
The comeback of Reed Solomon codes
Nir Drucker

University of Haifa, Israel,
and

Amazon Web Services Inc.1

Shay Gueron
University of Haifa, Israel,

and
Amazon Web Services Inc.1

Vlad Krasnov
CloudFlare, Inc.

San Francisco, USA

Abstract—Distributed storage systems utilize erasure codes to
reduce their storage costs while efficiently handling failures.
Many of these codes (e. g., Reed-Solomon (RS) codes) rely on
Galois Field (GF) arithmetic, which is considered to be fast when
the field characteristic is 2. Nevertheless, some developments in
the field of erasure codes offer new efficient techniques that
require mostly XOR operations, and are thus faster than GF
operations.

Recently, Intel announced [1] that its future architecture
(codename ”Ice Lake”) will introduce new set of instructions
called Galois Field New Instruction (GF-NI). These instructions
allow software flows to perform vector and matrix multiplications
over GF (28) on the wide registers that are available on the
AVX512 architectures. In this paper, we explain the functionality
of these instructions, and demonstrate their usage for some fast
computations in GF (28). We also use the Intel R© Intelligent Stor-
age Acceleration Library (ISA-L) in order to estimate potential
future improvement for erasure codes that are based on RS codes.
Our results predict ≈ 1.4x speedup for vectorized multiplication,
and 1.83x speedup for the actual encoding.

I. INTRODUCTION

Distributed storage systems (e. g., Google File System
(GFS) [2], Hadoop Distributed File System (HDFS) [3], and
Windows Azure [4]) need to employ redundancy in order
to guarantee availability and reliability. Traditionally, such
systems used the ”triple replication” approach of storing three
copies of each data blocks for this purpose. While this redun-
dancy mechanism is speed-wise efficient, it is very expensive
from the viewpoint of storage costs.

To overcome this challenge, different types of erasure codes
were developed, offering a different balance between storage
costs and speed. Triple replication is on one side of the
equation, and Maximum Distance Separable (MDS) (e. g., RS
[5]) codes are on the other. For example, Facebook [6] saved
multiple petabytes of storage by using RS codes in their data
warehouse. Another example is the Linux Redundant Array of
Independent Disks (RAID)-6 file system that uses RS codes
and is designed to tolerate any failure of two disks [7], [8].

However, although MDS codes reduce storage requirements
significantly, they come at the cost of increased amount
of disk operations and network traffic (that typically grows
beyond the amount of missing data). Other types of codes
(called regenerating codes) have been suggested in order to
address this problem: a) an Local Reconstruction Code (LRC)
[9] that achieves efficiency through piggybacking RS codes.

1This work was done prior to joining Amazon.

Since it is no longer an MDS code, it is less storage-wise
efficient; b) a Simple Regenerating Code (SRC) [10], which
is a random linear code that can achieve the theoretically opti-
mal tradeoff between storage efficiency and traffic bandwidth
[11]. Nevertheless, these codes still suffer from excessive I/O
consumption, and high computational overheads.

Modern research on regenerating codes is mostly focus
on bandwidth and storage, but sacrifices performance consid-
erations (compared to other erasure codes [12]). One slow
down element is the extensive use of GF arithmetic [13].
This drives the common belief that ”xor” based erasure codes
(array codes) are significantly faster than those based on GF
arithmetic (e. g., [14]). This was debunked in [15], suggesting
that codes based on GF arithmetic can become a viable
alternative to array codes if the GF multiplication is cache-
limited and highly vectorized. However, subsequent research
past [15], tends to favor array codes over GF based codes.

Recently, Intel has announced [1] that its future architec-
ture, microarchitecture codename ”Ice Lake”, will add new
instructions, which we call ”GF-NI” to accelerate GF (28)
multiplication and inversion. These have various usages. In
this paper, we show their application to speeding up erasure
codes. The paper focuses on Intel’s new GF-NI instructions,
but for completeness we mention also [16], [17] that discuss a
variant of the vectorized GF-NI on other processors. The use
of other forthcoming instructions is described in [18], [19].

