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Abstract—We recently proposed the first hardware architecture
enabling the iterative solution of systems of linear equations
to accuracies limited only by the amount of available memory.
This technique, named ARCHITECT, achieves exact numeric
computation by using online arithmetic to allow the refinement
of results from earlier iterations over time, eschewing rounding
error. ARCHITECT has a key drawback, however: often, many
more digits than strictly necessary are generated, with this
problem exacerbating the more accurate a solution is sought.
In this paper, we infer the locations of these superfluous
digits within stationary iterative calculations by exploiting
online arithmetic’s digit dependencies and using forward error
analysis. We demonstrate that their lack of computation is
guaranteed not to affect the ability to reach a solution of
any accuracy. Versus ARCHITECT, our illustrative hardware
implementation achieves a geometric mean 20.1× speedup in
the solution of a set of representative linear systems through
the avoidance of redundant digit calculation. For the com-
putation of high-precision results, we also obtain an up-to
22.4× memory requirement reduction over the same baseline.
Finally, we demonstrate that solvers implemented following our
proposals can show superiority over conventional arithmetic
implementations by virtue of their runtime-tunable precisions.

1. Introduction & Motivation

Consider a numerical program whose result is obtained
by iteratively calculating a sequence of approximations of
the form x(k+1) = f

(
x(k)

)
, where f ∈

(
R

N → R
N
)

is
a computable real function. For demonstration, assume we
wish to solve the toy equation

x(k+1) = 1/8 − x(k)
/7

for x from x(0) = 0. This is a unidimensional example of
the Jacobi method, a classical stationary iterative algorithm.

Each approximant is conventionally generated starting
from the least-significant digit (LSD), leading to a com-
putation pattern such as that shown in Figure 1a. A key
shortcoming with this conventional method is that the nu-
merical precision must be fixed beforehand. Choosing the
right precision is non-trivial, particularly with respect to
hardware implementation. If it is too high, the circuit may
be unnecessarily slow and power-consuming, while if it is
too low, the criterion for convergence may never be reached.

In our previous work, ARCHITECT [1]—the first method
for implementing iterative computations to arbitrary accu-
racies in hardware—we addressed this issue. ARCHITECT

employs online arithmetic, in which approximants are cal-
culated starting from the most-significant digit (MSD). Ap-
proximants can thus be calculated concurrently, e.g. follow-
ing the digit pattern shown in Figure 1b. Crucially, precision
does not need to be fixed a priori; the zig-zag pattern
advances deeper into the iteration-precision space until a
satisfactorily accurate result is obtained.

Unfortunately, the ARCHITECT method is inefficient be-
cause the triangular shape traced out involves the compu-
tation of many more digits than are actually needed. In
the bottom-left corner lie high-significance digits of later
approximants; these generally become stable over time, so
we call them don’t-change digits. In the top-right corner
lie low-significance digits of early approximants; these are
generally unimportant, thus we call them don’t-care digits.

In this paper, we propose a novel method for imple-
menting stationary iterative calculations to arbitrary accura-
cies that refines the ARCHITECT technique by avoiding the
unnecessary computation of these don’t-change and don’t-
care digits, arriving at a digit pattern such as that shown in
Figure 1c. We make the following novel contributions:

• Theoretical analysis of MSD stability within any
online arithmetic-implemented iterative method, fa-
cilitating runtime detection of don’t-change digits.

• A theorem for the optimal rate of LSD growth per
iteration within stationary iterative methods, thereby
enabling the preclusion of don’t-care digit compu-
tation. With the appropriate preconditions, this is
proven to have no bearing on the chosen method’s
ability to reach a solution of any accuracy.

• An exemplary hardware implementation of our pro-
posal using the Jacobi method.

• Performance evaluations of our demonstrative ar-
chitecture, drawing comparison against ARCHITECT,
the state-of-the-art arbitrary-precision hardware iter-
ative solver, and conventional fixed-precision equiv-
alents. We observe a mean 12.8× reduction in the
number of digits generated to solve a set of repre-
sentative linear systems, showing a geometric mean
20.1× speedup over ARCHITECT.

