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A method for assessing the degree of non-stationarity in annual wind speed records is presented. The
method uses quantitative tests on the wind speed records to assess the length of the period over which
an assumption of stationarity in the wind record can be considered to provide reasonable engineering
accuracy. The tests evaluate stationarity in second moment properties and marginal distribution. Nu-
merical examples are provided for three offshore sites along the Atlantic Coast of the United States—one
off of Virginia, and two off of Maine. The examples illustrate that an assumption of stationarity over a
period of one week is largely justified, but that such an assumption over periods of one month is
certainly not. Assuming stationarity over a period of a week can lead to errors in model values of the
second moment properties of 2%—3% whereas the assumption applied to a monthlong period can lead to
error greater than 10%. Examination of the persistence of marginal distribution reveals that, although
true stationarity in marginal distribution persists for a few days at most, there exist two ‘seasons’, winter
and summer, during which the marginal distribution remains relatively consistent, with rapid changes in
marginal distribution occurring near the beginning and ends of these seasons. Results are found to be
largely consistent across the three sites investigated as numerical examples. The methods and results
presented here may be useful to those investigating the potential for offshore wind energy development
using stochastic process theory to study wind speed or power production since stationary stochastic
models provide simpler and more accessible predictions of quantities such as probabilities of exceedance
of threshold values, upcrossing rates, and residence times.
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1. Introduction

The characteristics of time varying wind speed records have
importance to many fields of engineering, particularly structural
engineering in which wind can generate design-controlling loads
and wind energy engineering in which the wind determines energy
production and structural loading on the blades, mechanical
equipment and support structure. In this paper we address the
period of time over which an offshore wind record can reasonably be
considered to be stationary with respect to its marginal distribution
and second moment properties. The question of stationarity has, we
believe, primary relevance to the modeling of the power production
of an offshore wind turbine as a stochastic process. Although models

* Corresponding author. Tel.: +1 413 577 0926.
E-mail addresses: arwade@umass.edu (S.R. Arwade), massimiliano.gioffre@
unipg.it (M. Gioffré).

http://dx.doi.org/10.1016/j.renene.2014.03.016
0960-1481/© 2014 Elsevier Ltd. All rights reserved.

for both stationary and non-stationary stochastic processes are well
developed and robust [1,2], models for stationary processes are
much simpler and more accessible to engineers not well grounded
in the mathematics of stochastic processes. Therefore, it is highly
advantageous to be able to use stationary models for time varying
parameters of engineering systems whenever possible, provided
that one is keenly aware of the approximation inherent in applying a
stationary model to an underlying physical process which has time-
varying, that is to say non-stationary, parameters.

The goal of this paper is to introduce a framework for quanti-
tatively assessing whether an assumption of stationarity is appro-
priate for offshore wind records over periods of time longer than
one day—in other words, neglecting the well known diurnal vari-
ation of wind speed. Diurnal variations are important for per-
forming short term analysis that leads, for example, to estimates of
extreme loads on structures, and in fact simulations of not longer
than 1 h are recommended to avoid the introduction of non-
stationarity to the analysis of wind turbines [3,4]. The magnitude
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of the diurnal variation, is small compared to the seasonal fluctu-
ations that are primarily addressed here, and furthermore, engi-
neers interested in the long-term performance of wind turbines
with respect to power generation are likely to be interested in
performance over time scales of weeks, months, and even years.
The question of the time period of interest is closely related to the
spectral content of the wind speed time history, a question
addressed in the seminal work of Van der Hoven [5]. Spectral
content, though not a primary topic of this paper, is treated in this
paper to clearly illustrate the periodicities that are present in the
data. The framework that is presented here is applied directly to
three offshore sites along the Atlantic Coast of the United States,
and some conclusions are drawn regarding the appropriate periods
of time for use of stationary models for the wind speed.

The work presented in this paper distinguishes itself from the
extensive body of literature regarding the statistical characteriza-
tion and probabilistic modeling of wind speed records in concen-
trating on medium term (days to months) characteristics of the
wind speed and on core statistics such as the gross marginal dis-
tribution or second moment properties rather than the extreme
values generated over short periods of the wind record. In the
extreme value work most effort has been devoted to estimation of
distribution with particular emphasis on modeling the upper tails
of the distribution and determining the effect of averaging period
or recording frequency on such estimates [6—9]. Also, this work
treats offshore sites rather than onshore sites, with offshore sites
considered particularly important to the growth of the US wind
energy industry.

