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a b s t r a c t

The ability to determine probabilistic characteristics of response quantities in structural
mechanics (e.g. displacements, stresses) as well as effective material properties is
restricted due to lack of information on the probabilistic characteristics of the uncertain
system parameters. The concept of the variability response function (VRF) has been pro-
posed as a means to systematically capture the effect of the stochastic spectral character-
istics of uncertain system parameters modeled by homogeneous random fields on the
uncertain structural response. The key property of the VRF in its classical sense is its inde-
pendence from the marginal probability distribution function (PDF) and the spectral den-
sity function (SDF) of the uncertain system parameters (it depends only on the
deterministic structural configuration and boundary conditions). Proofs have been pro-
vided for the existence of VRFs for linear and some nonlinear statically determinate beams.
For statically indeterminate structures, the Monte Carlo based generalized variability
response function (GVRF) methodology has been proposed recently as a generalization of
the VRF concept to indeterminate linear and some nonlinear beams. The methodology
computes GVRFs, which are analogous to VRFs for statically determinate structures, and
evaluates their dependence (or lack thereof) on the PDF and SDF of the random field,
thereby providing an estimate of the accuracy of the GVRF. In this paper, the GVRF meth-
odology is extended to problems involving two-dimensional, linear continua whose sto-
chasticity is characterized by statistically homogeneous random fields. After detailing
the GVRF methodology for two-dimensional random fields, two numerical examples are
provided: GVRFs are computed for the displacement response and for the effective compli-
ance of linear plane stress systems.

! 2014 Elsevier B.V. All rights reserved.

1. Introduction

The difficulty in establishing probabilistic characterizations of the response stochasticity of structures with uncertain sys-
tem parameters (e.g. material properties) arises from the computational effort required to solve such problems and the chal-
lenges in developing realistic, detailed models for system parameter stochasticity (a lack of data, an inability to measure the
desired parameters, model error, noisy measurements, and many more factors). An efficient way to address this problem is
to establish functions providing probabilistic information of a response quantity of a structure while being independent of
the uncertain parameters. Such functions allow efficient computation, and by virtue of their independence from the system
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parameters, allow stochastic sensitivity analysis of the system. One such function is the variability response function (VRF),
first proposed by Shinozuka [24], which is essentially a Green’s function relating the variance of a response quantity of a
structure (e.g. displacement) to the spectral density function (SDF) of the uncertain system parameters. In the VRF approach,
it is assumed that the uncertain system can be described by a homogeneous random field, f ðxÞ. With the exception of a few
problems involving approximate Taylor expansion techniques [6,7,19,31], the VRF in previous literature is established for
problems where the homogeneous random field is a one-dimensional function f ðxÞ. However, in general three-dimensional
problems, an expression for the variance of a displacement quantity uðxÞ is sought as

Var uðxÞ½ $ ¼
Z

Xj

VRFuðx;jÞSf ðjÞdj; ð1Þ

where Sf ðjÞ is the SDF of the zero-mean, homogeneous random field f ðxÞ modeling the uncertain system parameters,
j ¼ j1;j2;j3ð Þ is the wavenumber, and x ¼ x1; x2; x3ð Þ is the spatial location. The function VRFuðx;jÞ is a deterministic func-
tion that depends on deterministic properties of the structure, loading, and boundary conditions. It identifies the sensitivity
of the response variability to the spectral characteristics (or equivalently the correlation structure) of f ðxÞ and provides the
supremum of the response variance if only the variance of f ðxÞ is known (i.e. this is where Sf ðjÞ ¼

rf
2 dðj& j'Þ þ dðjþ j'Þ½ $

with VRFuðx;j'Þ being the maximum value of VRFuðx;jÞ). For analytically derived expressions for the exact VRF for the dis-
placement response of statically determinate beams, the reader is referred to Refs. [1,5] for linear constitutive laws and Ref.
[28] for nonlinear constitutive laws. Ref. [23] provides exact analytical expressions for the VRF for the effective flexibility (!D)
of statically determinate beams. In this case, the variance of !D is expressed as

Var !D
! "
¼
Z 1

&1
VRF !DðjÞSf ðjÞdj: ð2Þ

A computationally efficient numerical approach called the Fast Monte Carlo methodology, first proposed in [25] and fur-
ther developed in [20,21], can be applied to general linear finite element systems to establish an approximate VRF for stat-
ically indeterminate structures. This method involves a fundamental conjecture: a unique VRF exists for statically
indeterminate structures that is independent of the PDF and SDF of the random field modeling the uncertain system param-
eters. However, it is known that exact expressions for the VRF for statically indeterminate structures do not exist because the
response variance cannot be expressed as a function that is separable with respect to its deterministic component and a
function associated with the spectral content of the random field. Thus, a methodology has been proposed as an improve-
ment to the Fast Monte Carlo methodology whose aim is to establish a generalized VRF (GVRF) for linear, statically indeter-
minate structures while evaluating the potential dependence of the computed GVRFs on the random field [18]. The degree of
dependence, which can be quantified by the GVRF method, is directly related to the degree of approximation that occurs
when equations such as Eqs. (1) and (2) are applied to indeterminate structures.

In the GVRF methodology, the uncertain system parameters are described by random fields having a wide range of com-
binations of marginal PDFs and SDFs. For each combination considered, a corresponding GVRF is computed. If all the com-
puted GVRFs are approximately the same, then the GVRFs can be assumed to be nearly independent of the random fields, and
the GVRFs can be utilized analogously to the classical VRF.