2. Background

2.1. Custom-precision Arithmetic

Applications requiring very high precisions have be-
come increasingly popular in recent years [2]. For exam-
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x(1):

x(2):

x(3):

x(4):

x(5):

x(6):

x(7):

x(8):

.

.

.

.

.

.

.

.

0 1 2 5 0 0 0

0 1 0 7 1 4 2

0 1 0 9 6 9 4

0 1 0 9 3 2 9

0 1 0 9 3 8 1

0 1 0 9 3 7 4

0 1 0 9 3 7 5

0 1 0 9 3 7 5

(a) Conventional arithmetic with ap-
proximants calculated LSD first.
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.
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0 1 2 5 0 0 0 0 0

0 1 0 7 1 4 2 8 5

0 1 0 9 6 9 3 8 7

0 1 0 9 3 2 9 4 4

0 1 0 9 3 8 1 5 0

0 1 0 9 3 7 4 0 7

0 1 0 9 3 7 5 1 3

0 1 0 9 3 7 4 9 8

(b) ARCHITECT, MSD first.

.

.

.

.

.

.

.

.

0 1 2 5 X X X X X

0 1 0 7 1 X X X X

0 1 0 9 7 0 X X X
′′ 1 0 9 3 2 8 X X
′′ ′′ 0 9 3 8 1 7 X
′′ ′′ ′′ 9 3 7 4 0 4

′′ ′′ ′′ 9 3 7 5 1 3

′′ ′′ ′′ ′′ 3 7 4 9 8

(c) Our proposal, MSD first, ignoring don’t-
change and don’t-care digits.

Figure 1: Alternative digit-calculating strategies for the solution of x(k+1) = 1/8− x(k)
/7. Arrows show the order of digit generation. In

Figure 1c, ′′-marks indicate don’t-change and Xes don’t-care digits, with solid lines representing the bounds of these two regions.

ple, today, hundreds of digits of precision are required in
atomic system simulations and electromagnetic scattering
theory calculations, while Ising integrals and elliptic func-
tion evaluation need thousands of digits [3]. In experimental
mathematics, Poisson equation computations frequently re-
quire results to tens or hundreds of thousands of digits of
precision [4]. Standard numeric datatypes, such as double-
or even quadruple-precision floating point, are no longer
sufficient in an increasing number of scenarios.

Interest in the hardware acceleration of high-precision
operations, in particular those within iterative algorithms,
is growing [5]. Field-programmable gate arrays (FPGAs)
represent ideal platforms for their realisation thanks to their
flexible fabrics, devoid of the costs and lead times asso-
ciated with full-custom implementation. Many open-source
libraries, e.g. FloPoCo [6] and VFLOAT [7], alongside those
provided by vendors, are available for custom-precision
arithmetic hardware generation. Mixed-precision iterative
solvers, in which precisions can be selected from a set as
required at runtime, have also been proposed [8], [9].

Each of the aforementioned proposals requires
precision—or precisions—to be determined a priori. In
many cases, this is not a trivial task; making the wrong
choice often means having to throw the calculations already
done away and starting from scratch with higher precision,
wasting both time and energy in doing so. In our work, we
are particularly interested in hardware architectures which
allow precision to be increased over time without having
to restart computation or modify the circuitry.

2.2. Online Arithmetic

Achieving arbitrary-precision computation with fixed
hardware requires MSD-first input consumption and output
generation. A suitable proposal for this, widely discussed
in the literature, is online arithmetic [10]. By employ-
ing redundancy in their number representations, all online
operators are able to function in MSD-first fashion. On-
line operators are classically serial, however efficient digit-
parallel (unrolled) implementations targetting FPGAs have
been developed as well [11]. We make use of both digit-

serial and -parallel online operators in this work, employing
the de facto standard signed-digit number representation.