We first show how to leverage the GF-NI instructions for
performing basic arithmetic over GF (28) (e. g., vector, matrix
or polynomial multiplications). We then explain how storage
systems that use RAID-6 or RS codes can benefit from it.
Finally, we modified the code of ISA-L in order to predict the
potential improvement of these instructions.

The paper is organized as follows. Section II describes the
new GF-NI instructions. In Section III we demonstrate some
workloads that use arithmetic operations over GF (28), and
can be sped up by these instructions. Section IV presents
RAID systems, and how GF-NI can contribute, and Section
V describes the RS code. Finally, in Section VI, we modify
the code of ISA-L to use GF-NI, and predict the potential
improvement. We conclude in Section VII.

II. PRELIMINARIES

In this paper, the ”xor” operation is denoted by ⊕, and the
”and” operation by &. The function parity(x) returns 1 if x
has an odd number of set bits, and 0 otherwise. When using

121XXX-X-XXXXXXX-X-X/ARITH18/ c©2018 IEEE

hexadecimal notation, the LSB is positioned on the right e. g.,
0x11b is 000100011011 in binary. The notation X[j : i],
j > i refers bits of the sub-array of X between positions i
and j (included). The case i = j degenerates to X[i]. The
assembly snippets are written in AT&T assembly syntax.

A. Vectorized GF-NI
Intel’s GF-NI instructions include the VGF2P8MULB,

VGF2P8AFFINEQB, and VGF2P8AFFINEINVQB in-
structions (denoted for short by MULB, AFFINEB,
and AFFINEINVB, respectively). Alg. 1 describes the
MULB instruction. It performs vectorized multiplication in
GF (28), of KL = 16/32/64 8-bit elements that reside in
two 128/256/512-bit registers (named xmm, ymm, zmm,
respectively). The field GF (28) is represented in polynomial
representation (this defines the field multiplication) with the
reduction polynomial p = x8 + x4 + x3 + x+ 1 .

Algorithm 1 MULB instruction
Inputs: SRC1, SRC2 (wide registers)
Outputs: DST (a wide register)

1: procedure VGF2P8MULB(SRC1, SRC2)
2: for j in 0 to (KL-1) do
3: DEST.byte[j] ← GF2P8MULBYTE(SRC1.byte[j], SRC2.byte[j])

4: procedure GF2P8MULBYTE(s1b, s2b) � s1b,s2b (8 bits)
5: T[15:0] = 0
6: for i in 0 to 7 do
7: if s2b[i] then
8: T[15:0] = T[15:0] ⊕(s1b� i)

9: for i in 14 downto 8 do
10: if T[i] then
11: T[15:0] = T[15:0] ⊕ (0x11b � (i− 8))
12: return T[7:0]

MULB can also be used in cases where GF (28) is rep-
resented with a different polynomial representations. This
requires some linear transformation to/from the represen-
tations, and can be performed with the AFFINEB, and
AFFINEINVB instructions that are supplemented to GF-NI,
and described in Alg. 2. Here, an affine transformation is
defined by A · x + b or A · inv(x) + b, accordingly; A is
an 8 × 8-bit matrix vectorized KL = 2/4/8 times; x and b
are 8-bit vectors. In the AFFINEB instruction, the value of b
is a constant prescribed in the immediate byte. The inverse of
x is defined in GF (28)[x]

/
p (a lookup table is given in [1]).

Algorithm 2 AFFINEB and AFFINEINVB instructions
Inputs: S1, S2 (wide registers) imm8 (8 bits)
Outputs: D (a wide register)

1: procedure VGF2P8AFFINE[INV]QB(S1, S2)
2: for j in 0 to KL− 1 do
3: for b in 0 to 7 do
4: k = 64j, q = k + 8b
5: D[q+7 : q] = [Inv]AffB(S2[k+63 : k], S1[q+7 : q], imm8)
6: return D[64KL− 1 : 0]

7: procedure [INV]AFFB(s2, s1, imm8)
8: for i = 0 to 7 do
9: T[7-i] = parity(s2[8i+7 : 8i] & [inv](s1)) ⊕ imm8[i]

10: return T[7:0]

III. BASIC ARITHMETIC OVER GF (28)

We show the use of GF-NI for GF (28) basic arithmetic.

