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Abstract: Parallel strand lumber (PSL) is a composite made of oriented wood strands that have been glued and compressed together. Its
market share in the residential construction industry is considerable, being used primarily as main load bearing members such as beams and
columns. Unlike the fast-paced market growth of these products, computational development has been slow. The highly heterogeneous
mesostructure of this material must be known and quantified in order to develop advanced computational tools for limit state analysis
of PSL. Void heterogeneities play an important role in determining the failure modes and strength of PSL, in addition to material phase
aberrations such as grain angle variations and defects. In this study, two-dimensional (2D) and three-dimensional (3D) void characteristics
were investigated. An experimental program along with a statistical survey was conducted to quantify the following 2D and 3D void character-
istics in two 133 × 133 × 610 mm PSL billets: volume fraction, volume, alignment, and moments of inertia of voids, as well as secondmoment
properties, lineal path function, and chord length functions of the two phase mesostructure. As expected, most of the voids lie on the lon-
gitudinal direction of the specimen and have approximately an ellipsoidal shape. Based on this shape data, the characteristics of the ellipsoids
that best fit the voids were calculated. Using the statistical data of the fitted ellipsoids, a random field of virtual ellipsoidal voids to simulate the
mesostructure of PSL was generated. DOI: 10.1061/(ASCE)MT.1943-5533.0001116. © 2014 American Society of Civil Engineers.
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Introduction

Since its inception, parallel strand lumber (PSL) has become increas-
ingly popular in light-frame construction as a reliable supplement
and replacement for traditional solid-sawn lumber (SSL). PSL is pro-
duced by just one manufacturer, Weyerhaueser, under a patent-
protected process. It is composed of thin strands of oriented wood
veneer compacted and glued together with phenol-resorcinol and
phenol-formaldehyde based adhesive (Fig. 1). Reduction and dis-
persion of wood knots and defects in the process of manufacturing
result in lower material property variability compared to that of SSL
(U.S. Forest Products Laboratory 2010;Mindess et al. 2004). Another
important advantage is that the desired length and width of PSL can
be economically produced regardless of the size of the trees available.
Also, because many species can be used almost interchangeably,
more timber harvested from a single stand can be utilized.

In spite of the significant increase in the production and demand
of PSL, the development of computational tools for the analysis and
design of PSL members has advanced very slowly. Research is nec-
essary to develop accurate constitutive models and computational

tools for predicting the strength of the material. To this end, a com-
prehensive statistical characterization of the mesostructure (which
is defined as consisting of wood strands, adhesive and the voids
remaining after compaction) is needed.

This study focuses on the characterization of PSL voids as one of
the main features of this material’s mesostructure. Voids affect most,
if not all, of the mechanical properties of PSL members, specifically
the elastic constants, yield stress, and ultimate stresses in tension and
compression. Some of these properties, such as elastic modulus, are
primarily sensitive to the overall void fraction, while others such as
yield and ultimate stress are also highly sensitive to the shape, ori-
entation, and spatial distribution of the voids. The degree of sensitivity
of various mechanical properties to the void structure has been inves-
tigated and reported in Amini (2013) and Amini et al. (2013). The
objective of this study is to quantify the statistics of shape, orientation,
and location of the voids in PSL material and to find a probabilistic
model that represents actual void statistics. To clarify the difference
between mesostructure and microstructure of PSL (the latter is not
included in this work), PSL’s microstructure is the same as that of
the species used to manufacture PSL. The PSL specimens studied
in this work are made of Eastern species (especially southern pine)
that are classified as softwood. The microstructure of softwood con-
sists predominantly of long, thin walled, 3–5-mm-long tubular cells
called tracheids that have a diameter ranging from 20 to 80 μm. The
longitudinal tracheids constitute about 90% volume of the softwood
and serve both the conductive and mechanical needs of the organic
material. The large open space in the center of the cell is called the
lumen, which is used for water conduction (U.S. Forest Products
Laboratory 2010). The diameter of voids investigated in this work
is at least one order of magnitude larger than that of tracheids.

Only three previous studies were found to have worked on
geometry characterization of PSL. Elis et al. (1994) studied the
macroporosity of PSL by two optical techniques. They used a video
camera and a line scan camera to capture the voids of PSL in
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transmitted light and then analyzed the images. In another work,
Sugimori and Lam (1999) used X-ray computer tomography tech-
niques on a 0.16 × 0.34 × 1.28 m PSL specimen and made a
database of distribution of size and position of macro voids in
three-dimensional (3D) space. And in Clouston (2007), macroporos-
ity was defined along the transverse-longitudinal plane through
enhanced image analyses. A histogram of percentage void content
in the longitudinal-transverse plane of PSL was presented, but no
work was done to define specifically the void size, shape and loca-
tion, as is the focus of this work.