Of particular significance to the material presented in
this paper is the concept of online delay. When performing
an online operation, the digits of its result are generated at
the same rate as its input digits are consumed, but the result
is delayed by a fixed number of digits, denoted δ. That is,
the first (i.e. most-significant) q digits of an operator’s result
are wholly determined by the first q + δ digits within each
of its operands [10]. The value of δ is operator-specific, but
is typically a small integer; for radix 2, delays of online
addition and multiplication are δ+ = 2 and δ× = 3,
respectively. When chaining operators to form a datapath,
its total online delay, δΣ, is the highest cumulative delay
through the complete circuit [12].

2.3. ARCHITECT: Arbitrary-precision Constant-

hardware Iterative Compute

Arbitrary-precision online operators were realised by
Zhao et al. [12], who wished to allow runtime tuning of
precision for iterative calculations. Of course, precision is
not the only factor affecting the accuracy of an iterative
algorithm’s result; the number of iterations performed, K, is
also crucial. Where Zhao et al.’s proposal required separate
hardware to be instantiated for each iteration, ARCHITECT
removed the need to determine, and fix, K at compile time.
Therein, we presented the first iterative solver that allowed
both precision and iteration count to be tuned at runtime;
the accuracy of results that can be obtained is limited only
by the size of the available memory.

Zhao et al.’s designs and ARCHITECT both achieved
arbitrary-precision functionality by breaking arbitrary-
precision numbers into fixed-precision ‘chunks’ and pro-
cessing them sequentially. We use the ARCHITECT notation
in this paper, regarding a p-digit number as comprising
n = �p/U� chunks, each U digits wide. The chunks, and
the digits within each chunk, are indexed—from most to
least significant—using the variables c ∈ {0, 1, · · · , n− 1}
and u ∈ {0, 1, · · · , U − 1}, respectively. Chunk width U
determines the size of parallel operators used within more
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complex units—e.g. adders in the case of multipliers—
and the width of the required storage elements. Finally,
approximants are indexed with k ∈ {0, 1, · · · ,K − 1}, with
k = 0 indexing the initial guess of the solution being sought.

Simultaneous growth of k and p was achieved for AR-
CHITECT by using a Cantor pairing function (CPF) [13]
to collapse the three dimensions k, c and u into the two-
dimensional tuple (CPF(k, c), u). This is suitable for ad-
dressing memory since CPF(k, c) can grow without bound
while, by design, 0 ≤ u < U .

As exemplified in Figure 1b, while the generation of
all LSDs shown is strictly necessary to achieve exact com-
putation in every iteration, as ARCHITECT does, iterative
algorithms do not ordinarily require this to achieve conver-
gence. By purposefully allowing rounding error, but care-
fully bounding the amount introduced in each approximant,
arbitrary-accuracy results can still be obtained while gen-
erating far fewer digits than necessitated by ARCHITECT.
It was this observation—coupled with that regarding MSD
stability—that inspired the work conducted for this paper.

3. Theoretical Analysis

3.1. Don’t-change Digit Elision

The first optimisation we make to the ARCHITECT
method is to avoid the recalculation of don’t-change digits.
This is the name we give to high-significance digits of later
approximants that have stabilised.

The concept behind this optimisation is straightforward.
To calculate the digits of approximant k, we begin by
examining the digits of the previous two approximants. If
these approximants are equal in their most-significant q+δΣ
digits, it is guaranteed that approximant k will be equal to
its two predecessors in its first q digits. Hence, we do not
calculate them, skipping directly to digit q’s generation.

The soundness of this optimisation can be justified by
appealing to the digit dependencies of online arithmetic.
Figure 2 provides some graphical intuition. Given that each
approximant depends only on the value of its immediate
predecessor, and recalling the definition of online delay from
Section 2.2, we emphasise that the first q digits of one
approximant depend only upon the first q+ δΣ digits of the
previous approximant [10]. Hence, if approximants k − 2
and k− 1 are equal in their first q+ δΣ digits, approximant
k is guaranteed to be equal to them in its first q digits.

3.2. Don’t-care Digit Elision

Let us now turn to the issue of don’t-care digit avoid-
ance. We use this term to refer to low-significance digits
in earlier approximants which do not prohibit the chosen
iterative method’s convergence. Herein, we present a don’t-
care analysis applicable to any stationary iterative method:
Jacobi, Gauss-Seidel, successive overrelaxation, etc.

