whereas for the one dimensional elements there are
oscillations about the general asymptotic trend of decay (see
Figs. 1 and 2). The lack of oscillations in the linear triangle is
caused by averaging of the fluctuating material properties over a
two dimensional domain with non-rectilinear shape that therefore
does not contain integer numbers of waves in the fluctuating
random property field. As shown by the two section curves (Fig. 4
(b)) the VRF is not isotropic in the κ space. Specifically, the decay
rate of the VRF is faster along the 1 2κ κ= diagonal than along the κi
axes. When 0,i jκ κ κ= = , there are material property fluctuations
in only one of the coordinate directions and therefore the apparent
property has a greater variance associated with it than when

1 2κ κ= and there are equal wave number fluctuations in both co-
ordinate directions.

Although the VRF is defined analytically and uniquely for the

linear triangular element, there remain factors of shape and scale
that may influence the form of the VRF. The following discussion
addresses those issues. For clarity and simplicity of the figures that
follow, the VRFs for a series of linear triangular element shapes are
presented in the form of the diagonal sections with 1 2κ κ κ= = .

First, to address the question of scale, the VRF is computed for
two similar isosceles triangles with vertices at x 0, 01 = ( )( ) ,
x 1, 02 = ( )( ) , and x 1/2, 13 = ( )( ) (T2) and x 0, 01 = ( )( ) , x 2, 02 = ( )( ) ,
and x 1, 23 = ( )( ) (T3). The diagonal sections of these VRFs shown in
Fig. 5 demonstrate, as expected, that the VRFs for similar trian-
gular elements can be made to coincide by scaling the wave
number by

A
A

VRF VRF

24

T T2 3

2

3

κ κ

κ κ

( ) = ( *)

* =
( )

λ λ
( ) ( )

where A2 is the area of T2 and A3 is the area of T3.
Next, to address the question of shape, consider two triangles

with equal area, one the isosceles triangle T2 and one the right
triangle T1. Fig. 6 shows the VRFs for these two elements and
demonstrates a sensitivity of the VRF not only to area of the ele-
ment but also to shape. The VRF of the right triangle decays faster

Fig. 4. VRF for linear triangular element with x 0, 01 = ( )( ) , x 1, 02 = ( )( ) , and
x 1, 13 = ( )( ) . (a) Overall VRF surface. (b) Sections through VRF surface. Diagonal
section 1 2κ κ= and edge section 0iκ = , jκ κ= .

Fig. 5. VRFs for similar isosceles triangles T2 and T3 showing that VRFs for similar
triangles coincide with proper scaling of the wavenumber.

Fig. 6. VRFs for equal area triangles T1 and T2 showing that VRFs for equal area
triangles depend on the maximum side length.
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than that for the isosceles triangle. This appears to be a result of
the longer maximum side length in T1 as opposed to T2. In T1, the
hypotenuse has length of 1.41, whereas in T2 the maximum side
length is 1.12. Although the element areas are identical, the pre-
sence of a longer side length enhances the stability of the apparent
material property and thereby reduces the variance.

A final consideration is that of the aspect ratio of the triangular
element, illustrated by Fig. 7, in which the VRFs for elements T2
and T4 ( x 0, 01 = ( )( ) , x 1, 02 = ( )( ) , x 1/2, 23 = ( )( ) ), T5 ( x 0, 01 = ( )( ) ,
x 1, 02 = ( )( ) , x 1/2, 33 = ( )( ) ) and T6 ( x 0, 01 = ( )( ) , x 1, 02 = ( )( ) ,
x 1/2, 43 = ( )( ) ) are provided. Part (a) of the figure shows that as the
height of the element increases, the VRF decays more rapidly with
wave number. This is largely a function of the increasing area of
the triangle. Close examination of the lower part of the VRF curves
reveals that the curves are not simply shifted and self-similar (as
in Fig. 5), but rather the large aspect ratio elements begin to ex-
hibit small oscillations in the decay as present for the one-di-
mensional elements (Figs. 1 and 2). This phenomenon arises be-
cause as the element aspect ratio increases, the element begins to
approach a one-dimensional domain and the VRF begins to re-
semble that for a one-dimensional element. The role of aspect
ratio is highlighted by part (b) of the figure, in which the VRFs are
plotted against κ*, the scaled wavenumber as defined in Eq. (24).

After scaling of the wavenumber, the VRFs do not
coincide either in location (due to side length) or shape (due to
aspect ratio).

The illustrations presented above demonstrate that although
the VRF is defined uniquely and analytically for a linear triangle
with general geometry, the form and scale of the VRF depends
significantly on the geometry of the element. Even when scaling is
applied to the wavenumber based on element area, there remain
differences between the VRFs for different elements. This poses a
potential challenge for implementation of VRF estimation of ma-
terial property variability in a finite element context in that a
different VRF must be computed for each element. There are,
however, several approaches that could render the use of the VRF
in a two dimensional finite element context tractable. Among
these are:

1. Simply compute the VRF for each element in a mesh. Because
the VRF is defined analytically, this should not be overly taxing
in a computational sense, and it may in fact prove most efficient
to compute the integral definition of the VRF using a Gauss
quadrature procedure run in parallel to computation of the
element characteristic matrices.