Medium-term variability of wind records has been discussed in
the literature, and some key examples include studies of inter-
annual variability of wind characteristics [10], month to month
variations [11], and seasonal variations [12]. While these papers
address issues similar to those addressed here, they are focussed on
assessing the variability of the wind speed rather than providing a
quantitative framework in which to decide upon a time interval
over which an assumption of stationarity is valid. Furthermore,
they all address on-shore sites.

Another key set of studies with relevance to this work is rep-
resented in the large body of literature regarding the appropriate
choice of distribution for wind speed modeling [6,13,14]. Here the
emphasis is not on the choice of distribution, per se, but rather on
the persistence of a particular model distribution in time. In the
context of wind energy engineering, these studies are related to the
so-called ‘measure-correlate-predict’ (MCP) approach to assessing
sites for wind energy development [15]. MCP studies have tended
to focus on wind data aggregated on an annual basis rather than the
medium-term lengths studied here, and also on the length of time
for which data should be collected to properly assess a site [16]. In
fact, the approaches presented here could inform future MCP work
by providing quantitative support to the choice of observation/
recording time.

It is important to distinguish the work presented here, which
address the period of time over which a stationary model is
appropriate for wind records, from research which has established
appropriate simulation lengths for analyzing the performance of
wind turbines [3,4] (10 min is the standard), and from questions
regarding the details of how wind speed records should be recor-
ded (averaging time and recording frequency) in order to properly
estimate distributions. Finally, the medium-term (days to months)
nature of this work is emphasized to contrast it with the important
topic of long term non-stationarity in meteorological data brought
on by global climate change [17].

The remainder of the paper is structured as follows: First the
analysis approach is described including the ways in which wind
records can be aggregated over different time periods and the

statistical tests used for assessing assumptions of stationarity; then
the characteristics of the three sites selected as case studies are
described; results of the case studies, or examples, are presented
both in terms of stationarity with respect to marginal distribution
and second moment properties; concluding remarks summarize
the key methods and findings of the paper.

2. Analysis approach

The most commonly available types of long term wind mea-
surements report a version of the wind speed at intervals ranging
from roughly a minute to an hour—the data presented here consist of
hourly measurements. Since our interest lies primarily in charac-
teristics of wind speed records at time scales greater than one day
and ranging up to one year, we neglect the diurnal non-stationarities
that lead to the presence of harmonics in wind speed records with
periods of 12 h and 24 h and aggregate the wind data (see the
following section for details) into data sets representing the col-
lections of measured wind speeds in individual 24 h (one day), 168 h
(seven days) and 672 h (28 days) periods. We adopt the 672 h period
as representative of a month since 672 h is nearly an integer divisor
of 8760 h, the length of a (non-leap) year and is nearly an integer
multiple of the 168 h, the number of hours in a calendar week. Using
the usual calendar months complicates matters significantly due to
the varying length of the calendar months and would obscure the
key approaches and results of this paper.

Consider the sequence of random variables {V;}, i = 1,...,8760
that represent hourly wind speeds at a particular location during
the course of a year. What can be obtained from instruments are
values of {vy}, i = 1,...,8760, j = 1,...,ny where ny, is the number of
years for which measurements are available and v is written in
lower case since v represents a realization, or sample, of the
random variable V;. The collection {vjj}, j = 1,...,n, for fixed i can be
viewed as an ensemble of samples of V;.