A. Multiplying by 2

Let r, a ∈ GF (28), where a =
∑7

i=0 aix
i, with coefficients

in GF (2). The coefficients of r = ”2”a (i. e., the element
00000010) are given by:

r7 = a6, r6 = a5, r5 = a4, r4 = (a3 ⊕ a7),

r3 = (a2 ⊕ a7), r2 = (a1 ⊕ a7), r1 = a0, r0 = a7

Fig. 1 compares the existing ”legacy” (panel a) and the
GF-NI (panel b) vectorized implementations. In the legacy
implementation, the Most Significant Bit (MSB) (a7) of each
value is stored in a mask register %k1 (Step 6), and cleared
(Step 8). Then, the vector is left-shifted, and xored (Step 7,9);
this puts the final results in t (if a7 = 0) or in zmm1 (if
a7 = 1). The final results are blended into t, according to
the original value of a7 (Step 10). In comparison, the GF-
NI implementation requires only one AFFINEB instruction.

(a) Legacy (b) GF-NI
1 . s e t t , %zmm0
2 .mask1 :
3 .qword 0 x f e f e f e f e f e f e f e f e
4 .mask2 :
5 .qword 0 x1d1d1d1d1d1d1d1d
6 vpmovb2m t ,%k1
7 v p s l l q $1 , t , t
8 vpandq .mask1(% r i p) , t , t
9 vpxorq .mask2(% r i p) , t ,%zmm1

10 vpblendmb %zmm1 , t , t{%k1}

1 . s e t t , %zmm0
2 . m t r x :
3 . b y t e 0x40 , 0 x20 , 0 x10 , 0 x88 ,
4 . b y t e 0x84 , 0 x82 , 0 x01 , 0 x80
5 v g f 2 p 8 a f f i n e q b $0x00 , . m t r x (% r i p) , t , t

Fig. 1. Using affine transformation for multiplying a vector by 2.

B. Matrix multiplication

a) Multiplying two 8 × 8-bit matrices: Calculating the
product C = AB, of two 8 × 8-bit matrices (A,B) can be
implemented easily with the AFFINEB. The two matrices
are first loaded into two zmm registers (where each byte
represents a column of the matrix). If AFFINEB is run over
these inputs directly, we get the columns of A multiplied
by with the columns of B, so we need to transpose A
in order to get the desired result. To this end, we use
AFFINEB with A and I (the identity matrix encoded as
0x80,0x40,0x20,0x10,0x08,0x04,0x02,0x01) as
the first and second operands, respectively.

b) Multiplying two 64× 64-bit matrices: For calculating
the product C = AB of two 64 × 64-bit matrices (A,B) we
divide each matrix to 8×8 sub-matrices, each one is an 8×8-
bit matrix. Let Xi,j denote the sub-matrix of X in row i and
column j. Then,

Ci,j =
7⊕

k=0

(
Ai,kBk,j

)

Calculating each of the sub-matrices of C requires only 8×2
AFFINEB invocations (assuming a transpose is required). This
costs 512×2 AFFINEB invocations for the two matrices prod-
uct. We point out that the columns of the sub-matrix Ai,j are

122 25th IEEE Symbosium on Computer Arithmetic (ARITH 2018)

stored in bytes j+ i+8k, k = 0, . . . , 7 in memory. Collecting
them can be done with the VPGATHERQQ instruction. More-
over, using an ”AFFINEB friendly” memory arrangement, can
further accelerate the loading/storing operations.

C. Polynomial multiplication

Let C,A,B, P be polynomials with coefficients in
GF (28)[x]. We use the MULB instruction to compute C =
A·B (mod P). Fig. 2 illustrates the code flow for multiplying
polynomial of degree 7. The inputs A,B, P are loaded into the
lower quadword (64 bits) of xmm8, xmm9, and xmm10, re-
spectively. The upper quadwords of these registers are padded
with zeros.