The applicability of the GVRF methodology has been demonstrated for the displacement response of linear indeterminate
beams [18], a class of nonlinear indeterminate beams [28], and for the effective flexibility of linear indeterminate beams [27].
These problems involve one-dimensional random fields. In this paper, the GVRF methodology is extended to include linear
continua whose stochasticity is modeled by two-dimensional random fields (e.g. elastic modulus of plane stress/strain struc-
tures). The numerical examples considered are the GVRF for the response displacement of a plane stress structure and the
GVRF for the effective compliance of a plane stress structure. The paper is outlined as follows: the VRF concept related to the
homogenization of material properties is described in Section 2. The GVRF methodology is detailed for two-dimensional sto-
chastic problems in Section 3 and the numerical examples mentioned above follow in Section 4. The paper concludes with a
discussion of the results.

2. VRF concept for effective material properties

Homogenization of material properties into effective properties occurs, often implicitly, when conducting standard tests
such as tensile tests, direct shear tests, v-notch tests, creep tests, and others. This is because most materials exhibit random
heterogeneity at the meso- and micro-scales. It is shown in [22] that elastic effective properties can be considered as deter-
ministic when the structure considered is sufficiently larger than the correlation length scale of the uncertain heterogene-
ities. The size of the structure where the effective properties become effectively deterministic corresponds to that of the
representative volume element (RVE). When the structure considered is smaller than the RVE, the effective properties are
random variables [2,8,11,13,16,32]. The development of multiscale finite element analysis has provided a means of propa-
gating material property uncertainty across scales [12,14,29]. A need exists, however, for efficient methods based on sound
mechanics that provide a direct connection between material property uncertainty at different scales.

Consider a heterogeneous body X described by coordinates x 2 R3 whose material properties can be described as locally
isotropic. The strong form of the boundary value problem with its boundary conditions is
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rij;j þ bi ¼ 0 ð3aÞ

rij ¼ CijklðxÞ!kl ð3bÞ

!ij ¼
1
2
ðui;j þ uj;iÞ ð3cÞ

rijnj ¼ !ti 2 Ct ð4aÞ

ui ¼ !ui 2 Cu ð4bÞ

Ct [ Cu ¼ @X and Ct \ Cu ¼ ;; ð4cÞ

where r and ! are the stress and strain tensors, respectively, and u and b are the displacement and body force vectors,
respectively. The boundary @X, defined by outward unit normal vector n, is the union of spaces Ct and Cu defining the spaces
of prescribed traction, !t, and displacement, !u, respectively. The constitutive tensor CðxÞ is a function of position due to ran-
dom spatial fluctuations of the elastic modulus and/or Poisson’s ratio of the material occupying X. Let a homogenized coun-
terpart of X, denoted XH , be occupied by a material with a constitutive tensor, !C, that is constant within XH but is a function
of the displacement boundary conditions (Eq. (4b)), surface tractions (Eq. (4a)), and an integral expression of CðxÞ. One def-
inition of the effective material properties is that the strain energy in XH equals the strain energy in X under the same set of
boundary conditions, that is

1
2

Z

XH

!0ðxÞ : !C : !0ðxÞdV ¼ 1
2

Z

X
!ðxÞ : CðxÞ : !ðxÞdV ¼ 1

2

Z

Ct

uðxÞ ) !tðxÞdCt; ð5Þ

where !0ðxÞ is the strain in XH , ‘:’ denotes the tensor inner product, and ‘)’ denotes the vector dot product. Note that Eq. (5) is
given in the absence of body forces without loss of generality. Consider the case where the Poisson’s ratio is approximated as
constant and only the elastic modulus EðxÞ is randomly heterogeneous (the shear modulus GðxÞ must also therefore be het-
erogeneous to preserve isotropy). Then the effective elastic modulus, !E can be factored out of the homogeneous constitutive
tensor (i.e. !C ¼ !E!C0), and can be expressed as

!E ¼
R

Ct
uðxÞ ) !tðxÞdCtR

XH
!0ðxÞ : !C0 : !0ðxÞdV

¼
R

X !ðxÞ : CðxÞ : !ðxÞdV
R

XH
!0ðxÞ : !C0 : !0ðxÞdV

: ð6Þ

Similarly, the effective compliance !D ¼ 1
!E is defined as

!D ¼
R

XH
!0ðxÞ : !C0 : !0ðxÞdV
R

Ct
uðxÞ ) !tðxÞdCt

¼
R

XH
!0ðxÞ : !C0 : !0ðxÞdV

R
X !ðxÞ : CðxÞ : !ðxÞdV

: ð7Þ

The effective elastic modulus is bounded by the Reuss (isostress) and Voigt (isostrain) bounds [10]

!Er 6 !E 6 !Ev ð8aÞ

Reuss : !Er ¼
1

VX

Z

X
EðxÞ&1dV

# $&1

Voigt : !Ev ¼
1

VX

Z

X
EðxÞdV ð8bÞ

From Eq. (6), the variance of the effective elastic modulus is computed as

Var !E
! "
¼ 1

C2
1

Var
Z

Ct

uðxÞ ) !tðxÞdCt

# $
; ð9Þ

where C1 ¼
R

XH
!0ðxÞ : !C0 : !0ðxÞdV . If the random fluctuations of the elastic modulus about its mean value are described by a

statistically homogeneous, zero-mean random field, f ðxÞ, then the goal of the VRF concept is to establish the following
relationship