Consider a linear system Ax = b, where A ∈ R
N×N .

A stationary iterative method for its solution is defined as

Mx(k+1) = Nx(k) + b, (1)

q δΣ

x(k−2):

x(k−1):

x(k):

Figure 2: A proof sketch showing why it is sound to omit don’t-
change digits. If the two hatched regions contain the same q+ δΣ
digits, the three thick boxes are guaranteed to contain the same q
digits, hence approximant k’s calculation can begin at digit q.

with A = M −N and M non-singular [14]. Letting G =
M−1N , we obtain

x(k+1) = Gx(k) +M−1b. (2)

Approximant by approximant, we have

x(1) = Gx(0) +M−1b

x(2) = G2x(0) +GM−1b+M−1b

...

x(k+1) = Gk+1x(0) +

k∑
i=0

GiM−1b (3)

starting from some initial guess x(0).

Lemma 1. If A is strictly diagonally dominant1, then∑∞
i=0 G

i = (I −G)
−1 [15].

Thus,

lim
k→∞

Gkx(0) = 0. (4)

Applying Lemma 1 a second time, this observation allows
us to conclude from (3) that

lim
k→∞

k∑
i=0

GiM−1b = x.

Hence, (1) will converge to x for any choice of x(0).

Lemma 2. x is a fixed point of the iteration, i.e. x =
Gk+1x+

∑k
i=0 G

iM−1b ∀k [14].

Introducing rounding error εk, as we propose to via
truncation of each approximant, (2) becomes

x̂(k+1) = Gx̂(k) +M−1b+ εk+1

1. Our don’t care analysis—in particular, (6)—necessitates strict diag-
onal dominance of A to ensure convergence. We do not consider this
to be a hindrance, however, since strict diagonal dominance, which is
computationally cheap to verify, is commonly used to ensure solubility
when employing stationary iterative methods [16].
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or, expressed per approximant,

x̂(1) = Gx̂(0) +M−1b+ ε1

x̂(2) = G2x̂(0) +GM−1b+Gε1 +M−1b+ ε2
...

x̂(k+1) = Gk+1x̂(0) +

k∑
i=0

GiM−1b+

k∑
i=0

Giεk+1−i (5)

from some finite-precision initial guess x̂(0).
Defining computation error e(k) = x− x̂(k), subtraction

of (5) from the equality given in Lemma 2 results in

e(k+1) = Gk+1e(0) −
k∑

i=0

Giεk+1−i,

wherein e(k) captures errors due to the finiteness of both
the iteration count and the precision. We wish to minimise
this value. Since we cannot minimise e(k) directly, we seek
to minimise its upper bound instead. Taking norms,

∥∥∥e(k+1)
∥∥∥
∞

≤
∥∥∥Gk+1e(0)

∥∥∥
∞
+

k∑
i=0

‖G‖i∞ ‖εk+1−i‖∞ (6)

since ‖G‖∞ < 1. We ensure that ‖εk+1−i‖∞ ≤ r−dk+1−i

by controlling the precision of each approximant’s compu-
tation, expressed as a number of radix-r digits dj .

For neatness, let g(i) denote the maximum error intro-
duced in approximant i:

g(i) = ‖G‖i∞ r−dk+1−i .

Defining d to be a column vector whose jth element is
dk+1−i and assuming an available ‘budget’ of total digits
D for computation, we aim to find

min
d

f(d) =

k∑
i=0

g(i)

subject to h(d) = −D +

k∑
i=0

di+1 = 0,

(7)

thereby determining the optimal allocation of the available
digits per approximant.

Theorem 1 (The optimal error distribution is uniform). The
optimisation in (7) is achieved when g(i) is a constant
independent of i.

Proof. Via the Karush-Kuhn-Tucker conditions [17], the
optimal d, d∗, is obtained when

∇f(d∗) + λ∇h(d∗) = 0

h(d∗) = 0

k + 1

− logr α
∇
=
log

r ‖G‖
∞D

i

dk+1−i

(a) Sketch of (8).