The illustrated code executes the Schoolbook multiplication
(Steps 9-14), placing the resulting product in xmm11. The
reduction (Steps 16-25) is performed according to the iterative
equation C = C ⊕

(
Ci+8 · P · xi

)
, i = 6, . . . , 0. In the end,

xmm11 holds the result. We note that using this code with
larger registers (ymm or zmm) allows to multiply polynomials
of higher degrees (15 and 31, respectively) in a similar way.
Alternatively, these register can vectorized the multiplication
of two/four 7-degree polynomials in parallel.

1 . i r p i , 0 , 1 , 2 , 3 , 4 , 5 , 6 , 7
2 .mask\ i :
3 . b y t e 0x0\i , 0x0\i , . . . , 0x0\ i
4 . endr
5 . i r p i , 0 , 1 , 2 , 3 , 4 , 5 , 6 , 7
6 vmovdqa .mask\ i (% r i p) , %xmm\ i
7 . endr
8
9 . i r p i , 0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 # M u l t i p l i c a t i o n

10 vpshufb %xmm\i , %xmm8 , %xmm12
11 vgf2p8mulb %xmm9 , %xmm12 , %xmm13
12 vpxor %xmm13 , %xmm11 , %xmm11
13 v p s l l d q $1 , %xmm9 , %xmm9
14 . endr
15
16 . i r p i , 0 , 1 , 2 , 3 , 4 , 5 , 6 # R e d u c t i o n
17 vpaddq .mask7(% r i p) , %xmm\i , %xmm\ i
18 . endr
19
20 . i r p i , 6 , 5 , 4 , 3 , 2 , 1 , 0
21 vpshufb %xmm\i , %xmm11 , %xmm12 # c [8+ i] , c [8+ i] , . . .
22 vgf2p8mulb %xmm12 , %xmm10 , %xmm13 # c [8+ i]∗P
23 v p s l l d q $\i , %xmm13 , %xmm13 # c [8+ i]∗P∗x ˆ i
24 vpxorq %xmm13 , %xmm11 , %xmm11
25 . endr

Fig. 2. Multiplication of polynomials of degree 7 (coefficients in GF (28)[x].)

IV. RAID-6

RAID is a virtualized storage system based on multiple
physical hard drives (di, i = 1, . . . , k) each has multi-
ple stripes (di,j , j = 1, . . . , l). It uses striping, mirroring,
and additional checksum disk drives, in order to improve
performance, while maintaining high data redundancy. For
example, RAID-4 and RAID-5 use the same simple erasure
code (a parity MDS code), but have a different stripes layout.
RAID-4 uses fixed disk identities and an additional disk P ,
dedicated for checksum data. The stripes of P are defined
by (pi = d1,i ⊕ d2,i ⊕ . . . ⊕ dk,i). In contrast, RAID-5
uses rotational identities on a stripe-by-stripe basis (each disk
holds the same amount of data and coding). This offers better
balancing of the system.

RAID-6 systems are a bit more complicated. They use a
similar parity disk P as in RAID-4/5, and an additional disk

Q. The data stored on Q is based on GF (28) arithmetic,
setting qi = d1,i ⊕ 20d2,i ⊕ · · · ⊕ 2k−1dk,i. This allows the
system to tolerate failures of any two disks. Common RAID-
6 implementations use a rearranged version of this equation:
qi = 2(2(. . . 2(2dk⊕dk1) . . .)⊕d2)⊕d1, which requires only
XORs and multiplication by 2. The latter can be accelerated
with the method described in Section III-A.

V. ACCELERATING REED SOLOMON CODES

RS codes are MDS codes that are able to correct multiple er-
rors (e. g., in RAID systems). An RS(n, k) code uses n-symbol
codewords with k data symbols, and r = n−k checksum sym-
bols (k < n and can be defined by design). Common RS(n, k)
codes operate over GF (2w), w ∈ {4, 8, 16, 32, 64, 128}, and
n < 2w, where symbols are bit strings. For example, an RS
code that operates on 8-bit symbols, has codewords of length
n < 28 − 1 = 255 symbols. Fixing k = 223 data symbols
leaves room for up to 32 checksum symbols. This code can
correct up to 32/2 = 16 symbol errors per codeword.