Compared to the mesostructural characterization, more studies
have been done on the constitutive modeling of PSL and similar
materials. In 2001, a nonlinear stochastic model was formulated
by Clouston and Lam (2001) to simulate the stress-strain behavior
of a PSL-like product, but without voids and based on the constitutive
properties of the wood strands only. The model, characterized within
the framework of rate-independent orthotropic plasticity using
Tsai-Wu failure theory, was a novel approach and was successful
in predicting the experimental behavior of several wood angle-ply
laminate configurations. Later, Clouston (2007) expanded on this
work to incorporate measured macroporosity and grain angle varia-
tion of PSL to model the mechanical properties of small coupons of
PSL. Excellent results were found when the computed and experi-
mental data sets were compared, validating the modeling technique.
In 2004, Bejo and Lang (2004) proposed a different probability based
model to study the effect of the change in elastic properties only, on
the performance of structural composite lumber products. They also
modeled the orthotropic behavior of wood constituents due to their
position in the composite by theoretical/empirical equations. Also
focused on spatial variation of the elastic modulus of PSL, Arwade
et al. (2009) proposed a stochastic computational model that incor-
porates orthotropic elasticity and uncertainty in strand geometry and
material properties. They found good agreement between their model
and bending test results. The same authors investigated the variability
of compressive strength of PSL by conducting the measurement of
compressive strength on specimens of varying size with nominal
identical mesostructure (Arwade et al. 2010). They also developed

a computational model including the strand length, grain angle,
elastic constants and parameters of a Tsai-Hill failure surface.

In this study, the focus is on statistically characterizing the void
structure of PSL and incorporating it into a probabilistic mechani-
cal model. The mesostructure of PSL has been measured using a
serial sectioning technique followed by a computational approach
to relate the measurements in each section. There could be variation
in the void structure of PSL members made at different plants or
with different species mixes. Such variation has not been investi-
gated in this paper, yet the experience of the authors indicates that
the qualitative features of the void model presented here would not
need to be modified in order to model the void structure of other
batches of PSL. Therefore, the modeling of the void structure in
other batches is reduced to a model calibration problem that is
not fundamentally dissimilar from that used to calibrate any
material model such as an elastic-plastic constitutive model. The
question of applicability of the model across batches is certainly
a question worthy of further investigation. Regarding the question
of variability across member size, the authors’ understanding is that
PSL is manufactured in large billets of uniform size and then sawn
to the reduced sections commonly available for retail and wholesale
purchase. Therefore, there is little reason to expect that there would
be differences in void structure across member sizes.

Experimental Approach to Characterize Void
Structure

All specimens used for the mesostructural characterization studies
were machined from 2.0E Eastern Species PSL billets manufac-
tured by iLevel by Weyerhaueser. All specimens were conditioned
to ambient laboratory conditions for one month before testing and
reached an equilibrium moisture content of 8–11%.

Orthotropic in a global sense, the physical and mechanical
variability in strands along with the voids result in material hetero-
geneity and geometric randomness. The applied coordinate system
has been shown in Fig. 1 in which L, T, and TT axes represent
longitudinal, transverse, and thru thickness directions of PSL,

Fig. 1. Cross-sectional views of PSL specimen and definition of the member coordinate system; L = longitudinal, T = transverse, TT = thru thickness:
(a) 3D view; (b) T-TT section
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respectively. Beginning with two 133 × 133 × 610 mm billets of
PSL (both cut from the same bigger billet) a serial sectioning and
scanning approach was used to reconstruct the three-dimensional
void structure of the billet.

Void Measurement Procedure

T-TT sections were cut using a band saw with a 6 teeth per inch
blade. These sections were then painted white to provide high con-
trast between the void phase and the solid wood phase. Painting the
sections in this way eased identification of the void phases but
obscured information regarding the strand geometry. Here only the
results regarding the void phase are presented. Each section of the
T-TT plane was scanned to a grayscale image at 100 pixels per inch.
These scans were then digitally stacked in the L direction to recon-
struct the full three-dimensional void structure of the billet. It was
observed that the sections absorbed a small amount of moisture
during the painting process, slightly expanding the sample in the
T and TT directions by 0.8% in the T direction and 2% in the TT
direction. The thickness of each section was measured at the time of
cutting, and the sum of the section thicknesses was compared to the
original longitudinal length of the specimens to establish the aver-
age saw kerf thickness. The average section thickness was found
to be 2.75 mm and the average saw kerf thickness was found to
be 1.30 mm. Given these measurements, each voxel in the three-
dimensional mesostructure reconstruction has physical dimensions
(T-TT-L) of 0.252 × 0.248 × 4.02 mm.