=⇒

− logr α

k + 1

∇
= −

log
r ‖G‖

∞

D

di

i

(b) Don’t-care line.

Figure 3: Deriving the gradient of the don’t-care line. Figure 3b
was arrived at by transforming dk+1−i, featured in Figure 3a,
into di, after which it was rotated clockwise by 90◦ to match
the presentation used in Figure 1. Since di does not feature k,
Figure 3b’s x-intercept (here, the origin) can be chosen arbitrarily.

for some multiplier λ. We have

∇f(d) =

⎛
⎜⎜⎜⎜⎜⎜⎝

(
‖G‖k∞ ln r−1

)
r−d1(

‖G‖k−1
∞ ln r−1

)
r−d2

...(
‖G‖0∞ ln r−1

)
r−dk+1

⎞
⎟⎟⎟⎟⎟⎟⎠

∇h(d) =

⎛
⎜⎜⎝
1
1
...
1

⎞
⎟⎟⎠ ,

i.e.
−

(
‖G‖i∞ ln r

)
r−dk+1−i + λ = 0.

Therefore, the optimisation in (7) is achieved when g(i) =
λ/ln r, a constant independent of i, as required.

Setting g(i) = α and taking logs, we obtain

dk+1−i = i logr ‖G‖∞ − logr α. (8)

We present the transformation of this function to our re-
quired don’t-care line graphically in Figure 3. From Fig-
ure 3b, we can infer that the optimal gradient of the don’t-
care line is − logr ‖G‖∞, and is therefore independent of
α. The line’s x-intercept is analogous to the precision with
which one wishes to begin computation, so is user-defined.

Theorem 2 (Error can be arbitrarily minimised).
limD,k→∞

∥∥e(k)∥∥∞ = 0.

Proof. As D → ∞, dk+1−i → ∞ ∀i. Consequently, g(i) →
0 ∀i. From (4), we can infer that

lim
k→∞

Gk = 0.

Thus, from (6),

lim
D,k→∞

∥∥∥e(k)∥∥∥
∞

= 0,

as required.

From Theorem 2, we can be sure that convergence to any
accuracy is always achievable when A is strictly diagonally
dominant, given enough iterations, for any choice of x̂(0).
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4. Implementation

Armed with the analyses presented in Section 3, we are
now in a position to design suitable control and storage
infrastructure to support the efficient generation of digits
within an MSD-first iterative solver.

4.1. Control Logic

For every element of x̂(k), x̂(k)
v , three factors determine

the number of its digits that must be calculated:

• The initial guess. We assume that Figure 3’s don’t-
care line is placed such that the minimum number
of digits needed to represent x̂(0)

v exactly are used.
Thus, each approximant requires a minimum of

χv = − logr ULP
(
x̂(0)
v

)

digits for its representation, where ULP returns the
unit in the last place of its argument.

• Don’t-change digits. Don’t-change analysis is im-
plemented through the comparison of successive
approximants. Mathematically, this is represented as

ψv(k) = max
(

LZC
(∣∣∣x̂(k−1)

v − x̂(k−2)
v

∣∣∣)− δΣ, 0
)
,

in which LZC produces a leading-zero count. ψv(k)
returns the number of MSDs that are guaranteed
to be stable within approximant k. Once digits in
a particular position have been determined to be
stable, in practice there is no longer a reason to re-
visit that position. Since the number of stable MSDs
grows monotonically, we are able to optimise the
successive-approximant comparison by ignoring the
first ψv(k − 1) MSDs during iteration k. A counter
is all that is required to implement this.

• Don’t-care digits. The don’t-care line’s gradient is
indicative of the number of additional digits to cal-
culate per approximant. Hence, within approximant
k, we do care about

ω(k) = �−k logr ‖G‖∞�
more digits than were contained in the initial guess.
We always round towards +∞ to ensure that we do
not inadvertently neglect to calculate required LSDs.