We briefly describe RS(n,k) encoding (see details in [20],
[21]). Denote each data disk by di, i = 1, . . . , k (for simplicity,
assume that each disk contains one strip). We denote checksum
disks by cj j = 1, . . . , r (c1=P , c2=Q is used in Section
IV). The encoding function is based on r functions (fi) that
are defined as a linear combination of the data symbols ci =
fi(d1, . . . , dk) =

∑
djfi,j . Therefore, the encoding is given as

a matrix A = (I;F) where A ·d = (d; c) and I is the identity
matrix. A = (I;F) needs to be chosen in a way that sub-
matrix of A, with k rows, is invertible. Typically, a common
choice is the Vandermonde matrix where fi,j = ji−1

A =

⎛
⎜⎜⎜⎜⎜⎜⎝

Ik×k

f1,1 f1,2 f1,3 . . . f1,k
f2,1 f2,2 f2,3 . . . f2,k
f3,1 f3,2 f3,3 . . . f3,k
.

fr,1 fr,2 fr,3 . . . fr,k

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

Ik×k

1 1 1 . . . 1
1 2 3 . . . k
1 22 32 . . . k2

.
1 2r−1 3r−1 . . . kr−1

⎞
⎟⎟⎟⎟⎟⎟⎠

When data in one of the data disks (dj) is modified (to d
′
j),

the checksum disks can be modified by ci = fi,j(d
′
j − dj).

VI. GF-NI USAGE FOR ERASURE CODES

We predict the potential improvement that GF-NI can
contribute in future platforms, before real processors are
available. To this end, we used the ISA-L [22] that provides
an implementation of erasure codes, based on GF arithmetic.
ISA-L performs fast GF multiplication of a, b ∈ GF (2w),
using a technique that is similar to [15]. First, calculate all the
possible products of a by any element in GF (2w) (there are
2w options), and place them in a table. Subsequently, choose
the relevant value from the table, according to the value of
b. This method becomes more efficient when it is applied for
multiplying a by a vector of values B, because the table need
to be calculated only once.

For sufficiently small w, the full table can be embedded
in some wide registers. For example, for w = 4, the table

25th IEEE Symbosium on Computer Arithmetic (ARITH 2018) 123

contains 16 symbols of 16-bit. These can be embedded in one
ymm or register two xmm registers. We are interested in the
case w = 8. Here, the table is larger, and holds 28 = 256
symbols. Reducing the size of this table [15] can be achieved
by observing that b = (bh � 4) ⊕ bl and ab = (a(bh �
4))⊕ a(bl). Thus, each byte (degenerated to have 4 zero bits)
can be calculated separately, by using only 16 symbols as in
the case for w=4 (a similar method was also proposed in [23]).

The ISA-L code consists of three main primitives that op-
erate over GF (28): a) gf_vect_mul - performs vectorized
multiplication; b) gf_vect_dot_prod_perf - performs
vectorized multiplication, while accumulating the results (of
each one) into a single value; c) gf_vect_mad- performs
vectorized multiplication while adding the results of a pre-
viously vector. The gf_vect_dot_prod_perf method is
used to encode the data, as explained in Section V. The
gf_vect_mad function is used for updating an existing
codeword, after some change to the data has occurred.

To evaluate the performance of these functions, and of the
encoding and encoding update functions, we used the perfor-
mance tests built-in with the ISA-L package. We compared
AVX2 implementations, because the ISA-L AVX512 code
based on lookup tables, was slower than its AVX2 counterpart.
The results are given in Table I. To overcome the fact that the
GF-NI are not yet available in real silicon, we use ”stand in”
replacements to estimate the predicted performance. Here, we
replaced the assembly code that handles the tables (as above)
with the single instruction VPMULDQ instruction. We believe
it would have the same latency and throughput as GF-NI.