The process of digitally stacking the scans and void detection
was time consuming. Each void voxel was checked to see if it
neighbored any other void voxel, and if so, the neighboring void
voxels were considered parts of a long (i.e., more than a voxel long)

void. More than 17,000 voids were found in the first billet, while
the number of voids in the second billet exceeded 20,000. Among
these voids, 43% of the voids in the first billet and 49% in the sec-
ond billet were just a single voxel in each direction. Therefore, there
are many tiny voids in a PSL specimen, but on the other hand, there
are also considerably large voids that theoretically can influence
the mechanical behavior of material. The largest void in the first
and second billets have respectively about 44,000 and 72,000
voxels. In other words, their volumes are about 11,000 and
18,000 mm3, respectively. The codes written in MATLAB facili-
tated this data-processing procedure.

Two-Dimensional Statistical Characterization of the
Void Structure

A distinctly anisotropic nature of the void structure is clearly visible
in Fig. 2. In the T-TT view, voids look rather isotropic and uni-
formly dispersed; on the contrary, in the L-T and L-TT views, voids
are obviously elongated in the L direction. The strands are also
elongated mainly in L direction; hence, the voids tend to spread
correlated to the strand dimension. This correlation is also tangible
along T and TT directions. Because the wider dimension of the
strands is predominantly oriented in T direction, the voids in L-T
view apparently have a larger size in the T direction than do the
voids in L-TT view in TT direction. In other words, the aspect ratio
of voids’ axes lengths in T-TT view (i.e., the length of void along T
axis over the length of void along TT axis) is not one, but more
(Table 1). The simplest characterization of the mesostructure is
the volume fraction of the void phase, which for the first and second
billets was respectively found to be 2.4 and 2.8%. More complete
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Fig. 2. Three section views through the three-dimensional reconstruction of the PSL mesostructure; black regions represent void and white regions
represent wood strands: (a) T-TT section; (b) L-TT section; (c) L-T section
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characterizations of the mesostructure would include the voids size
distribution and some measure of the void shape. Below, character-
izations of two dimensional cross sections of the mesostructure,
such as those shown in Fig. 2, are presented.

The basic statistics obtained from the two-dimensional (2D)
investigation has been presented in Table 1. The data show that
in both billets, the length aspect ratio in T-TT sections is about
2, while it is about 25 in L-Tand L-TT sections. These values match
what is observed in Fig. 2.

The two-point probability function provides a first order
characterization of the spatial arrangement of the phases of a
heterogeneous material (Torquato 2002). Considering the hetero-
geneous material to occupy a domain Ω and to consist of two
phases that occupy Ω1 and Ω2 such that Ω1 ∪ Ω2 ¼ Ω and
Ω1 ∩ Ω2 ¼ ϕ. The coordinate axes will be called a1 and a2 in
the 2D space. The two-point probability function is defined to be

S1ðd; θÞ ¼ Prðx1 ∈ Ω1 ∩ x2 ∈ Ω1Þ ð1Þ

the probability that both points x1 and x2 are in Phase 1. In the case
where the heterogeneous material is stationary and statistically
isotropic, the two-point probability function depends only on
d ¼ jjx1 − x2jj. If, on the other hand, the material is stationary
but statistically anisotropic the two-point probability function
can be defined as a function of d ¼ jjx1 − x2jj and θ ¼
atanf½ðx2Þ2 − ðx1Þ2%=½ðx2Þ1 − ðx1Þ1%g the distance of separation
between the two points and the angle between a line connecting
the two points and the a1 axis [ðxiÞj is the jth component of the
position vector xi]. When x1 ¼ x2 the value of this function is sim-
ply the volume fraction of Phase 1. And when x1 and x2 are widely

separated, their probabilities of occurrence do not affect each other
(i.e., the points are uncorrelated and statistically independent),
therefore the value of function approaches the product of probabil-
ities that either points are in Phase 1, which equals the square of
Phase 1 volume fraction. The authors have estimated the two-point
probability functions in the T-TT, L-T, and L-TT planes of the first
billet, treating Phase 1 as the void phase (Fig. 3), which clearly
show the anisotropy present in the L-T and L-TT planes. The T,
L, and L directions correspond to θ ¼ 0 in the three figures showing
that the voids are elongated in the L direction, and perhaps very
slightly in the T direction for the T-TT plane. A mild anisotropy
in the T-TT plane is supported by the deviation of the mean aspect
ratio from unity in the T-TT plane. One can observe that the decay
lengths of the two-point probability functions correspond to the
average dimensions of the voids in the various material directions
on the various planes.