Now define daily, weekly, and monthly aggregations of the
random variables V; as follows. Let {Vy;}, i = 1,...,365 be a sequence
of random variables that is defined such that Vy; represents the
hourly wind speed Vi for any k e [24(i — 1) + 1,24i]. That is, Vy;
characterizes the hourly wind speed during day i of the year, and
the collection of realizations for fixed i is defined such that
{vaij} = (b, j = 1,....24ny, k e [24(i — 1) + 1,24i], | = 1,...,n,. For the
weekly aggregations, let {Vy,;},i=1,...,365 be a sequence of random
variables that is defined such that V,,; represents the hourly wind
speed Vj for any k e [24(i — 4),24(i + 3)] with yearly periodicity of
the wind speed statistics giving k = 8760 — k, k < 1 and
k = k — 8760, k > 8760. The variable V,,; characterizes the hourly
wind speed during the 168 h period centered on day i of the year
such that the collection of realizations for fixed i is {vw,;}={vii},
j=1,...,168ny, k € [24(i — 4) + 1,24(i + 3)], | = 1,...,ny with peri-
odicity for k < 1 and k > 8760 defined as previously. Finally, the
monthly aggregations are defined by {Vp,;},i = 1,...,365, a sequence
of random variables that is defined such that V;;; represents the
hourly wind speed Vj for any k € [24(i — 14) + 1,24(i + 14)] with
yearly periodicity of the wind speed statistics defined as for the
weekly aggregations. The variable Vp,; characterizes the hourly
wind speed during the 672 h period centered on day i of the year
such that the collection of realizations for fixed i is {vin,j}={vi},
j=1..672ny, k € [24(i — 14) + 1,24(i + 14)], | = 1,...,ny, with
periodicity for k < 1 and k > 8760 defined as previously.

The core approach to evaluating the rate of temporal change in
the probabilistic characteristics of wind speed records presented in
this paper involves testing the hypothesis that pairs of random
variables {Vy;Vy;}, {Vw,i,Vw,j}, and {Vin;,Vinj} come from the same
underlying distribution. The two-sample Kolmogorov—Smirnov
(KS2) test is used here to evaluate the null hypothesis. In the KS2
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test, the test statistic is D = supx(F;(x) — F»(x)) where F1(x) and Fy(x)
are the cumulative distribution functions of the two random vari-
ables being tested. For example, if Fi(x) = Fywa2s(v) and
F(x) = Fyws0(v), the KS2 test would evaluate the null hypothesis
that the wind speed on days 25 and 50 can be modeled by the same
underlying distribution. The test is conducted at a significance level
a and corresponding confidence level 1 — «, and an important
statistic is p which is the probability of observing a test statistics D
that is equal to or larger than that calculated for the samples given
the null hypothesis. That is, p € [0,1] is the minimum significance
level, corresponding to the maximum confidence level, at which
the null hypothesis (that the distributions are the same) can be
rejected. Therefore large values of p indicate a low confidence that
the distributions differ, and low values of p indicate that the dis-
tributions differ with high confidence.

While the KS2 test provides a method for evaluating temporal
changes in the marginal distribution of the wind speed, there are
numerous situations in which the main interest of an analyst or
modeler may be only in the second moment properties (mean and
variance) of the wind speed. Consider the sequence {u;},
i=1,...,8760 in which u; = E[V;], and the corresponding sequence
{0i},i=1,...,8760 in which 62 = E[V?] — u? which define the hourly
mean and variance of the wind speed sequence. In practice the
entries of these sequences will be estimated from data by, for
example, i; = ny !S> v and 57 = (ny— 1)"2}1;11/1.2] — g

In this paper, models are fit to the sequences f; and ; and the
time-gradients of the models are used to assess the degree of
temporal non-stationarity present in the wind records. The first
model used is meant to represent the periodic, annual fluctuations
in the mean and standard deviation of the wind speed, namely,

27t 4 27C
fn(t) = py + bycos <TO])
(1)
27t 4 27c
op(t) = ow + bycos (W)

where u,, = 87601387507, and gy = 87601387895, are the
temporal mean values of the mean and standard deviation of the
wind speed, b1 and b, are the amplitudes of the fluctuations, and c;
and c; are the phase shifts. The parameters by, by, ¢y, ¢z are deter-
mined for a particular data set through a nonlinear least squares
regression. The time parameter t in the above is expressed in hours.