Var !E
! "
¼
Z 1

&1

Z 1

&1

Z 1

&1
Sf ðj1;j2;j3ÞVRF!Eðj1;j2;j3Þdj1 dj2 dj3; ð10Þ

where Sf ðj1;j2;j3Þ is the SDF of f ðxÞ. An analogous expression can be established for the effective compliance !D. The reader
is referred to [23,27] for analytically derived expressions for the VRF for the effective flexibility of statically determinate
beams.
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3. Generalized variability response function (GVRF) methodology

Only for specific cases of statically determinate structures can VRFs be proven to exist because, in general, the displace-
ment cannot be described by a function that is separable with respect to the applied traction and the stochastic parameters
in the constitutive law. Therefore, for statically indeterminate structures, the integrand in Eq. (1) cannot be obtained. How-
ever, the GVRF methodology generalizes the VRF concept so that it is applicable to statically indeterminate structures. The
original work delineating the methodology can be found in Ref. [18] where it is applied to a linear statically indeterminate
beam. This methodology is based on the premise that there exists a GVRF for indeterminate structures that is approximately
independent of the PDF and/or SDF of the uncertain parameters. The main objective of the methodology is to numerically
compute GVRFs for a variety of random field models describing the uncertain parameters and to determine the degree to
which the above premise is valid (of PDF/SDF independence). This section extends the methodology to linear continua where
the uncertain parameters are modeled by two-dimensional random fields.

3.1. GVRF for problems involving two-dimensional random fields

Consider a specific linear continuum with a randomly heterogeneous material property (e.g. the compliance DðxÞ) mod-
eled by a zero-mean, two-dimensional homogeneous random field f ðxÞ, where x ¼ ðx1; x2Þ 2 R2, with SDF Sf ðj1;j2Þ and pre-
scribed marginal PDF. The variance of its effective property !D can be written in the following integral form involving some
function VRF !Df

ðj1;j2Þ

Var !D
! "
¼
Z 1

&1

Z 1

&1
Sf ðj1;j2ÞVRF !Df

ðj1;j2Þdj1 dj2: ð11Þ

Similarly, the variance of the displacement response uðxÞ can be written in the following integral form involving some func-
tion VRFuf ðx;j1;j2Þ

Var uðxÞ½ $ ¼
Z 1

&1

Z 1

&1
Sf ðj1;j2ÞVRFuf

ðx;j1;j2Þdj1 dj2: ð12Þ

The aim of this work is to explore the existence of a function VRF !Dðj1;j2Þ, that is VRF !Dðj1;j2Þ * VRF !Df
ðj1;j2Þ 8f (similarly,

VRFuðx;j1;j2Þ * VRFuf ðx;j1;j2Þ 8f ). For the sake of conciseness, the methodology is only described below for the displace-
ment response rather than the effective property since the formulation is essentially identical. The left-hand-side of the
above equation, Var uðxÞ½ $, can be easily computed through brute-force Monte Carlo simulation by generating sample func-
tions of random field f ðxÞ using its prescribed SDF and PDF. It is obvious, however, that there is no unique solution for
VRFuf ðx;j1;j2Þ in Eq. (12), given Sf ðj1;j2Þ. Assuming quadrant symmetry [30], Eq. (12) can be written in discretized form as

Var uðxÞ½ $ ¼ 4ðDjÞ2
XN

j¼1

XN

l¼1

Sf ðjj;jlÞVRFuðx;jj;jlÞ; jj; jl 2 ½0;ju$; ð13Þ

where the wave number domain is discretized into N + N equal intervals Dj between 0 and an upper cutoff wave number ju,
and the set of wave numbers jj ¼ jDj

2 ;jl ¼ lDj
2

n o
are the center points of the intervals. Eq. (13) can also be written equiva-

lently as a dot product between two vectors

Var uðxÞ½ $ ¼ 4ðDjÞ2Sq ) VRFq; ð14Þ

where index q ¼ ðj& 1Þ + N þ l giving VRFq ¼ VRFuðx;jj;jlÞ and Sq ¼ Sf ðjj;jlÞ. Consider now that N2 different SDFs,
Sfp ðj1;j2Þ; p ¼ 1;2; . . . ;N2, are selected (all with the same marginal PDF) and that Eq. (14) is written repeatedly for each
one of these N2 SDFs. This leads to a system of N2 linear equations with N2 unknowns, where the unknowns are contained
in the vector of discretized values of the VRF (denoted from now on as GVRF and standing for generalized variability response
function). The left-hand-side vector of variances can be easily computed by Monte Carlo simulations as mentioned earlier,
and the system of linear equations with N2 unknowns that provides a unique solution for the vector of discretized values of
the GVRF is written as

Var uðxÞp
h i

¼ 4ðDjÞ2SpqGVRFq: ð15Þ

Each of the N2 rows in Eq. (15), identified by index p, corresponds to a different SDF, Sfp ðj1;j2Þ; p ¼ 1;2; . . . ;N2. The index q
is defined as in Eq. (14), and thus the matrix of SDFs S relates to the individual SDFs as Spq ¼ Sfp ðjj;jlÞ and the vector GVRF is
defined as GVRFq ¼ GVRFðx;jj;jlÞ. The choice of the structure of the N2 SDFs is detailed in Section 3.3.