Another useful statistical measure for void 2D characterization
is the lineal path function. For statistically isotropic media, lineal
path function is defined as probability that a line segment of length
d lies wholly in void phase when randomly thrown into the sample
(Torquato 2002). Consider a heterogeneous material consisting of
two phases that occupy Ω1 and Ω2. The line x1x2 with the length
d ¼ jjx1 − x2jj and angle θ ¼ atanðð½x2%2 − ½x1%2Þ=ð½x2%1 − ½x1%1ÞÞ
with the a1 axis connects two random points x1 and x2 in the
material. The lineal path function L1ðdÞ is defined by Eq. (2)

L1ðd; θÞ ¼ Prðx1x2 ∈ Ω1Þ ð2Þ

When the line’s length (d) is zero, the lineal path function is
equal to the void volume fraction; and when d is infinite, the lineal

Table 1. Statistics of the Void Properties for Three Orthogonal Sections Obtained from 2D Investigation

Property Statistical measure

First billet Second billet

T-TT L-T L-TT T-TT L-T L-TT

Major axis length Mean (mm) 1.2 9.1 9.6 1.1 9.6 10.2
Median (mm) 0.6 4.6 4.6 0.6 4.6 4.6

Standard deviation (mm) 1.4 10.9 11.4 1.4 12.1 12.6
Minor axis length Mean (mm) 0.6 0.8 0.8 0.6 0.8 0.7

Median (mm) 0.3 0.6 0.6 0.3 0.4 0.4
Standard deviation (mm) 0.6 1.0 0.8 0.6 1.0 0.8

Aspect ratio Mean 1.8 13.5 13.9 1.7 14.8 15.4
Median 1.6 16.0 16.0 1.5 16.0 16.0

Standard deviation 0.9 6.4 6.3 0.9 6.6 7.1
Area Mean (mm2) 0.87 8.22 7.73 0.78 8.96 7.72

Median (mm2) 0.19 2.00 2.00 0.13 2.00 2.00
Standard deviation (mm2) 2.28 25.35 21.99 2.23 28.91 22.79
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Fig. 3. Two-point probability functions for the first PSL billet: (a) T-TT section; (b) L-TT section; (c) L-T section
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path function equals zero. Fig. 4 illustrates the lineal path func-
tion evaluated in the T-TT, L-T, and L-TT planes of the first billet.
The results are quite similar to the two-point probability function.
One can infer from this similarity that the voids in PSL do not
have wry and crooked shapes; therefore, when two points are in
the void phase, the line connecting them is most probably in the
same phase.

The last measure to obtain the 2D characteristics of voids is the
chord length density function, which is defined as the probability
of finding a chord of length between d and dþΔd in void phase
(Torquato 2002). This measure is useful for the estimation of aver-
age void length. Consider a chord AB with the length jABj lying
fully in the void phase (AB ∈ Ω1). The chord length density func-
tion is defined as

p1ðd; θÞ ¼ Prðd ≤ jABj ≤ dþΔdÞ ð3Þ

Based on the definition, when the chord length is zero, the chord
length density function is equal to 1, and when the length is infinite,
the function equals zero. To simplify the calculations, only the
chord length function for the directions parallel to coordinate axes
was estimated. Fig. 5 displays the chord length density functions in
the TT, T, and L directions for the first billet. The results clearly
show that the longitudinal direction contains larger void lengths
and that the voids in the L-T and L-TT sections are elongated, with
approximate average aspect ratio of 10, in L direction.

Because (1) the number of figures related to the statistics of
void shapes in each billet is large, and (2) the investigation showed
that the shapes of voids in these two billets have similar statistical
properties, it is efficient not to double the number of figures and to
display merely the statistics of the void shapes in the first billet.
This choice has also been kept in the other sections throughout this
paper. The tables, nevertheless, contain the data of both billets.