The second type of model used here is what might be called a
local linear model and is essentially a linear regression to the se-
quences {fi;} and {d;} over a fixed interval of time. Specifically, the
local linear models considered here have the form

pri(t) = dyj+eq;t 2)
0i(t) = dyj+ey;t

where the parameters dq;, eq;, dz; ep; are determined by a least
squares regression to the sequences {ﬁj},je [i—336,i+336] and

{@;}.jeli — 336,i + 336]. That is, the local linear models are linear
fits to the estimates of the mean and standard deviation of the wind
speed over a 672 h (one month) period centered on day i. In prin-
ciple one could define local linear models over intervals other than
672 h. As will be discussed in the following sections, the 672 h
interval has been found to provide a good balance between
reduction in estimation error due to a large enough sample size on
which to perform regression and a short enough interval that a
local linear model is logical given the magnitude of the second
derivative of the mean wind speed and standard deviation of the
wind speed.

The models introduced have significant similarities with the so-
called generalized autoregressive conditional heteroschedastic
(GARCH) models for time varying mean and volatility of time series
that have been applied to wind speed records [18—20]. The
emphasis of this paper is on using simple but reasonable models to
evaluate the period of validity of an assumption of stationarity,
rather than on assessing the quality of the models themselves.
Therefore, while GARCH models would reasonably be expected to
provide better fits to and predictions of the wind speed, they are
unlikely to lead to significantly different conclusions regarding
periods of stationarity. One possible difference that might arise if
GARCH models were used would be that, by virtue of the additional
terms included in GARCH models, different periods of stationarity
might be found at different times of the year. This would be in
interesting question for further investigation.

In assessing whether an assumption of temporally local mean-
square stationarity over some time interval would be admissible
in analysis, the rate of change of the second moment properties is
the quantity of primary interest. It is useful to define normalized
versions of these rates of change that are essentially the first de-
rivatives of the mean and standard deviation of the wind speed.
Define these normalized quantities by

Sy pi = dug(t) | _'Ez/‘th(iJr Tp/2) — (i — Tp/2) T
A T Ty Hw
Soupi = dacll1t(t) }t:i;;pzoh(l' +Ty/2) - on(i—Tp/2) Ty
L ’ e 3)
Swpi = e],iﬁ
Soipi = ez,i;—fv

where p e {w,m}and T, e {168h,672h} corresponding to weekly and
monthly periods, the subscripts {h,l} indicate the normalized de-
rivative of the harmonic model and local linear models centered at
day i respectively. Furthermore, one can define the difference in
these normalized slopes

Eupi = lsu,l‘p,i _Su:-ﬁ‘i’ (4)

Eo,pj = |Sah<p,i - Sa,,p,i|

for use in evaluating the quality of the harmonic model.

3. Data sources and characteristics

The government of the United States, through the National
Oceanic and Atmospheric Administration, maintains a network of
meteorological and ocean monitoring stations [21] through the
National Data Buoy Center (NDBC), and the data used in this study
is drawn from the NDBC database. Three locations were selected for
examination in this study (see Table 1) based on the length of
historical meteorological data available and their locations. Two
sites have been selected that are geographically close to one

Table 1
Location characteristics of wind data source sites.

Station name Anemometer

Type Elevation Location Distances

43.783 N 68.855 W 107 km/945 km
43.531 N 70.144 W 107 km/867 km
36.611 N 74.842 W 945 km/867 km

Matinicus Rock Island 229 m
East Hue & Cry Rock Buoy 5m
Virginia Beach Buoy 5m
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Table 2
Wind data record characteristics.

Station name Averaging interval Total years Thinned years
Matinicus Rock 2 min 28 19
East Hue & Cry Rock 8 min 30 18
Virginia Beach 8 min 22 12

another, while the third site is distant from the first two while
remaining within the region of the US Atlantic coast where wind
energy development is being actively pursued. Note that no
attempt has been made to adjust the data to account for the
different anemometer heights or the fact that one of the stations is
on a small island. Although elevation and local topography affects
the average wind speed and turbulence characteristics, the main
interest of this paper is in the rate of change of the statistical
characteristics of the wind speed over days, weeks, and months,
and those temporal changes are not likely to be affected by such
factors as elevation and topography.