The entire process resulting in Eq. (15) is repeated for several other sets of N2 different SDFs paired with a wide range of
different marginal PDFs. If the solutions of all these systems of N2 linear equations yield approximately the same solution for
the GVRF (allowing for small differences due to numerical reasons), then it can be claimed that an approximate VRF exists for
this structure that is almost entirely independent of the SDF and the PDF of the random field modeling the uncertain system
properties.
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It is worth noting that the GVRF methodology developed in this paper is capable of handling one random field. Thus, for
the problems studied in this paper, only a single component of the isotropic elastic constitutive tensor is modeled as a ran-
dom field (i.e. the compliance is a random field and Poisson’s ratio is considered to be deterministic). For a more compre-
hensive representation, the two components of the isotropic elastic constitutive tensor should be modeled as correlated
random fields. However, the focus of this paper is to develop the GVRF methodology in two dimensions. Developing the
GVRF methodology for multiple, correlated random fields is beyond the scope of this paper and is the subject of future
studies.

3.2. Non-Gaussian random fields considered

The non-Gaussian random field models considered are either memoryless translation fields [9] or associated fields [3,4].
The underlying field is denoted by gðx1; x2Þ and the transformed non-Gaussian field by f ðx1; x2Þ, while the two corresponding
marginal cumulative distribution functions (CDFs) are denoted by Fgð)Þ and Ff ð)Þ, respectively. Then, whether f ðx1; x2Þ is a
translation field or an associated field, it is defined through the following transformation

f ðx1; x2Þ ¼ F&1
f Fgðgðx1; x2ÞÞ
% &

: ð16Þ

When f ðx1; x2Þ is a translation field, gðx1; x2Þ is a Gaussian field. When f ðx1; x2Þ is an associated field, gðx1; x2Þ is a U-shaped
Beta random sinusoid field. The marginal PDFs considered in the following examples for f ðx1; x2Þ include truncated Gaussian,
Lognormal, and Uniform distributions.

Realizations of f ðx1; x2Þ can be generated by simulating gðx1; x2Þ and then performing the transformation in Eq. (16). In the
case of a translation field for f ðx1; x2Þ, the underlying Gaussian field gðx1; x2Þ is simulated using the Spectral Representation
Method outlined in [26]. In the case of an associated field for f ðx1; x2Þ, the underlying U-shaped Beta random field gðx1; x2Þ
has a specific SDF which consists of a delta function centered at wave number ðjd1 ;jd2 Þ, given by

Sgðj1;j2Þ ¼
1
2
r2

g dðj1 & jd1 ;j2 & jd2 Þ þ dðj1 þ jd1 ;j2 þ jd2 Þ
! "

; ð17Þ

while the field itself can be expressed as

gðx1; x2Þ ¼
ffiffiffi
2
p

rg cosðjd1 x1 þ jd2 x2 þ hÞ; h Uniform in ½0;2p$: ð18Þ

Eq. (18) can be used in a straightforward way to generate sample realizations of gðx1; x2Þ.
The non-Gaussian random field f ðx1; x2Þ (whether translation or associated) is given by the following expressions for the

three marginal PDFs considered.

Truncated Gaussian (TG)

f ðx1; x2Þ ¼
al; sU&1ðFgðgðx1; x2ÞÞÞ þm < al

sU&1ðFgðgðx1; x2ÞÞÞ þm; al 6 sU&1ðFgðgðx1; x2ÞÞÞ þm 6 au

au; au < sU&1ðFgðgðx1; x2ÞÞÞ þm:

8
><

>:
ð19Þ

Uniform (UN)

f ðx1; x2Þ ¼ ðau & alÞFgðgðx1; x2ÞÞ þ al: ð20Þ

Lognormal (LN)

f ðx1; x2Þ ¼ exp mþ sU&1ðFgðgðx1; x2ÞÞÞ
( )

þ al: ð21Þ

The parameters al and au are the lower and upper bounds of f ðx1; x2Þ, respectively, and m and s are parameters to shift and
scale the underlying random field. One case is considered from each one of the above three probability distributions and the
resulting three cases for the marginal PDFs of f ðx1; x2Þ are fully defined in Table 1. It should be noted that the parameters
have been chosen such that all three of these marginal PDFs have mean values equal to zero.

Table 1
Parameters of three zero-mean marginal PDFs considered for f ðx1; x2Þ.

PDF Parameters rf

al au m s

LN &.799 – &.45
ffiffiffiffiffiffiffi
:45
p

.60
TG &.90 .90 0.0 1.0 .67
UN &.99 .99 – – .57
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The CDFs of the two underlying fields are given by

Gaussian : Fgðgðx1; x2ÞÞ ¼ Uðgðx1; x2ÞÞ ¼
Z gðx1 ;x2Þ

&1

1ffiffiffiffiffiffiffi
2p
p exp & s2

2

* +
ds; &1 < gðx1; x2Þ <1 ð22aÞ

U-Beta : Fgðgðx1; x2ÞÞ ¼ 1& 1
p cos&1 gðx1; x2Þffiffiffi

2
p

* +
¼ 1& 1

p cos&1 cosðjd1 x1 þ jd2 x2 þ hÞ
% &

; &
ffiffiffi
2
p

< gðx1; x2Þ

<
ffiffiffi
2
p

: ð22bÞ

Both of the above CDFs have zero mean and unit standard deviation. Note that although ðx1; x2Þ appears in the expression for
the marginal PDF of the U-beta distribution, it can be shown that the marginal PDF is independent of ðx1; x2Þ due to the Uni-
form distribution of h and the 2p periodicity of the cosine.