2. Compute a single VRF for all elements in a mesh based on some
definition of the average element shape and size. This corres-
ponds roughly and conceptually to using an average of the
scaled VRFs in Fig. 7(b). This approach would introduce error in
the variance estimates, but for well constructed meshes this
error should be relatively small.

Finally, it should be noted that the dependence of the VRF on
element shape represents a further motivation for constructing
meshes with well formed elements of consistent size, shape, and
aspect ratio since doing so not only yields better conditioning of
the characteristic matrices but also smaller element-to-element
variation in the VRFs.

5. Discussion

5.1. Application to assessing deterministic property assumption

It is a common practice in FEA to assume that it is sufficient to
derive the element characteristic matrix from the mean con-
stitutive relation (i.e. the finite element is larger than the RVE). The
analytical VRF enables a very practical approach to assessing the
validity of this assumption by computing the variance of the ap-
parent properties for a given SDF. For one dimension, an element
length of Lx corresponds to a minimum wave number of

L2 /min xκ π= and thus

S dvar VRF
25ij

L
ff thresh

2 / x
i∫λ κ κ κ[ ] = ( ) ( ) < ϵ ( )π

λ
∞

provides a criterion to assess the RVE assumption for a given SDF. It
should be noted that this is not sufficient to determine the size of
the RVE because the element shape functions impose a solution
field that may not be resolved enough to accurately account for the
fluctuations of the material properties. Rather, satisfaction of Eq.
(25) for small ϵthresh is a necessary criterion in order to solely utilize
mean apparent properties when conducting FEA.

5.2. Towards a multi-scale framework

Computation of apparent properties over a finite element ra-
ther than over an entire body also provides a direct approach to
stochastic upscaling of material properties for multiscale analysis.
Consider a body discretized into finite elementsΩi with a random,

Fig. 7. Effect of aspect ratio on VRFs. (a) VRFs for varying aspect ratio triangles.
Note that triangles are shown to a different scale than in previous figures so as not
to interfere with plot lines. (b) VRFs for varying aspect ratio triangles plotted
against scaled wavenumber. Order of curves is the same as in part (a) of the figure.
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spatially varying, material property field xλ ( ). Using the ap-
proaches described in the previous sections, it is possible to model
the material property field within each element as a random
variable iλ

__
with mean value λ0 and variance calculated according

to Eq. (18). At the crudest level, one could treat the random vari-
ables iλ

__
as independent. However, this is not likely to be a useful

approach since if the elements are large enough that in-
dependence between iλ

__
and jλ

__
can be assumed, the elements will

be approaching the RVE in size and the variance of iλ
__
will be very

small. Instead, one must incorporate medium to long range cor-
relations into the upscaled model. One approach involves the
centroids of the finite elements, denoted as ci. Since the material
property within each element is being treated as a random vari-
able, a covariance matrix can be computed with components

R R c c . 26ij ff i j0
2λ= ( − ) ( )

If the distribution of iλ
__

can be computed or approximated—per-
haps as Gaussian since iλ

__
is the result of integration of a random

field—samples of the set of random variables iλ{
__

} can be generated
having the appropriate medium and long range correlation
structure.

5.3. Definition of a single apparent property

Recall that for an element with nonlinear shape functions the
apparent property, and therefore its associated VRF is not uniquely
defined. In order to allow treatment of the homogeneous version
of the problemwith a single apparent property Eq. (16) introduced
a weighted sum of the components of the apparent property
matrix and in the example that followed a simple version of this
unified apparent property, in which the diagonal components of λ̄
were combined with equal weights. Consider the series of cases
W W k l i j1, 0, , ,ij kl= = ( ) ≠ ( ), in which λ

__
is set equal to one of the

components of λ̄ . Using this approximation would result in error
between the heterogeneous and homogeneous versions of the
problem for all but the set of boundary conditions corresponding
to ijλ . In further work on this topic, then, it is anticipated that the
weights Wij of Eq. (16) could be chosen through an optimization
procedure that minimizes error (perhaps in terms of energy) be-
tween the heterogeneous and homogeneous versions of the pro-
blem across the suite of all possible boundary conditions that may
be imposed on the element. The simple example presented here is
meant primarily to illustrate that an apparent property VRF can be
defined analytically for λ

__
and that the resulting VRF is less de-

pendent on element characteristics than are the components of λ̄ .

6. Conclusion

By imposing prescribed temperature fields defined by element
shape functions on a finite element domain, it has been shown
that apparent conductivities can be obtained by equating com-
ponents of the characteristic matrix derived for an element with
random, spatially varying material properties and an equivalent
element with spatially constant material properties. Except in the

case of linear shape functions, however, it is not possible to define
a single, unique value for the apparent conductivity since it de-
pends on the applied boundary conditions or temperature field.
In such cases, a number of apparent conductivities can be defined
equal to the number of distinct entries of the characteristic matrix.
The expected values of these apparent conductivities are identical,
but the variances differ and can be calculated using a VRF ap-
proach. A linear combination of the distinct apparent con-
ductivities can be defined that also has a variance expressed
through a VRF. Three sets of examples have been presented: linear
one-dimensional, quadratic one-dimensional, and linear two-di-
mensional. The linear one-dimensional example illustrated the
basic method of computation of the VRF and some features of its
form; the quadratic one-dimensional element illustrates the non-
uniqueness of the VRF for higher order elements and; the linear
two-dimensional element illustrated the shape and scale depen-
dence of the VRF.
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