Table 2 gives some important characteristics of the data. The
‘thinned’ number of years of data represents the number of years
for which the wind speed record as downloaded had less than 10%
missing or corrupted data. The averaging interval represents the
length of time over which wind speed is averaged, and then re-
ported once hourly. For example, at Matinicus Rock, the reported
hourly wind speeds represent the average of the wind speed over
the last 2 min of each hour. Again, the difference in averaging in-
terval is not expected to dramatically affect investigations
regarding statistical stationarity over days, weeks, and months.
Data from years in which the fraction of good data is less than 0.90
have been neglected, and therefore ny in the definitions of the
previous section is always equal to the number of thinned years.

During the years retained by the thinning process, there remains
the possibility of up to 10% of the data being missing or otherwise
corrupted. In such cases, linear interpolation between the previous
and next good data points has been used to infill the data set.

Fig. 1 shows a single year of data from Matinicus Rock along with
the histogram and the Fourier spectrum generated by treating all
wind measurements recorded at Matinicus Rock as samples of a
single random variable. The histogram neglects non-stationarity
and is meant to simply give an idea of the overall distribution
shape—significant positive skewness—of the wind data. The spec-
trum shows clearly that this data contains significant periodicity at
the 1 year, 1 day, and 12 h periods. Recall that the 1 day and 12 h
periodicities are neglected here since primary interest lies in the
longer term behavior of the wind speed. Data for the other sites are
qualitatively similar and are therefore not shown graphically since
aggregate statistics are not the focus of this paper. The aggregate
statistics shown in Table 3 show fundamentally similar character-
istics, and the higher values of each statistic at Matinicus Rock can
be plausibly attributed to the higher elevation of the measuring
station and the effect of the local island topography.

4. Results and discussion

This section presents the results of the investigation into the
statistical stationarity of the three wind speed records described
above. Tests for stationarity in distribution are discussed first, fol-
lowed by discussion of tests for stationarity in mean square sense.

4.1. Distribution tests

Consider first the results of the KS2 test conducted on the
samples ({Vm,i},{vin;}),ij = 1....,365. Such a test returns a 1 if the null
hypothesis that Vp,; and Vi,j have the same distribution is rejected
with 0.95 confidence. In effect, then, the 3652 tests provide a
pairwise evaluation of the similarity of the monthly aggregate
distribution of wind speed for month-long intervals centered on all
possible pairs of days in the year. By definition the test will not be
able to reject the null hypothesis at any level of confidence for i =j.
In Fig. 2 the results of these KS2 tests are shown graphically, with a
white pixel at location (ij) in the figure signifying that the
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Fig. 1. A: One year wind speed record from Matinicus Rock, Maine. B: Aggregate histogram of Matinicus Rock wind speed data. C: Fourier spectrum of Matinicus Rock wind speed

data.
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Table 3

Aggregate statistics of wind records.
Location Mean (m/s) Std. dev. (m/s) Skewness Kurtosis
Matinicus Rock 7.9 4.1 0.74 3.6
East Hue 5.6 3.2 0.63 3.2
Virginia Beach 6.1 34 0.64 3.0

distributions Vi,; and Vi are likely to be different from one
another. As an example, if one wanted to identify whether the wind
speed distribution on January 31 and Feb 28 were plausibly
similar—this would imply stationarity between January 31 and
February 28—one would look to the point in the figure corre-
sponding to day 31 (January 31) along the horizontal axis and 59
(February 28) along the vertical axis. If the pixel at that point in the
figure is black then the KS2 test has not rejected the hypothesis that
the distributions are the same, and the distributions can be said to
be plausibly similar. In contrast, if the pixel is white, the KS2 test
has rejected the hypothesis of similar distribution and some degree
of non stationarity has been shown.