Three-dimensional Statistical Characterization of the
Voids Structure

Direct Characterization

The voids occupy 2.4 and 2.8% of the volume of first and second
billets. In both billets, the mean value of individual void’s volume is
11 mm3, but its median is much less (0.5 mm3 that equals the vol-
ume of two voxels). Therefore, the void volume distribution is
highly skewed. Fig. 6 along with the calculated values of skewness
(40 in the first and 60 in the second billet), kurtosis (2,250 in the
first and 5,100 in the second billet) and standard deviation
(150 mm3 in the first and 180 mm3 in the second billet) confirm
this conclusion. Another sign of the skewness: although 43%=49%
of voids in the first/second billet are one-voxel voids, in both billets
they form just 1% of the whole void volume. While the largest void
in the first/second billet represent 6%=8% of the void volume;
i.e., the volume of one void is 6=8 times of the sum of the volumes
of thousands of voids. This feature of distribution might be impor-
tant because, assuming that it is more likely that the large voids
influence or even control the mechanical failure of material than
do the small voids, this feature shows that there might be very
few voids in each PSL specimen that can significantly affect the
mechanical behavior of specimen. Some few voids can be much
more influential than many other voids. In the process of gener-
ation of virtual voids, this feature of distribution must not at all be
neglected.

To get a sense about the three-dimensional shape of voids, one
can employ the mass moment of inertia which, for a continuous
body rotating about a specified axis, is calculated by Eq. (4)

Im ¼
Z

V
ρð→ rÞ→ r2dV ð4Þ
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Fig. 4. Lineal path functions for the first PSL billet: (a) T-TT section; (b) L-TT section; (c) L-T section
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where→ r is the radius vector to a point in the body from the speci-
fied axis through the origin, and ρð→ rÞ is the mass density at the
tip of vector→ r. The integration is evaluated over the volume Vof
the body. Because the shape of voids is of interest, the mass density
of voids was arbitrarily set to be 1.

All voids’ principal mass moments of inertia have been calcu-
lated. By definition, if the moments of inertia about principal axes
are not equal, the length of the principal axis corresponding to the
larger moment of inertia is less than that of the principal axis cor-
responding to the smaller moment of inertia. The statistical study
shows that the distributions of void principal mass moments of in-
ertia are significantly skewed. Table 2 lists the statistical data of the
principal moments of inertia. In this paper, I11 is the moment of
inertia about the major principal axis of void; hence it is the small-
est principal moment of inertia, while I33, which is the moment of
inertia about the minor principal axis, is obviously the largest one
[Later in Fig. 8 it will be shown that usually (but not always) the
void’s major principal axis (Axis #1) lies along L direction, while
its minor principal axis (Axis #3) lies along TT direction]. Consid-
ering the values stated in Table 2, one can conclude that the stat-
istical properties of length, shape and location of voids are of the
same order in the tested billets. Hence the void statistics is homo-
geneous all inside the parent PSL billet.

Aspect ratios of the principal moments of inertia can help to
detect the shape of the voids. Fig. 7 displays how the aspect ratios
are distributed.

Histograms shown in Fig. 7 illustrate clearly that in most of the
voids, I11 is much smaller than two other almost equal principal
moments of inertia, I22 and I33. Therefore, in most voids, one
of the principal axes is much larger than other two almost-equal
axes. This conclusion is in agreement with the results taken from
chord length density functions (Fig. 5).

Because the ultimate goal of this study is to virtually generate
random voids and use them in the study of mechanics of PSL for
making arbitrarily sized PSL models, the correlation coefficients of

principal moments of inertia are as important as their distribution.
Here are the matrices of correlation coefficients of principal
moments of inertia for both billets

ρIfirst ¼

2

64

1 0.96 0.96

0.96 1 1

0.96 1 1

3

75 ð5Þ

ρIsecond ¼

2

64

1 0.27 0.30

0.27 1 1

0.30 1 1

3

75 ð6Þ

The major and second major moments of inertia (i.e., I33 and
I22) are perfectly correlated. This is because most of the voids grow
just in the longitudinal direction and have the aspect ratio in the
order of 1 in T-TT sections.

The probability density function of the coordinates of the void
centroids is uniform over the billet domain in all material direc-
tions. The direction of voids, i.e., their angle with the material axes,
is another piece of data required for void characterization. In the
bottom-right corner of Fig. 8, the orientation of major principal axis
of each void is depicted by a line with unit length. Fig. 8 presents
the same data in stereographic form. Each point represents the pro-
jection of intersection of the lines shown in the figure at corner with
a sphere with unit radius centered at the origin of T-TT plane.
Obviously, almost all of the voids are aligned along the interval
of −30° to 30° of the longitudinal direction. A few voids, which
are either very short or spherical, have made larger angles with
the longitudinal direction. Therefore, it is reasonable to accept that
all voids in the studied PSL billets are aligned in the longitudinal
direction or make small angles with this direction. The principal
angles were found to be uncorrelated.