The experiments were carried out on a platform with the
7th Generation Intel R© CoreTM processor (”Kaby Lake”) -
i7 − 7700 CPU at 3.60 GHz. The platform has 32K L1d
and L1i cache, 256K L2 cache, and 8, 192K L3 cache. It was
configured to disable the Intel R© Turbo Boost Technology. The
runs were carried out on a Linux (Ubuntu 16.04.3 LTS) OS.

TABLE I
SPEED UP PREDICTIONS FROM USING GF-NI IN ISA-L. PERFORMANCE

NUMBERS ARE REPORTED IN MILLISECONDS (LOWER IS BETTER).

Function Reference impl. Stand-in impl. Speedup
gf_vect_mul 819 624 1.31
gf_vect_dot_prod_perf 223 159 1.4
gf_vect_mad 771 700 1.1
Encode 2,686 1,462 1.834
Encode update 3,135 2,800 1.11

VII. CONCLUSION

This paper shows Intel’s new forthcoming vectorized
GF-NI, and demonstrates several usages that can enjoy their
faster GF (28) arithmetic offering. We used the erasure code
implementation of ISA-L, to provide estimations for future
performance improvements. Our results predict a speedup
of 1.4x over the current ISA-L implementation. Finally,
we note that erasure codes based on GF (28) constructions
have been replaced by array codes, due to performance
considerations. We hope that the coming performance

improvements contributed by GF-NI, could reopen the door
for deploying GF (28) based erasure codes.

ACKNOWLEDGEMENTS

This research was supported by: The Israel Science Founda-
tion (grant No. 1018/16); The Ministry of Science and Tech-
nology, Israel, and the Department of Science and Technology,
Government of India; The BIU Center for Research in Applied
Cryptography and Cyber Security, in conjunction with the
Israel National Cyber Bureau in the Prime Minister’s Office;
The Center for Cyber Law and Policy at the University of
Haifa.

REFERENCES

[1] −, “Intel architecture instruction set extensions programming reference,”
https://software.intel.com/sites/default/files/managed/c5/15/architecture-
instruction-set-extensions-programming-reference.pdf, October 2017.

[2] S. Ghemawat, H. Gobioff, and S.-T. Leung, “The google file
system,” SIGOPS Oper. Syst. Rev., vol. 37, no. 5, pp. 29–43,
Oct. 2003. [Online]. Available: http://doi.acm.org.ezproxy.haifa.ac.il/
10.1145/1165389.945450

[3] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The hadoop
distributed file system,” in 2010 IEEE 26th Symposium on Mass Storage
Systems and Technologies (MSST), May 2010, pp. 1–10.

[4] B. Calder, J. Wang, and et al. , “Windows azure storage: A highly
available cloud storage service with strong consistency,” in Proceedings
of the Twenty-Third ACM Symposium on Operating Systems Principles,
ser. SOSP ’11. New York, NY, USA: ACM, 2011, pp. 143–157.
[Online]. Available: http://doi.acm.org/10.1145/2043556.2043571

[5] I. S. Reed and G. Solomon, “Polynomial codes over certain
finite fields,” Journal of the Society for Industrial and Applied
Mathematics, vol. 8, no. 2, pp. 300–304, 1960. [Online]. Available:
https://doi.org/10.1137/0108018

[6] −, “Hdfs raid,” http://www.slideshare.net/ydn/hdfs-raid-facebook, De-
cember 2010.

[7] H. P. Anvin, “The mathematics of raid-6,” https://www.kernel.org/pub/
linux/kernel/people/hpa/raid6.pdf, December 2011.

[8] P. Corbett, B. English, A. Goel, T. Grcanac, S. Kleiman, J. Leong, and
S. Sankar, “Row-diagonal parity for double disk failure correction,”
in Proceedings of the 3rd USENIX Conference on File and Storage
Technologies. USENIX Berkeley, CA, USA, 2004, pp. 1–14.