The diagonal along the line i = j indicates, as would be expected,
that monthly aggregates centered on neighboring days are likely to
have the same distribution. The width of the band of black pixels
around i = j indicates the number of days over which the distri-
bution of the wind speed, estimated from a monthlong data series,
could be assumed to be constant. If the wind speed process were
stationary, we would expect all (or nearly all due to estimation
error) of the pixels to be black. For the results shown, this period of
stationarity varies from as little as 1 day to as many as 20 days, with
an average of approximately 13 days. One must keep in mind that
the collections of samples {vy;} and {vy;,;} contain data in common
if |i — j| < 28. The results appear qualitatively similar for the three
sites, and the scattering of findings of similar distribution away
from the diagonal are viewed as chance occurrences. For essentially
all of the cases where |i — j| > 28 distribution similarity is rejected
with 0.95 confidence. In summary, the data shown in Fig. 2 leads to
the following conclusion: “if a one month series of wind speed data
can be collected at a particular site, the distribution estimated from
that data should be considered to be reflective only of the period of
measurement or a period shifted forward or backward in time by
not more than several days.”

Statistical tests similar to those described immediately above,
but on pairs of weekly data aggregations {vy,;} and {vy,;} and daily
data aggregations {vq,} and {vg;} were performed. Fig. 3 shows
the results (following the same graphical conventions as Fig. 2)
for the weekly aggregations of data. A similar structure to the
results as that in Fig. 2 for the monthly aggregations appears in
the weekly comparisons with significantly more similarity find-
ings (black pixels) away from the diagonal and weak evidence of
a secondary structure in the data appearing as a band of modest

Matinicus Rock

3657 365"

-

28 days i
— Lo

i
0 365 0

East Hue

density of similarity findings running from the upper left to the
lower right. This secondary structure will be discussed in more
detail in the context of the daily aggregate data presented next.
The width of the main diagonal band (corresponding to the
number of days over which the distribution of weekly data ag-
gregations remains nearly constant) in this case ranges from
approximately 3 days to approximately 25 days, with an average
of approximately 7 days. Since the case where |i — j| > 7 for
weekly aggregations corresponds to a comparison of weeks that
share no data in common, these results indicate a stronger
temporal persistence of the distribution of weekly aggregate data
than monthly aggregate data. Specifically, it is likely justified to
use a distribution estimated from an ensemble of one week ob-
servations to model wind speeds during adjacent weeks. As is the
case for the monthly aggregations, the findings are qualitatively
similar for each of the three sites.

The comparisons of daily aggregations of data (Fig. 4) reveal the
deeper structure in the temporal variation of the distribution of
wind speed. Recalling that black pixels in the KS2 matrices indicate
the likelihood of distribution similarity for the days i and j corre-
sponding to the location of that pixel in the matrix, the results show
two distinct blocks of time in which there is a large fraction of
findings of similar distribution. Consider first the Matinicus Rock
data. The dark block at the center of the images indicates that
during a ‘summer’ season stretching from approximately day 110
(late April) to day 280 (early October) there is a high likelihood that
the daily distribution of wind speed cannot be distinguished at 0.95
confidence level. Noting the periodicity of the matrices—i and
i + 365 would denote the same day of the year—the dark blocks at
the corners of the image form a single region that stretches roughly
from day 280 to day 110 of the year. This corresponds roughly to a
‘winter’ season in the data. What is striking about the results is that
the boundaries of these blocks are quite clear. For example, the
distribution of wind speeds at say 115 is likely to be similar to the
distribution of wind speeds for days forward to day 280, but
backward only to day 110. There also does not appear to be a
gradual diminution of the likelihood of distribution similarity near
the boundaries of these blocks. The structure is most pronounced in
the Matinicus Rock data (Fig. 5), though it is still obviously present
in the East Hue data. Though the structure is evident in the Virginia
Beach data, the boundaries of the summer and winter blocks are
relatively poorly defined. Given this description of the daily
aggregate data, the traces of a similar structure can be seen in the
weekly aggregate data of Fig. 3. The apparent ‘noisiness’ of the
data—the presence of many rejections of distribution similarity
denoted by white pixels—can be attributed to the sensitivity of the
KS2 test to sample size and to statistical estimation error. As the
aggregation period shortens from months to weeks to days the
number of samples in each data set shrinks from 672n,, to 168n, to
24ny, meaning both that the KS2 test loses confidence and that

Virginia Beach
3658 £
.
¥ L
365 0 365

Fig. 2. Pairwise KS2 tests results on distributions estimated from monthlong intervals of wind speed data. White pixels represent rejection of the null hypothesis of similar
distribution at confidence level 0.95, and therefore black pixels can be interpreted as indicating a likelihood of distribution similarity. A 28 day scalebar is included in the leftmost

frame of the figure.
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Matinicus Rock

p-A

3657 e

Fig. 3. Pairwise KS2 tests results on distributions estimated from weeklong intervals

79

East Hue

Virginia Beach
$7T

&

3653

365

of wind speed data. White pixels represent rejection of the null hypothesis of similar dis-

tribution at confidence level 0.95, and therefore black pixels can be interpreted as indicating a likelihood of distribution similarity. A 28 day scalebar is included in the leftmost

frame of the figure.

