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ABSTRACT

This study investigates the effect that specimen depth has on the torsional

shear strength of full-size Eastern Species Laminated Veneer Lumber (LVL).

Characterization of this effect is valuable for structural design purposes as well

as for use in constitutive modeling when predicting member strength of one

depth based on member strength of a different depth derived from testing. To

this end, torsion tests were carried out on three depths (140, 184, and 235 mm)

of 1.98 m long by 44 mm thick 1.9E Eastern Species LVL. The shear strength of

each depth was determined based on homogeneous, orthotropic theory for

beams of rectangular cross-section. Despite a perceptible trend of slightly

decreasing shear strength with increasing depth, an analysis of variance test

indicated that no statistically significant depth effect exists as it relates to

torsional shear strength. Further, a three dimensional finite element model of

the 44 mm by 140 mm specimen indicated that stresses are uniform within the

shear span of 2 times the depth plus the grip distance away from each end of

the specimen. The predicted average maximum shear stress in this region

compared well to the maximum shear stresses obtained experimentally.
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Introduction

Size effect is a well-known phenomenon in which the strength of a material

decreases with increasing stressed volume. It has been characterized and incorpo-

rated into the structural design of many building materials, particularly those with

brittle failure mechanisms including concrete, advanced composites, wood and

structural composite lumber [1–5].

The impetus of this study is a larger on-going project which is focused on devel-

oping a constitutive model to predict full-size member strength of Structural Com-

posite Lumber (SCL), of which Laminated Veneer Lumber (LVL) is one type. LVL is

comprised of thin layers of wood veneers that are laminated together with structural

adhesives and are used extensively in light-frame construction in lumber-like appli-

cations such as beams, columns, and scaffolding.

An important implication of size effect comes about when using a multi-axial

strength theory in a constitutive model. The uniaxial (or pure) strengths that are

needed as input for the strength theory must be representative of the volume of ma-

terial to which the strength theory is being applied. For LVL, the uniaxial strengths

are tension and compression, both parallel and perpendicular to grain, and shear. If

size significantly affects any one of these strengths, one should first adjust the

strength that is derived based on a test specimen volume to a strength that is repre-

sentative of the model element size [6–8].

The shear strength of LVL, as with solid wood, is experimentally determined

based on small shear block tests, with a shear area of 2581 mm2, in accordance with

ASTM D143 [9]; however, several recent research studies have asserted that the

shear block method is not appropriate for establishing pure shear strength of struc-

tural lumber or structural composite lumber. Riyanto and Gupta [10] conducted a

comparison test to evaluate the shear strength of dimensional lumber (38 by 89

mm2 by 3.6m long Machine-Stress-Rated lumber) by using three-point bending,

four-point bending, five-point bending, and torsion tests. A Duncan multiple-

comparison test showed that shear strengths from all test methods were significantly dif-

ferent from one other. The torsion test produced the highest shear strength and

appeared to be the best test method for determining shear strength of dimensional lum-

ber because it was the only one able to produce a pure shear stress state (i.e., free of

stress interactions). In a later study, Gupta et al. [11] evaluated the torsion test using five

different lengths and five different depths of full-size structural lumber. They concluded

that the torsion method was the best and most practical approach to determine pure

shear strength for lumber but also found no evidence of a length or depth effect using

this method. Gupta and Siller [12,13] conducted torsion tests and comparison shear

block tests on Structural Composite Lumber (SCL) and recommended it as a standard

method, as did Khokhar et al. [14] who did tests on Sitka spruce and Norway spruce.

The effect of member size on strength has been thoroughly researched for struc-

tural composite lumber for bending and tension scenarios [2,5] but not for torsional

shear. In fact, with the exception of the study done on structural lumber by Gupta

et al. [11], no literature was found that focused on the relationship between size and

torsional shear strength. Interestingly, from previous studies that did torsional test-

ing of structural composite lumber [12,13,15], it appears that a correlation between

size and shear strength may exist, though not scientifically proven. Moreover, the
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torsional shear strength of 1.9E Eastern Species LVL is not reported in the

literature—with the exception of a technical note focused on the machine test setup

that extends from the first author’s graduate thesis [16,17]. The aim of this paper is,

therefore, to establish the torsional shear strength of 1.9E Eastern Species LVL, and

to investigate potential dependence of the torsional shear strength on member size.