Characterization through Equivalent Ellipsoids

To provide a methodology to generate virtual voids, it is reasonably
favorable to approximate the actual shape of the voids with a
known and defined shape. The observations and statistical data
show that ellipsoidal shape might be a good approximation for ac-
tual void shape. This section is allocated to the verification of this
hypothesis. Working with the ellipsoidal shapes instead of the ac-
tual arbitrary shapes eases the understanding of void characteristics
and simulation of voids by finite element models.

Let a void be modeled by an ellipsoid with major axis half-
length R1 and minor axis half-lengths R2 and R3. The volume
of such an ellipsoid is given by

Table 2. Statistical Data of the Void Principal Mass Moments of Inertia in
Both Billets

Billet MOI
Mean
(mm5)

Median
(mm5)

Standard
deviation
(mm5) Skewness Kurtosis

First
billet

I11 300 0.10 15,000 75 6,100
I22 36,000 0.63 1,540,000 75 6,300
I33 36,300 0.63 1,550,000 75 6,300

Second
billet

I11 750 0.10 81,000 140 19,300
I22 43,000 0.63 2,270,000 110 13,500
I33 43,600 0.63 2,280,000 110 13,200
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Fig. 7. Distribution of aspect ratio of principal moments of inertia of the first PSL billet voids: (a) minor/second major; (b) minor/major; (c) second
major/major
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V ¼ 4

3
πR1R2R3 ð7Þ

Based on the void geometry shown in Fig. 6 and Table 2, a rea-
sonable initial assumption is that the ellipsoid’s major radius R1 is
aligned with the void’s major principal axis (based on Fig. 8, in
most cases L direction), the second minor radius R2 is aligned with
the void’s second minor principal axis (in most cases T direction),
and the minor radius R3 is aligned with the void’s minor principal
axis (in most cases TT direction). Assuming the unit density, the
principal moments of inertia of ellipsoid are then

I11 ¼
VðR2

2 þ R2
3Þ

5
ð8Þ

I22 ¼
VðR2

1 þ R2
3Þ

5
ð9Þ

I33 ¼
VðR2

1 þ R2
2Þ

5
ð10Þ

The goal of this model would be to calibrate the mean ellipsoid
dimensions R1, R2, and R3 to the statistics of section “Direct Char-
acterization” and choose distributions of these parameters to match
at least the second moment properties of the void mesostructure.

It must be noted that setting Eqs. (7)–(10) equal to the mean values
in Table 2 results in an over-determined system of equations that
may not have an acceptable solution (four equations but three un-
knowns). An appropriate way to tackle this problem is to eliminate
two unknowns (e.g., R2 and R3) by combining the equations and
form two equations dependent on just one unknown (e.g., R1). One
can now minimize the square root of sum of the squares of these
two equations and find the only remaining unknown. For example,
by combining the Eqs. (7)–(10), it can be concluded

R2
1 þ

"
3V

4πR1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5I33
V − R2

1

q
#
2

þ 5I22
V

¼ 0 ð11Þ

"
5I33
V

− R2
1

#
þ

"
3V

4πR1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5I33
V − R2

1

q
#
2

þ 5I11
V

¼ 0 ð12Þ

Note that V, I11, I22 and I33 are the geometric properties of
voids. R1 is computable by minimizing SRSS of Eqs. 11 and 12.
Once R1 is calculated, R2 and R3 can be found using the following
equations

R2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5I33
V

− R2
1

r
ð13Þ

R3 ¼
3V

4πR1R2

ð14Þ

Fig. 9(a) illustrates a T-TT section of PSL where 2D voids have
been replaced with equivalent ellipses. In Fig. 9(b), an equivalent
ellipsoid has been fitted to a three-voxel void. To present the sta-
tistics of equivalent ellipsoids, Fig. 10 shows the distribution of
radii of the equivalent ellipsoids. Also, histograms of aspect ratios
of ellipsoids’ moments of inertia are displayed in Fig. 11. Accord-
ing to this figure, the aspect ratios of moments of inertia of equiv-
alent ellipsoids match well that of actual voids (Fig. 7). Table 3
compares the statistical measures of the moments of inertia of
actual voids and their equivalent ellipsoids.