Matinicus Rock

East Hue

Virginia Beach
365 i

365 0

365

Fig. 4. Pairwise KS2 tests results on distributions estimated from daylong intervals of wind speed data. White pixels represent rejection of the null hypothesis of similar distribution
at confidence level 0.95, and therefore black pixels can be interpreted as indicating a likelihood of distribution similarity. A 28 day scalebar is included in the leftmost frame of the

figure.

simple estimation error may lead to a rejection of distribution
similarity. Nevertheless, the strong concentration of findings of
distribution similarity within the two seasonal time blocks is strong
evidence for the presence of such an underlying structure in the
data. In summary, it appears that there are two periods of the year
demarcated roughly by days 110 and 280, during which the dis-
tribution of the wind speed can be reasonably assumed to be sta-
tionary if a modest degree of approximation or error in results
stemming from that assumption can be tolerated. This finding has
strong support for sites off the coast of Maine, and weaker support
for the Virginia site.

4.2. Mean square stationarity

This section describes the results of investigation into the time
scales over which the second moment properties of the wind

Matinicus Rock

0 110 280 365

Fig. 5. Detail of Matinicus Rock pairwise daily KS2 comparisons showing seasonality.

records can be assumed to be nearly stationary. The approach in-
volves estimation of the normalized rates of change of the mean
and variance of the wind speed as represented by the harmonic and
local linear models (Eqgs. (1) and (2)). Table 4 gives the parameters
and confidence intervals for the harmonic model. For a graphical
representation of the relationship between the various models and
the data for a characteristics month of the Matinicus Rock data see
Fig. 6. In the figure, the harmonic model and local linear models are
shown in solid lines and the dashed lines demarcate the amount of
change over periods of one month (for the local linear model) and
one week (for the harmonic model) in the model prediction of the
mean wind speed. To obtain the normalized rates of change (Eq.
(3)) one must further divide these amounts of change by the
aggregate mean of the wind speed u,,. Note also that to preserve
clarity, and for illustrative purposes, the harmonic model is used to
illustrate the weeklong change and the local linear model the
monthlong change. Each of the weeklong and monthlong
normalized rates of change have been calculated and are reported
for both sets of models. Similar calculations are made for the
standard deviation of the wind speed.

The results of this analysis are shown in Tables 5 and 6 and
should be interpreted in the following way: the numerical entries
represent the fraction of the aggregate mean (or standard devia-
tion) wind speed by which the harmonic or local linear model
changes over the monthlong or weeklong period examined. For
example, at Matinicus Rock mean[|Sy, m|] = 0.076 and

Table 4
Harmonic model parameters. For each location and parameter the best fit and 95%
confidence intervals are given.

Location Mean Standard dev.

Amplitude by (m/s) Phase (hrs) Amplitude (m/s) Phase (hrs)

Matinicus Rock 1.97 + 0.028 —400 + 20 1.04 +0.019 —514 £+ 26
East Hue 1.62 + 0.025 —253 +£20 0.73+0.15 —248 + 30
Virginia Beach 1.62 + 0.029 —292 4+ 25 0.64 + 0.020 51 +43
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Fig. 6. Graphical representation of time varying mean wind speed models and defi-
nitions of the normalized rates of change. Definitions are analogous for the standard
deviation data. Data points in the figure represent the ensemble average (n, = 19 years
for Matinicus Rock) of the hourly wind speed data.

max([|Sy, m H = 0.12 meaning that the harmonic model, on average,
predicts a 7.6% change in the mean wind speed over the course of a
672 h period, and that the maximum of all these monthly changes is
12%. Another way to interpret this example is that an assumption of
mean square stationarity for 672 h period would result in an
average error in mean wind speed of 7.6% and a maximum error in
wind speed of 12%.