Combining these, we arrive at

βv(k) =

{
χv + ωv(k) if k < 2

χv − ψv(k) + ωv(k) otherwise,

where βv(k) reveals the number of digits to produce per
approximant. The index of the first digit to produce within
each approximant is given by ψv(k), which we only begin
to evaluate once k ≥ 2; prior to this, calculation always
commences from the MSD.

We designed a parameterisable finite-state machine
(FSM) to sequence digit propagation through a pipeline
of online operators. Beginning with the consumption of
approximant k = 0 (the user-supplied initial guess), it

sweeps through βv(k) digits per approximant, incrementing
k after each calculation. Once k ≥ 2, don’t-change digits
start to be evaluated, shifting the start of each approximant’s
calculation by ψv(k) digits away from the MSD.

From a user’s perspective, no additional information
needs to be supplied to take advantage of don’t-change and
don’t-care digit elision. The system to be solved, defined by
A and b, along with x̂(0), are all that is required.

4.2. Memory

Since our don’t-care analysis tells us the number of
digits we need to compute per approximant a priori, we
are able to compute approximants, in full, sequentially. This
was demonstrated visually in Figure 1c. To enable don’t-
change digit avoidance, however, we require access to one
previously computed approximant. This is one, rather than
two, since the generation of the current approximant (k) can
be used to infer the number of stable digits in the yet-to-
be-computed approximant k + 1. It is therefore safe for us
to overwrite approximant k − 2 with approximant k.

Since the number of memory words (chunks) required
for each approximant grows over time, we opted to segment
a single, flat memory for the storage of x̂(k) into two halves:
one for even approximants, and one for odd. The correct
memory bank for approximant k is therefore selected by
simply evaluating k mod 2.

Output digit storage is not our only memory-related con-
cern. Don’t-change digit elision requires the ability to restart
computation from arbitrary digit indices, thus we must store
the internal residues of earlier iterations’ operations.

Without delving into the minutiae of these mechanisms,
it is important to note that residue storage requirements
grow more slowly than those of x̂(k). With more thorough
analysis, we believe that the majority of this additional
storage can be eliminated: a task we leave to future work.

As a result of these sources of increasing storage burden,
the size of the instantiated memories will determine the
maximum precision and number of iterations (and conse-
quently accuracy) to which one can compute. It is for this
reason that we refer to the work presented in this paper,
and ARCHITECT, as fixed compute-resource architectures.
Our arbitrary-accuracy claim is subject to the availability of
sufficient memory to solve the particular problem at hand.

5. Evaluation

Hardware performance evaluations were conducted to
investigate how our method compares to both ARCHITECT
and conventional LSD-first equivalents. For the latter, we
compared against the performance of datapaths made up
of parallel-in, serial-out arithmetic operators, as was done
to evaluate ARCHITECT, for which precision must be set at
compile time. These function in a similar digit-serial fashion
to those used for ARCHITECT and this work.

Compared to iterative computation architectures con-
structed using conventional arithmetic (LSD-first) operators,
we expect ours to compare favourably due to:
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• There being no need to determine, or fix, precision
in advance. MSD-first computation circumvents the
need to begin computation from the LSD, avoiding
both under- and over-budgeting compute resources
for a given problem. The same hardware can thus
be used for problems that would ordinarily require
distinct architectures in order to solve efficiently.

• Don’t-change digit elision. Online arithmetic grants
us the ability to declare MSDs to be stable. This is
generally not possible in LSD-first architectures, in
which carries can propagate from LSD to MSD.

• Don’t-care digit elision. Our theoretical analysis
facilitates the growth of precision over time. This
allows us to focus exclusively on digits known to be
of value, thereby increasing efficiency. This is diffi-
cult to achieve in LSD-first architectures, in which
every approximant must ordinarily be calculated to
a maximum (worst-case) precision.