3.3. Families of spectral density functions considered

All the components of the matrix in Eq. (15) involve SDFs of the transformed fields fpðx1; x2Þ; p ¼ 1;2; . . . ;N2. However, it
is the underlying fields gpðx1; x2Þ; p ¼ 1;2; . . . ;N2 that are defined first, and then they are transformed into the corresponding

fpðx1; x2Þ; p ¼ 1;2; . . . ;N2 through Eq. (16). The criteria for selecting one family of N2 underlying fields gpðx1; x2Þ;
p ¼ 1;2; . . . ;N2 are the following.

1. The SDFs of the N2 fields gpðx1; x2Þ; p ¼ 1;2; . . . ;N2 should show as high a diversity as possible in providing power over
the entire wave number range considered: 0;ju½ $ + 0;ju½ $.

2. All of these N2 fields should have the same marginal PDF fgð)Þ and consequently the same variance.
3. The N2 SDFs should be organized in a way such that the condition number of the resulting matrix is minimized.

The structure chosen to satisfy the aforementioned criteria is shown in Fig. 1. The SDFs of the N2 fields
gpðx1; x2Þ; p ¼ 1;2; . . . ;N2 all have the same shape, differing only by a shift in the wavenumber domain, which is made in

both dimensions ðj1;j2Þ by increments of Dj. In order for all N2 fields to have the same variance, the corresponding SDFs
are defined in a circulant manner: as the SDFs are shifted towards the upper cutoff wave number ju, the values that would
extend beyond ju are carried over to the origin of the wave number domain for each dimension as described by Eq. (23).
Since the shifting is performed in each dimension of ðj1;j2Þ, it is necessary to express index p by two indices ðm;nÞ where
p ¼ Nðm& 1Þ þ n. The circulant structure is demonstrated in Fig. 1 where ju ¼ 1:2p and N ¼ 16. The SDF of g1;1ðx1; x2Þ (out of

the N2 SDFs Sgm;n ðj1;j2Þ; m ¼ 1;2; . . . ;N; n ¼ 1;2; . . . ;N) is known as the parent SDF of this family and is denoted by SpðjÞ.
This parent SDF is shown in Fig. 1a for one of the cases considered in this study and is denoted by Sp1ðj1;j2Þ (exponential
decay defined in the first row of Eq. (24)). Five more SDFs are shown from this family in Fig. 1: p ¼ 40 (i.e. Sp13;8 ðj1;j2Þ),
p ¼ 93 (i.e. Sp16;13 ðj1;j2Þ), p ¼ 120 (i.e. Sp18;8 ðj1;j2Þ), p ¼ 180 (i.e. Sp112;4 ðj1;j2Þ), and p ¼ 205 (i.e. Sp113;13 ðj1;j2Þ) (out of a total

of 256). The ðm;nÞth SDF of a family Sgm;n ðj1;j2Þ is defined in terms of the parent SDF Spðj1;j2Þ as

Sgm;n ðjj;jlÞ ¼

Spðjj þ ju &mDjþ Dj;jl þ ju & nDjþ DjÞ;
0 6 jj 6 ðm& 1ÞDj; 0 6 jl 6 ðn& 1ÞDj

Spðjj &mDj;jl þ ju & nDjþ DjÞ;
mDj 6 jj 6 ju; 0 6 jl 6 ðn& 1ÞDj

Spðjj þ ju &mDjþ Dj;jl & nDjÞ;
0 6 jj 6 ðm& 1ÞDj; nDj 6 jl 6 ju

Spðjj &mDj;jl & nDjÞ; mDj 6 jj 6 ju; nDj 6 jl 6 ju

8
>>>>>>>>>>><

>>>>>>>>>>>:

ð23Þ

for ðj1;j2Þ 2 0;ju½ $ + 0;ju½ $ and is symmetric about j2 ¼ 0 (i.e. Sgm;n ðj1;j2Þ ¼ Sgm;n ðj1;&j2Þ).
Two families of N2 SDFs are considered in this study. The corresponding parent SDFs are denoted by Sp1ðj1;j2Þ and

Sp2ðj1;j2Þ and are given by

Sp1ðj1;j2Þ ¼
2
p exp &2ðj2

1 þ j2
2Þ

% &
Sp2ðj1;j2Þ ¼ dðj1;j2Þ: ð24Þ

It should be noted that Sp2ðj1;j2Þ is used for the underlying U-shaped Beta random sinusoid field, while Sp1ðj1;j2Þ is used
for the underlying Gaussian field.

The preceding discussion described the definition of a family of N2 underlying fields gpðx1; x2Þ; p ¼ 1;2; . . . ;N2 and of their
corresponding SDFs. The ultimate objective is to determine the spectral functions of the transformed fields
fpðx1; x2Þ; p ¼ 1;2; . . . ;N2 so that they can be used to construct the matrix in Eq. (15). The SDFs of
fpðx1; x2Þ; p ¼ 1;2; . . . ;N2 can be computed numerically in a straightforward way using translation field theory [9] or asso-
ciated field theory [17].