[9] C. Huang, H. Simitci, Y. Xu, A. Ogus, B. Calder, P. Gopalan, J. Li,
and S. Yekhanin, “Erasure coding in windows azure storage,” in
Presented as part of the 2012 USENIX Annual Technical Conference
(USENIX ATC 12). Boston, MA: USENIX, 2012, pp. 15–26. [Online].
Available: https://www.usenix.org/conference/atc12/technical-sessions/
presentation/huang

[10] D. S. Papailiopoulos, J. Luo, A. G. Dimakis, C. Huang, and J. Li,
“Simple regenerating codes: Network coding for cloud storage,” in 2012
Proceedings IEEE INFOCOM, March 2012, pp. 2801–2805.

[11] A. G. Dimakis, P. B. Godfrey, Y. Wu, M. J. Wainwright, and K. Ram-
chandran, “Network coding for distributed storage systems,” IEEE
Transactions on Information Theory, vol. 56, no. 9, pp. 4539–4551,
Sept 2010.

[12] H. C. H. Chen, Y. Hu, P. P. C. Lee, and Y. Tang, “Nccloud: A network-
coding-based storage system in a cloud-of-clouds,” IEEE Transactions
on Computers, vol. 63, no. 1, pp. 31–44, Jan 2014.

[13] J. S. Plank, J. Luo, C. D. Schuman, L. Xu, and Z. Wilcox-O’Hearn,
“A performance evaluation and examination of open-source erasure
coding libraries for storage,” in Proccedings of the 7th Conference
on File and Storage Technologies, ser. FAST ’09. Berkeley, CA,
USA: USENIX Association, 2009, pp. 253–265. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1525908.1525927

[14] L. Xu and J. Bruck, “X-code: Mds array codes with optimal encoding,”
IEEE Transactions on Information Theory, vol. 45, no. 1, pp. 272–276,
Jan 1999.

124 25th IEEE Symbosium on Computer Arithmetic (ARITH 2018)

[15] J. S. Plank, K. M. Greenan, and E. L. Miller, “Screaming fast
galois field arithmetic using intel SIMD instructions,” in 11th
USENIX Conference on File and Storage Technologies (FAST 13).
San Jose, CA: USENIX Association, 2013, pp. 298–306. [Online].
Available: https://www.usenix.org/conference/fast13/technical-sessions/
presentation/plank james simd

[16] A. Kumar and K. van Berkel, “Vectorization of reed solomon decoding
and mapping on the evp,” in 2008 Design, Automation and Test in
Europe, March 2008, pp. 450–455.

[17] S. Mamidi, M. J. Schulte, D. Iancu, A. Iancu, and J. Glossner, “In-
struction set extensions for reed-solomon encoding and decoding,” in
2005 IEEE International Conference on Application-Specific Systems,
Architecture Processors (ASAP’05), July 2005, pp. 364–369.

[18] N. Drucker, S. Gueron, and V. Krasnov, “Fast multiplication of binary
polynomials with the forthcoming vectorized VPCLMULQDQ instruc-
tion,” in 2018 IEEE 25th Symposium on Computer Arithmetic (ARITH),
June 2018.

[19] ——, “Making aes great again: the forthcoming vectorized aes in-
struction,” Cryptology ePrint Archive, Report 2018/392, 2018, https:
//eprint.iacr.org/2018/392.

[20] J. S. Plank et al., “A tutorial on reed-solomon coding for fault-tolerance
in raid-like systems,” Softw., Pract. Exper., vol. 27, no. 9, pp. 995–1012,
1997.

[21] J. S. Plank and Y. Ding, “Note: Correction to the 1997 tutorial
on reedsolomon coding,” Software: Practice and Experience, vol. 35,
no. 2, pp. 189–194, 2005. [Online]. Available: http://dx.doi.org/
10.1002/spe.631

[22] −, “Intel Intelligent Storage Acceleration Library (Intel ISA-L),”
https://software.intel.com/en-us/storage/ISA-L, Feb 2018.

[23] S. Gueron and M. Kounavis, “Efficient implementation of the galois
counter mode using a carry-less multiplier and a fast reduction
algorithm,” Information Processing Letters, vol. 110, no. 14, pp. 549 –
553, 2010. [Online]. Available: http://www.sciencedirect.com/science/
article/pii/S002001901000092X

25th IEEE Symbosium on Computer Arithmetic (ARITH 2018) 125