The matrices of correlation coefficients of equivalent ellipsoids’
radii for the first and second billets are as follows:

−1 −0.5 0 0.5 1

−0.5

0

0.5

T

T
T

−0.5
0

0.5

−0.6−0.300.3
0

0.5

1

TTT

L

Fig. 8. Stereographic projection of the voids in the first billet with re-
spect to longitudinal axis

(a) (b)

Fig. 9. 2D illustration of void replacements and a scheme of 3D replacement: (a) ellipses replaced 2D voids; (b) minor/major
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ρRfirst
¼

2

64

1 0.81 0.28

0.81 1 0.34

0.28 0.34 1

3

75 ð15Þ

ρRsecond
¼

2

64

1 0.69 0.32

0.69 1 0.27

0.32 0.27 1

3

75 ð16Þ

One should not expect to see a match between these corre-
lation structures and the previous correlations introduced by
Eqs. (5) and (6). Here, the correlation of radii with the dimension
½L% (length) are introduced, while the matrices 5 and 6 show the
correlation of moments of inertia with the dimension ½L5%.

Probabilistic Model for PSL Mesostructure

Once the distributions of equivalent ellipsoids are obtained, one can
generate virtual ellipsoidal voids with randomly generated radii,
alignments and locations. Given that no clustering of voids was
observed in the mesostructure, the centroids of the voids can be
modeled by uniform distribution. But no mathematically known
and defined distribution can be fitted to the distributions of ellipsoid
radii (Fig. 10) and void principal angles. The translation model
(Arwade 2005) was used to generate non-Gaussian random radii
and angles with specified marginal target distributions and corre-
lation functions [Eqs. (5) and (15)].

Suppose that the generation of a correlated non-Gaussian ran-
dom vector, Z ∈ Rd, with components Zi, mean m and covariance
matrix c defined by c ¼ E½ðZ − μÞðZ − μÞT % is of interest [where
Eð:Þ is the expectation operator]. According to the translation
method, first a vector of uncorrelated Gaussian random variables,

Y ∈ Rd with components Yi, is generated. Choleski decomposition
this vector to a correlated Gaussian vector, Y 0 with components Y 0

i ,
using the target correlation coefficients (cij). This new correlated
Gaussian vector can be transformed to a correlated non-Gaussian
random vector, Z, using the experimental cdf obtained from the
target distributions. The transformation is given by

Zi ¼ F−1½ΦðY 0
i Þ% ð17Þ

where FðzÞ is the cumulative distribution function (cdf) of Z and
Φð:Þ is the standard (mean zero, unit variance) Gaussian cdf. In the
case of this study, Z can be the vector of major (or any other type
of) ellipsoid radii whose cumulative distribution function [FðzÞ]
has been evaluated empirically from the data of fitted equivalent
ellipsoids.

Fig. 12 shows the distribution of the volume of virtually gen-
erated ellipsoidal voids that acceptably matches the distribution
of the volume of actual voids in the first billet (Fig. 6). Therefore,
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Fig. 10. Distribution of the radii of equivalent ellipsoids fitted to the voids of first billet: (a) major radius; (b) second minor radius; (c) minor radius
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Fig. 11. Distribution of the aspect ratio of principal moments of inertia of equivalent ellipsoids fitted to the voids of first billet: (a) minor/second
major; (b) minor/major; (c) second major/major
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Fig. 12. Distribution of the volume of randomly generated virtual
ellipsoids
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one can generate virtual voids based on the statistical data provided
in section “Direct Characterization” and virtually generate a PSL
specimen with any arbitrary size.

Fig. 13 displays the distributions of radii of virtual ellipsoidal
voids. They properly match the distributions of radii of equivalent
ellipsoids shown in Fig. 10. It is also important that the correlation
coefficients of virtual radii match the actual values; Eq. (18) shows
a good agreement between correlation coefficients. Hence, the
generation of virtual voids with the size and size correlation sim-
ilar to actual ones is absolutely possible. More details about the

comparison of the moments of inertia of actual and virtual voids
are presented in Table 4.

ρR ¼

2

64

1 0.78 0.25

0.78 1 0.29

0.25 0.29 1

3

75 ð18Þ

All in all, regarding the size, shape, location, and alignment of
the voids, the randomly generated virtual ellipsoidal voids have the
same 3D statistical data as the actual voids observed in the first PSL
billet. This similarity was expected because the same distributions
have been used in the process of ellipsoid generation.