126 K. Teferra et al. / Comput. Methods Appl. Mech. Engrg. 272 (2014) 121–137



It is important to note that the structure of the matrix of SDFs in Eq. (15) is a direct extension from the concept of the
GVRF methodology for one-dimensional stochasticity. For two-dimensional problems, this matrix has an unavoidably high
condition number making it difficult to accurately solve the system of linear equations in Eq. (15) through matrix inversion
or direct solving. For example, the condition number for the matrix associated with the family of SDFs Sp1 in Eq. (24) having
the Lognormal marginal PDF (LN) in Table 1 is

kSk2 + kS
&1k2 ¼ 676:8; ð25Þ

Fig. 1. Selected members of a family of SDFs of an underlying Gaussian field. The parent SDF for this family is shown in (a) and is defined in the first row of
Eq. (24).
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where the size of the matrix is 256+ 256, and k ) k2 is the ‘2 norm (this is compared to a condition number of approximately
19.0 for a family of SDFs associated with one-dimensional Lognormal translation fields). However, by taking advantage of the
fact that VRFs are by definition non-negative, Eq. (15) can be solved using a non-negative least squares algorithm (NNLS), that
is

Minimize k4ðDjÞ2S ) GVRF & Var u½ $k for GVRF P 0: ð26Þ

The MATLAB routine ‘LSQNONNEG’ was utilized for this purpose. Its implementation follows the algorithm in Ref. [15, Chap-
ter 23, Section 3], which contains proofs regarding convergence (i.e. proof of reaching the Karush–Kuhn–Tucker condition
necessary for an optimal solution vector and thus the finite convergence of the algorithm) and techniques to overcome finite
numerical precision. Additional numerical and computational challenges are involved in extending the GVRF formulation
from one dimension to two dimensions. There is an increase in computational costs due to slower convergence of response
statistics, as well as requiring N2 random fields (as opposed to N random fields). Also, establishing the matrix of SDFs re-
quires an inverse Fourier transform of the underlying SDF to its autocorrelation, a transformation of the underlying autocor-
relation to the autocorrelation of the mapped field, and a Fourier transform to get the SDF of the mapped field. There are
numerical precision concerns associated with these numerical operations which are more challenging, although not insur-
mountable, for two-dimensional fields than one-dimesional fields.

3.4. A note on computational demand

It should be noted that the GVRF methodology is computationally intensive. Within each family (defined through a parent
SDF and a marginal PDF), each of the N2 random fields fpðx1; x2Þ; p ¼ 1;2; . . . ;N2 requires a set of Monte Carlo simulations to
determine a variance on the left-hand-side of Eq. (15). These intensive computations are performed on a IBM Blue Gene
supercomputer owned by Brookhaven National Laboratory using the IBM Fortran90 XL compiler. Each set of Monte Carlo
simulations involves 102,400 deterministic runs that are distributed over 4096 processors for a total of about 2 h of CPU time
for all N2 sets of Monte Carlo simulations for a given family of random fields.

It is noted that the GVRF methodology is essentially a brute-force procedure to explore the SDF/PDF independence of var-
iability response functions for certain classes of structures. Once this independence is established, the GVRF for any structure
in this class can be determined by considering just one family of N2 random fields. Furthermore, once the GVRF is established
for a structure, the variance of its response can be computed for any statistically homogeneous random field describing the
uncertain system properties with minimal computational effort (a simple integration of the type shown in Eq. (12)). The ini-
tial upfront expense of the GVRF methodology becomes worthwhile if a large number of random fields are to be examined or
especially if a sensitivity analysis is needed (there is no other way currently available to perform a full sensitivity analysis
with respect to spectral properties).

4. Numerical examples

The performance of the GVRF methodology is studied through two numerical examples involving a linear elastic plane
stress structure. The terminology used to identify a family of random fields fpðx1; x2Þ; p ¼ 1;2; . . . ;N2 associated with the
computation of a GVRF is explained through the following representative example: S1UN refers to the family of SDFs with
parent SDF Sp1ðj1;j2Þ defined in Eq. (24) and with UN being the Uniform marginal PDF defined in Table 1.

Fig. 2. Plane stress structure analyzed.
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4.1. GVRFs for displacement response of a plane stress structure

GVRFs are computed for the displacement response u L1
2 ; L2
% &

of the structure shown in Fig. 2 with
L1 ¼ 10; L2 ¼ 10; q ¼ 100, and thickness equal to 1. The heterogeneous compliance (rather than the elastic modulus) is
explicitly modeled as a random field in the following way

1
Eðx; yÞ ¼

1þ f ðx; yÞ
E0

; ð27Þ

Fig. 3. Computed GVRFs for displacement response at ðL1=2; L2Þ for structure in Fig. 2.
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where the mean compliance is 1
E0
¼ 8+ 10&8 and f ðx; yÞ is a zero-mean statistically homogeneous random field modeling the

fluctuations of the compliance about its mean value. Note that since the problem is linear, it is taken to be unitless without
loss of generality given that the thin plate kinematics hold.

The GVRFs are plotted in Fig. 3, and they are quite similar for different combinations of SDFs and PDFs. The GVRFs in Fig. 3
are plotted in Fig. 4 at selected section cuts in order to better visualize the discrepancies amongst the various GVRFs. They
are plotted along cuts j1 ¼ 0; j2 ¼ 0, and j1 ¼ j2.