The first key observation from the results is that the 672 h
(monthlong) period appears to be too long to justify an assumption
of mean square stationarity in the wind speed. Normalized rates of
change for the 672 h period are on the order of 0.08—0.12, which is
a larger error than would normally be acceptable in a stochastic
analysis. For the 168 h (weeklong) periods, however, the normal-
ized rates of change are on the order of 0.02—0.03, degrees of
divergence from stationarity that would seem largely acceptable in
light of the presence of other sources of uncertainty and error in the
analysis of engineering systems that depend on wind speed.

Furthermore, the harmonic model consistently delivers lower
mean and maximum normalized rates of change of the second
moment properties if compared to the local linear model. Without
being able to decouple the inherent non-stationarity in the data
from the estimation error of the local linear model it is difficult to
arrive at a strong conclusion regarding the relative merits of the
models in this context. However, an investigation of a local linear
model fit to weeklong instead of monthlong data sets found a sharp
increase in the mean normalized rates of change that was incon-
sistent with the actual seasonal non-stationarity and consistent
with large estimation error. Therefore, it appears better to attach
primary weight to the results obtained from the harmonic model.

Finally, there is strong consistency in the results across the three
sites selected, with the Virginia Beach site showing somewhat
stronger non-stationarity in the local linear model results. This is
most likely due to the smaller number of years included in the
Virginia Beach data set (12 versus 18 or 19 for the Maine sites)
leading to greater estimation error.

Table 5
Statistics of normalized slope values for harmonic and local linear models for the
mean wind speed at three sites.

Location |SW|-W‘ ‘S#l-m| |SM-W}

Mean Max

‘S#n-m{

Mean Max Mean Max Mean Max

Matinicus Rock  0.076 0.12 0.019 0.030 0.089 0.28 0.022 0.070
East Hue 0.089 0.14 0.022 0.035 0.11 031 0.028 0.077
Virginia Beach  0.081 0.13 0.020 0.032 0.13 040 0.033 0.10

Table 6
Statistics of normalized slope values for harmonic and local linear models for the
standard deviation of wind speed at three sites.

Location [Seww |Sem] |Sa1wl

Mean Max Mean Max Mean Max Mean Max

Matinicus Rock 0.078 0.12 0.019 0.030 0.097 0.26 0.024 0.066
East Hue 0.069 0.11 0.017 0.027 0.089 033 0.022 0.084
Virginia Beach  0.058 0.092 0.015 0.023 0.12 047 0.029 0.12

‘Sﬂnm‘

5. Conclusions

This paper has addressed the issue of statistical stationarity in
offshore wind speed records with an emphasis on fluctuations at
time scales longer than one day. Motivated by the need for wind
speed models that can be used in the assessment of the offshore
wind energy resource and the generating potential of sites identi-
fied for wind energy development, the paper seeks to identify time
scales over which the marginal distribution or second moment
properties of the wind speed record can be assumed to be sta-
tionary, or time-invariant. The well known diurnal variation of
wind speed is neglected in this study.

The paper presents a framework that is based on statistic tests
for the similarity of distributions to evaluate the period of time
over which the marginal distribution of the wind speed can be
assumed stationary, and a similar framework for evaluating sec-
ond moment stationarity that is based on fitting mathematical
models to the non-stationary data and evaluating the rate of
change of the second moment properties predicted by such
models.

Key findings are that an assumption of stationarity of the wind
speed process over a time period of approximately a week is
reasonably well justified, but that such an assumption for a
monthlong period would lead to large prediction errors. Although
reasonably strict notions of stationarity can be supported only over
period up to one week, the data show a distinct division of the year
into two period of time (roughly winter and summer) during which
the marginal distribution of the wind speed is relatively consistent.
The marginal distribution changes abruptly at the ends of such
periods, but relatively gradually within the periods. Finally, the
paper has presented numerical examples based on data collected at
three sites off the Atlantic coast of the United States, and finds
highly consistent results across the three sites, which range from
the states of Maine to Virginia.
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