Experimental Procedures

MATERIALS

The materials tested in the study were 2600Fb-1.9E Eastern Species LVL boards

manufactured by iLevel by Weyerhaeuser. In general, Eastern Species LVL is a prod-

uct manufactured out of any one, or combination of, the species in the Southern

Pine group (e.g., Longleaf pine, Loblolly pine), Yellow Poplar, and/or Red Maple.

The product is made at any one time from different species considering veneer cost

and availability to the mill. Consequently, the actual mix of species used for the

specimens tested was unknown.

Thirty-six pieces of 1980mm by 44mm wide LVL were tested in this project,

breaking down into 12 pieces for each depth studied (140, 184, and 235mm). Before

the experimental test, the beams were stacked and conditioned for 6 weeks to reach

equilibrium with ambient temperature and humidity. Specimens for moisture con-

tent (MC) and specific gravity (SG) were extracted from the main beams near the

shear crack zone after completion of the torsional tests following the guidelines of

ASTM D2395 [18]. The average MC and SG values were not significantly different

between depth groups and gave a pooled value of 7.7 % (COV 7.8 %) and 0.50

(COV 3.3 %) for MC and SG, respectively.

The minimum length requirement of eight times the larger cross-sectional

dimension per ASTM D198 [19] was followed to ensure a long enough shear span to

allow shear stress uniformity and to avoid end effect. A grip length of 76mm was

used at both ends of the specimen, which produced a gauge length of 1828mm for

all the specimens, as shown in Fig. 1.

TEST METHOD

The torsional tests were conducted using a Universal-type test machine (150 kN

capacity MTS) for which a general procedure is described in ASTM D198 [19]. The

test specimen was clamped symmetrically about the longitudinal axis by two steel

bracket assemblies on either end of the specimen as shown in Fig. 2. The deforma-

tion rate was 0.11 rad per meter of length per minute (rad/m/min), producing maxi-

mum torque in approximately 10min. The test setup and test protocol for this lesser

known approach have been presented in Yang et al. [17] and readers are directed to

this study for more detailed information on the test procedure.

FIG. 1

Torsion test setup and

dimensions of LVL specimen.
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Results and Discussion

TORSION TEST

Upon failure of the specimens (i.e., post peak load), cracking sounds were heard and

shear cracks were observed on both the Transverse–Longitudinal (T–L) and

Through-Thickness–Longitudinal (TT-L) planes parallel to the longitudinal direc-

tion. Shear failure reliably occurred parallel to grain at mid-depth (for syz) or mid-

thickness (for sxz), as expected; referencing Fig. 3(b), torsional shear stress is maxi-

mum at the surface of the beam and zero at the center of the cross section. A failed

FIG. 2

Torsion test with a universal

test machine.

FIG. 3

Shear stress block (a) three-

dimensional coordinate system

and (b) idealized torsional

shear stress distribution over

the cross section.
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torsion specimen is depicted in Fig. 4 showing a through-thickness shear crack at

mid-depth of the specimen.

A typical load-displacement plot is given in Fig. 5. It displays a brittle shear fail-

ure, as expected; however, there is some abnormal increase in slope near peak load.

This was due to slippage between the loading blocks and the steel moment arms

which was evident during testing. It was reasoned that the slippage did not affect the

ultimate strength of the specimen and so, maximum shear stress was calculated

based on the maximum torque produced in the specimen at peak load.

MAXIMUM SHEAR STRESS BASED ON ORTHOTROPIC MATERIAL BEHAVIOR

Gupta and Siller [12] explored two different approaches to evaluate shear stress in

SCL: (1) assuming isotropic behavior, which is the procedure outlined in

FIG. 4

Shear crack on

tangential–longitudinal (T–L)

face of LVL.

FIG. 5

Typical load-crosshead

displacement plot from torsion

test.
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ASTM D198 [19] based on work by Trayer and March [20], and (2) assuming ortho-

tropic behavior per Lekhnitskii [21]. Although the latter approach was more com-

plex, they found it to be justified in that incorporating realistic orthotropic

properties proved to be influential; in particular, the shear moduli in the two longi-

tudinal planes, Gxz and Gyz, significantly influenced the results for shear strength.