4.2. GVRFs for effective compliance of a plane stress structure

GVRFs are computed for the effective compliance !D of the plane stress structure analyzed in Section 4.1. For each deter-
ministic analysis in the Monte Carlo simulations, the effective compliance is computed via Eq. (7). GVRFs are plotted for three
different marginal PDFs and for SDF family Sp2ðj1;j2Þ in Fig. 5. Results involving SDF family Sp1ðj1;j2Þ are not shown for
reasons discussed in Section 4.4. Instead, the SDF independence is demonstrated by the validation procedure described in
Section 4.3.

The GVRFs in Fig. 5 are plotted in Fig. 6 at selected section cuts in order to better visualize the discrepancies amongst the
various GVRFs. They are plotted along cuts j1 ¼ 0; j2 ¼ 0, and j1 ¼ j2.

4.3. Validation of GVRFs

The validity of the GVRFs is tested by computing the coefficient of variation (COV) of the displacement response and effec-
tive flexibility by Monte Carlo simulation for a different random field model than what was used to determine the GVRFs,
and then comparing these results to the predicted COVs determined by the GVRFs. For the first example in Section 4.1,

Fig. 4. GVRFs of Fig. 3 at various section cuts.
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the new random field model chosen is a translation field whose marginal PDF is the Lognormal described in Table 1 and
whose non-Gaussian SDF is determined from its underlying Gaussian SDF, which is

S3ðj1;j2Þ ¼
1

1:045
exp &3ðj2

1 þ j2
2Þ

% &
; ð28Þ

Fig. 5. GVRFs for effective compliance for plane stress structure in Fig. 2.
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where the coefficient 1
1:045 restrains the underlying Gaussian field to have unit variance. For the example in Section 4.2, three

new translation random field models are chosen having the Lognormal, truncated Gaussian, and Uniform marginal PDFs de-
scribed in Table 1 and non-Gaussian SDFs determined from their underlying Gaussian SDF, which is

S4ðj1;j2Þ ¼ 12:626 exp &40ðj2
1 þ j2

2Þ
% &

; ð29Þ

Fig. 6. Computed GVRFs of Fig. 5 at various section cuts.

Fig. 7. Validation results for example in Section 4.1: the red line indicates the exact COV of the response displacement determined by brute force Monte
Carlo simulation using S3ðj1;j2Þ in Eq. (28) and the Lognormal PDF in Table 1. The blue diamonds are the predicted COVs by the GVRFs using Eqs. (30) and
(32) and the translated S3ðj1;j2Þ. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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where the coefficient 12:626 restrains the underlying Gaussian field to have unit variance. The predicted COVs from the
GVRFs are determined by performing the integrations shown in Eqs. (30) and (31) to determine the variance and then com-
puting the COV using the mean values stored from the performed Monte Carlo simulations. The variance is given by

Var u
L1

2
; L2

* +# $
¼
Z ju

&ju

Z ju

&ju

Sf ðj1;j2ÞGVRFu
L1

2
; L2;j1;j2

* +
dj1 dj2 ð30Þ

Fig. 8. Validation results for example in Section 4.2: the red lines indicate the exact COVs of the effective compliance through brute force Monte Carlo
simulation using S4ðj1;j2Þ in Eq. (29) and the Lognormal marginal PDF in Table 1(a), the truncated Gaussian marginal PDF in Table 1(b), and the Uniform
marginal PDF in Table 1(c). The blue diamonds are the predicted COVs by the GVRFs using Eqs. (31) and (33) and the translated S4ðj1;j2Þ according to the
three marginal PDFs. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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for the displacement response, and by

Var !D
! "
¼
Z ju

&ju

Z ju

&ju

Sf ðj1;j2ÞGVRF !Dðj1;j2Þdj1 dj2 ð31Þ

for the effective compliance. In each case, Sf ðj1;j2Þ is the SDF of the translated non-Gaussian field obtained from the under-
lying Gaussian field having SDF S3ðj1;j2Þ for the first example and SDF S4ðj1;j2Þ for the second example. Solving for the
COV yields

COV ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var u L1

2 ; L2
% &! "q

E u L1
2 ; L2
% &! ",, ,, ð32Þ

for the displacement response and

COV ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var !D

! "q

E !D
! ",, ,, ð33Þ

for the effective compliance. Fig. 7 plots the results of the validation for Example 1 and Fig. 8 plots the results of the three
validation tests for Example 2. Red lines represent the COVs computed through brute force Monte Carlo simulation using the
aforementioned translation field models. The blue diamonds are the COVs predicted by each GVRF using Eqs. (30) and (32)
for the first example and Eqs. (31) and (33) for the second example, along with the translated S3ðj1;j2Þ (first example) and
translated S4ðj1;j2Þ (second example).