The last step is to verify the validity of probabilistic model using
2D probability measures. A 51 × 51 × 152 mm virtual PSL billet
including randomly generated virtual ellipsoids was made. It is ex-
pected that the 2D probability functions used for characterization of
actual voids return similar outputs for this virtual billet that has void
volume fraction of 3.6%. Figs. 14 and 15 both show that the geo-
metrical statistics of virtual ellipsoids are similar to that of the voids
except for the fact that the average axis length of virtual ellipsoids
in TT direction is more than that of actual voids. Also, unlike actual
voids, the axis length of virtual ellipsoids in TT direction is on aver-
age larger than their axis length in T direction.

The reason for this bias is probably the bifurcation of voids.
When actual voids have different branches lying along different
directions, the method explained before to fit ellipsoids to actual
voids does not work favorably and results in equivalent ellipsoids
with unreasonable aspect ratio in T-TT plane. Since the radii of
virtual ellipsoids are generated based on the distribution of radii
of equivalent ellipsoids, virtual ellipsoids show the same bias. This
bias does not influence the usefulness of virtual ellipsoids, because
the average length of these ellipsoids in L direction (the major and
most important direction) is still realistically much larger than that
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Fig. 13. Distribution of the radii of randomly generated virtual ellipsoids: (a) major radius; (b) second minor radius; (c) minor radius

Table 3. Comparison of the Statistics of the Voids of Both PSL Billets with
Equivalent Ellipsoids

Billet Void type

Mean Median

I11
(mm5)

I22
(mm5)

I33
(mm5)

I11
(mm5)

I22
(mm5)

I33
(mm5)

First
billet

Void 300 36,000 36,300 0.10 0.63 0.63
Equivalent
ellipsoid

275 36,000 36,300 0.10 0.63 0.63

Second
billet

Void 750 43,000 43,600 0.10 0.63 0.63
Equivalent
ellipsoid

710 43,000 43,600 0.10 0.63 0.63

Table 4. Comparison of the Statistics of Actual and Virtual Voids

Type

Mean Correlation

I11 (mm5) I22 (mm5) I33 (mm5) ρ12 ρ13 ρ23

Actual 300 36,000 36,300 0.96 0.96 1.00
Virtual 300 44,800 45,100 0.92 0.92 1.00
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Fig. 14. Two-point probability functions for the virtual PSL billet: (a) T-TT section; (b) L-TT section; (c) L-T section
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of the other two directions. In fact, one can assume that have been
rotated with respect to their L axis. This rotation does not influence
the mechanics of the PSL model along L direction. The mechanics
of PSL along the other two directions will not be affected signifi-
cantly either, because the lengths of ellipsoids in TT direction are
still not large enough to change the material’s mechanical behavior.

The probabilistic material model developed and validated here
can have two primary applications: material design and the devel-
opment of novel macroscopic constitutive models. In the first case,
the existence of a probabilistic model for the void geometry allows
material designers to investigate how changes in parameters de-
scribing the void geometry affect the void structure and eventually
mechanical properties of the material. In the second case, the void
model can be used to develop finite element models of PSL mem-
bers, and simulation of the response of such models to various
stress states can be used to develop or improve macroscopic con-
stitutive models. In both cases, such numerical investigations
would have to be supported and validated by experiments, but
the presence of probabilistic numerical models holds the promise
of accelerating the development of novel designs and constitutive
models. Therefore, while it is not expected that a civil engineer
would use a probabilistic void geometry model in the course of
regular practice, models as presented here could lead to improved
materials, and material models that would be of use in the usual
practice of structural engineering.

Conclusion

To discover the nature of PSL heterogeneity, the mesostructure of
material has been characterized via serial sectioning of two PSL
billets, scanning the sections, developing computer programs to de-
tect the voids, and conducting a statistical study on voids. Studies
showed that most voids are elongated and aligned along the
material longitudinal direction. On the other hand, the aspect ratios

of void sections in T-TT planes are close to 1. An ellipsoid can be
an appropriate replacement for such a void shape. The statistical
study confirmed this inference. Variation in statistical properties
of the void structure between the two tested billets is modest with
regard to most characterizations although a more detailed study
of void structure variability within billets and across batches is
needed. Based on the output of the void characterization and
statistics of equivalent ellipsoids, a probabilistic model has been
introduced for the PSL mesostructure. The probabilistic material
model developed and validated here can be applied in the material
design and the development of novel macroscopic constitutive
models.
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