Thus, for this study, maximum shear stress was calculated in accordance with

Lekhnitskii’s approach [21]. The formulas are for homogeneous orthotropic beams

of rectangular cross section as follows:

sxz ¼
T
a2b

k1(1)

syz ¼
T

la2b
k2(2)

where:

sxz¼maximum in-plane shear stress (on the T–L plane in the L direction),

syz¼maximum through-thickness shear stress (on the TT–L plane in the L

direction),

a¼width,

b¼ depth,

T¼ twisting moment (or torque) at peak load (twice the product of the normal

component of the maximum applied vertical load and the corresponding moment

arm), and

k1, k2¼ factors that depend on aspect ratio and shear moduli.

l ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GyzGxz

p

The factors k1, k2 need to be interpolated separately from a Table given in Lekh-

nitskii [21]. They depend not only on the dimensions, a and b, but also on the ratio

of the two shear moduli in the longitudinal direction, Gyz and Gxz.

While values for Gyz and Gxz for some LVL products exist in the literature, no

information has been found specifically for 2600Fb-1.9E Eastern Species LVL.

According to Janowiak et al. [22], the test protocol to derive these values from a tor-

sional test requires that torsional stiffness measurements be taken over various slen-

derness ratios—a separate procedure from that of the current study. Therefore, for

the purposes of this study, shear moduli of a similar product (2.0E Southern Pine

LVL) was employed. Taken from Janowiak et al. [22], the shear moduli are 636MPa

and 282MPa for Gyz and Gxz, respectively, and the corresponding l value is 1.5.

Using Lekhnitskii’s approach, the orthotropic shear stresses at failure, sxz and

syz, were calculated. Mean values and corresponding COVs are presented in Table 1.

Since the COVs appear different across groups, the data was analyzed for homo-

scedasticity (equal variances) using Bartlett’s test. The test concluded that, with a

p-value of 0.285 and a significance level of 0.05, the variances are not significantly

different and the data is homoscedastic.

Regarding size effect, there is a visible trend of slightly decreasing shear strength

with increasing depth in the values shown in the cumulative distribution plots in

Fig. 6. However, an Analysis of Variance (ANOVA) test, conducted at a 5 % level of

significance, indicated that no significant difference exists between the mean of the
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three size groups. Consequently, it is concluded that depth effect on shear strength

of 2600Fb-1.9E Eastern Species LVL, within the range of depths from 140 to

235mm, was deemed statistically insignificant.

Based on a pooled set of data of 36 specimens, the mean shear strengths on the

T–L plane (sxz) and the TT–L plane (syz) were calculated to be 10.9MPa (16.2 %

COV) and 5.6MPa (16.8 % COV), respectively. These results compare reasonably

well with mean strength values published for a similar product from a different spe-

cies, 1.9 E Douglas Fir LVL, where sxz and syz were determined to be 7.96 and

4.9MPa, respectively [12].

Finite Element Model

A three dimensional, linear elastic, orthotropic finite element model was created

using the commercially available finite element program ADINA to analyze the shear

stress distribution of the torsional specimens. The analysis was performed with ortho-

tropic properties for the 44mm by 140mm by 1980mm LVL specimen so that com-

parisons could be made between the FE model and the experimental results.

FE MESH AND BOUNDARY CONDITIONS

Three dimensional, eight-node brick elements were used to model the specimen as

an orthotropic continuum. To ensure a suitable mesh size, a convergence study was

FIG. 6 Cumulative Distribution Function of Orthotropic Torsional Shear Strength:(a) Through-thickness Shear Strength; (b)

In-plane Shear Strength

TABLE 1

Mean shear strength results.

Dimensions (mm) Mean (MPa) COVa (%)

sxz 44 by 140 11.2 18.8

44 by 184 10.9 12.3

44 by 235 10.7 13.0

syz 44 by 140 5.9 18.9

44 by 184 5.5 12.2

44 by 235 5.3 13.0

aHomoscedastic data at a 5 % level of significance.
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conducted, whereupon the beam was discretized evenly into 12 elements in the

through-thickness (x) direction, 24 elements in the in-plane (y) direction, and 52

elements in the longitudinal (z) direction with 14 976 elements in total.