4.4. Discussion of results

The GVRF methodology performs differently for displacement response than for effective compliance. The GVRFs for the
displacement response contain relatively small discrepancies which appear to be significantly due to numerical errors result-

Fig. 9. Comparing GVRFs for displacement response at ðL1=2; L2Þ for structure in Fig. 2 using very large variances. GVRF S1UNb refers to a Uniform marginal
PDF with variance r2

f ¼ 1:32 and GVRF S2LNb refers to a Lognormal marginal PDF with variance r2
f ¼ 1:75.
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ing from the discretization of the wavenumber domain and the condition number of the SDF matrix S. These two sources of
numerical errors have opposing effects: as the wavenumber domain is further refined, the size of matrix S increases as well
as its condition number. Matrix S for SDF family Sp2ðj1;j2Þ is much better conditioned than for SDF family Sp1ðj1;j2Þ. SDFs of
Sp2ðj1;j2Þ are close to delta functions at different wavenumbers and thus produce a system of equations more linearly inde-
pendent than SDFs from Sp1ðj1;j2Þ, which have power that is broadly distributed. This explains why GVRFs computed from
Sp1ðj1;j2Þ display numerical noise that is not present in GVRFs from Sp2ðj1;j2Þ (i.e. see Figs. 3 and 4). Further, the GVRF com-
puted via the Lognormal PDF for SDF family Sp1ðj1;j2Þ contains too much numerical error and is not shown. The validation
exercise of Section 4.3 addresses specifically this issue by comparing predicted response COVs using the computed GVRFs to
the results of a Monte Carlo simulation involving a Lognormal random field. As seen in Fig. 7, the comparisons are fairly

Fig. 10. Comparing GVRFs for displacement response at ðL1=2; L2Þ for structure in Fig. 2 using very large variances. GVRFs of Fig. 9 at various section cuts.
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accurate, suggesting that GVRFs computed using a Lognormal distribution would be similar to the other GVRFs if the system
of equations were better conditioned.

In order to demonstrate that the discrepancies of the GVRFs are mainly due to numerical errors and not PDF dependence,
additional GVRFs are computed using the following random fields with very large variances: a Lognormal marginal PDF hav-
ing SDF family Sp2 with variance r2

f ¼ 1:75 (the parameters are m ¼ &:51; s ¼ 1:0; al ¼ &:9905 and the corresponding GVRF
is denoted as S2LNb), and a Uniform marginal PDF having SDF family Sp1 with variance r2

f ¼ 1:32 (the parameters are
al ¼ &1:99; au ¼ 1:99 and the corresponding GVRF is denoted S1UNb). If there is a PDF dependence on the GVRFs, then
the discrepancies will increase as the variances of the random fields increase. Figs. 9 and 10 show these GVRFs are nearly
identical with the GVRFs based on the corresponding random fields with smaller variances, implying that any PDF depen-
dence is not significant.

The GVRFs for the effective compliance do not perform as well as those for the displacement response. The degree of
dependence of the GVRFs on the PDFs can be observed through those computed via Sp2ðj1;j2Þ (Figs. (5) and (6)). The shapes
of the GVRFs are similar but differ almost by a constant scale factor, as can be seen in Fig. 6. GVRFs computed using SDF fam-
ily Sp1ðj1;j2Þ are dominated by the numerical errors discussed above and produce results that are too noisy to be useful. The
degree of dependence of the GVRFs on the SDFs is demonstrated through the validation exercises. Here, the three GVRFs
computed from Sp2ðj1;j2Þ are used to predict the COV of the effective compliance resulting from random fields with a com-
pletely different SDF. As seen in Fig. (8), the predictions perform reasonably well in general, but in a few cases they contain
significant errors (roughly 20 % error for the S2TG GVRF’s prediction of Monte Carlo results of random field S4UN).

It is worth noting that it is easier to consider very large variations in the elastic modulus by directly treating the compli-
ance as a random field as done in this work. For example, the compliance modeled using a Uniform distribution with rf ¼ :57
has a corresponding elastic modulus with coefficient of variation equal to 2.45. This is an extremely large variation in the
elastic modulus. Due to the one-to-one relation between elastic modulus and compliance, there is no loss of generality to
determining the GVRFs of the compliance because one can easily convert the random field model for elastic modulus to
one for compliance and vice versa. Therefore, for some practical problems of interest, the variability range will be less than
that considered in this work and the PDF/SDF dependence of the GVRFs for effective properties will be less significant.

Nonetheless, it is recognized that the poor conditioning of the system of equations to compute the GVRFs makes it dif-
ficult to discern the contributions from each source of discrepancy. These numerical examples demonstrate that the appli-
cability of the GVRF methodology for general continua is promising, but future work must address the critical issue of the
numerical conditioning of Eq. (15), such as applying matrix preconditioners, advanced least-squares or optimization algo-
rithms, and alternative structuring of the family of SDFs.

5. Conclusions

The main finding of this paper is that the GVRF methodology can be formulated and successfully applied to structures
whose stochasticity is modeled by two-dimensional random fields. This significantly extends the applicability of the GVRF
concept, which, prior to this, has only been applied to problems involving one-dimensional random fields. In two numerical
examples, GVRFs have been computed for the displacement response as well as the effective compliance of a plane stress
structure whose elastic modulus is modeled by a homogeneous two-dimensional random field. The computed GVRFs contain
differences (in some cases not insignificant), mainly due to numerical errors for the GVRFs for displacement response and a
combination of numerical errors and PDF dependence for GVRFs for effective compliances, as discussed in detail in Sec-
tion 4.4. However, in general, all the GVRFs exhibit remarkably similar behavior and mostly demonstrate reasonable results
in the validation exercises shown in Section 4.3. One of the implications of these results is that the VRF concept has the po-
tential to be a useful technique to quantify the uncertainty of computed effective material properties due to length scale ef-
fects. It is a well known issue in multi-scale finite element methods that the computed solution is dependent on the size of
the elements and RVE chosen, yet there is no robust way to compute the uncertainty in the solution due to this scale depen-
dence. The work presented in this paper is a step towards developing a robust technique based on the VRF concept to attain
such goals.
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