The specimen was modeled assuming one end constrained while the other end

was subjected to opposing transverse loads (i.e., a force couple) to create a torsional

moment. Figure 7 shows the boundary conditions and loading applied to the speci-

men. A 76mm long boundary length was designated on both ends of the specimen.

On the constrained end, all nodes on both wide faces were fixed in all directions. On

the loaded end, opposing transverse surface loads were uniformly distributed on

both wide faces over 1=2 the specimen height.

The mean value of the maximum torque from the experimental test, 750N�m,

was used to calculate the applied surface loads. These loads were adjusted accord-

ingly for each mesh size such that force was applied per node on the surface (analo-

gous to an applied pressure).

The orthotropic elastic properties of 2.0 E SP LVL (taken from Janowiak et al.

[22]), were used in the FE model to provide a basis of comparison to the experimen-

tal results. Given the modulus of elasticity in the longitudinal direction (Ez) to be 13

700MPa, the moduli of elasticity in the other directions were deduced using theoret-

ical elastic ratios for longleaf pine (one of several possible species in Eastern Species

LVL) published in the Wood Handbook [23]. Poisson ratios were also taken from

this source. The resulting elastic properties used in the FE model are listed in

Table 2.

TABLE 2

Elastic properties used in FE model.

Ez Ey Ex Gyz Gxz Gxy �xz �yz �xy l

—— (MPa) ——

13 700 460 585 636 282 29 0.017 0.023 0.481 1.50

FIG. 7

Boundary conditions of

torsional finite element model.
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MODEL RESULTS

Figures 8(a) and 8(b) illustrate the distribution of maximum shear stress as it varies

along the length of the specimen. Consistent with theory, maximum in-plane shear

stress (sxz) occurred at mid-depth and maximum through-thickness shear stress

(syz) occurred at mid-width.

The vertical dotted lines denote the distance of 2 times the depth plus the clamp

length (76mm) away from each end of the beam. Within this range, between the

loaded and constrained ends, the shear stresses are nearly uniform. The average

shear stress matches well the theoretical stress for a rectangular specimen under tor-

sion as found from in experimental results of the study: the average in-plane stress

from the model is 12.15MPa, and the average through-thickness stress is 6.25MPa

compared with the experimentally obtained values of 11.2 (8.48 % difference) and

5.9MPa (5.9 % difference), respectively.

Outside of this range (i.e., in the grip zone), the graphs do not match the theo-

retical shear stresses due to the effects of the model boundary conditions. Gupta

et al. [24] found the same end effect on their torsion model of structural lumber.

They reported the same range of uniform stresses (2 times the depth plus the clamp

length) and showed similar stress distribution in the grip zones.

Conclusions

Recent research studies have concluded that pure shear strength of dimensional

lumber and structural composite lumber is most accurately determined using torsion

tests as opposed to the ASTM shear block method or three or five point bending test

methods. This research study involved torsional shear stress tests on 1.9E Eastern

Species Laminated Veneer Lumber (LVL) of three different depths to evaluate pure

shear strength and any related depth effect on shear strength. The key findings of

the study are as follows:

The results indicated a slightly decreasing trend with increasing depth dimen-

sion. However, an Analysis of Variance (ANOVA) test result proved no significant

difference between the means of the results and hence it was determined that depth

FIG. 8 Plot of shear stress distribution along longitudinal direction of beam: (a) through thickness shear stress, syz; (b) in-plane

shear stress, sxz.
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does not affect torsional shear strength in 1.9E Eastern Species LVL within the range

of depths tested (140, 184, and 235mm).

The orthotropic shear stresses for 1.9E Eastern Species LVL on both in-plane

and through-thickness directions were calculated based on the shear moduli of 2.0E

Southern Pine. From a pooled data set of 36 specimens, the mean values were found

to be 10.9 and 5.6MPa for the in-plane and through-thickness shear strengths,

respectively. Future tests to determine the shear moduli, Gxz and Gyz, specifically for

1.9E Eastern Species LVL, may benefit the accuracy of these results.

A Finite Element Study of a torsional shear test was carried out and the results

compared favorably with the experimental results. Excluding the effects of boundary

conditions, shear stresses were constant in a range of 2 times the depth plus the

clamp length (76mm) away from each end of the beam. Within this shear zone, the

model was successful in predicting the shear stresses in both planes for laminated

veneer lumber.
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