Versus ARCHITECT, we hypothesise that iterative solvers
constructed following the proposals presented in this paper
will achieve greater performance thanks to:

• Don’t-change and don’t-care digit elision. Beyond
the benefits outlined above, additional performance
gains can be obtained through digit generation avoid-
ance in MSD-first architectures. Of the two classes,
we expect don’t-care digit avoidance to have the
greatest effect since digit generation requires more
time the lower the significance of the digit. This is
a property of the hardware used for operators which
are themselves inherently iterative, e.g. multipliers,
and applies equally to ARCHITECT and this work.

• A more efficient digit computation pattern. As ex-
emplified in Figure 1b, ARCHITECT refines earlier
approximants as needed in order to reach further into
the iteration-precision space. Switching between it-
erations incurs stalling penalties which our proposal
limits. Since our don’t-care line is monotonic, we
have no need to revisit earlier iterations, as was
demonstrated in Figure 1c.

• Significantly lower memory usage. Closely related to
the previous point, our computation pattern permits
us to discard older approximants and their residues.
This allows us to do away with ARCHITECT’s CPF,
with memory use scaling only with precision.

All of our hardware implementations targetted a Xil-
inx Virtex UltraScale FPGA (XCVU190-FLGB2104-3-E),
with Vivado 16.2 used for compilation. Results obtained in
hardware were compared for correctness against a golden
software model executed in MATLAB.

5.1. Jacobi Method Benchmark

We used the Jacobi method, a well known stationary it-
erative algorithm, as a case study for the proposals presented
in this paper. Jacobi is of the form expressed in (1), with
M = diag(A). Without loss of generality, we used matrix
size N = 2, radix r = 2, chunk width U = 8 and online
delay δΣ = 5 in this paper, constructing the datapath shown

× ×

+ +

Mem.

−a01
a00

b0
a00

−a10
a11

b1
a11

22

22

22

2 2

x̂0(k, c, u)

x̂1(k, c, u)

x̂0(k
′, c′, u′) x̂1(k

′, c′, u′)

Figure 4: 2D Jacobi method benchmark datapath. Adders and
multipliers are radix-2 signed-digit online operators.

in Figure 4. This is identical in structure to that used in
our previous work [1]. Digit sequencing and storage were
realised using an FSM and memory architecture constructed
as outlined in Section 4.

Mirroring the experiments conducted to evaluate the
performance of ARCHITECT, we solved systems of the form

Am =

(
1 1− 2−m

1− 2−m 1

)
, b =

(
b0
b1

)
, x(0) = 0,

with elements of b selected from a uniform distribution
bounded to [0, 1). This facilitated direct comparison.

The criterion ‖Amx− b‖ < η, with 0 < η ≤ 1, was
used at runtime to establish convergence. The conditioning
of Am was controlled using m ∈ R>0. This range of m
guaranteed solubility since Am was always strictly diag-
onally dominant. Higher m results in a higher condition
number κ(Am), indicating that higher precision will be
required to achieve convergence.

5.2. Performance Comparison

To begin, we set accuracy bound η = 2−6 and investi-
gated how the conditioning of Am affected the performance
of our proposal relative to conventional LSD-first arithmetic.
Figure 5 illustrates the speedup in solve time, both for our
proposal and for ARCHITECT. Note that speedups below
unity are slowdowns.

Figure 5a compares our proposal and ARCHITECT
against LSD-first arithmetic with a fixed precision of 30 bits
(LSD-30). This precision is over-budgeted for the solution
of well conditioned matrices, hence we see that, when m
is small, both ARCHITECT and our proposal can compute
more quickly. ARCHITECT requires m � 0.013 in order to
beat LSD-30, whereas our proposal only requires m � 0.11.
Figure 5b demonstrates that if LSD-first arithmetic is given
an under-budgeted precision of just eight bits (LSD-8), then
only arbitrary-precision iterative solvers can solve systems
with m > 2. Even if LSD-8 could run indefinitely, it would
never be able to converge to an accurate-enough result.

We remark that the values that appear in Figure 5 are
not particularly meaningful since we are comparing our
proposal against unoptimised baselines, rather than against
the state of the art in LSD-first arithmetic. Nonetheless, our
emphasis here is that, however optimised a conventional
implementation is, if its precision is sufficiently over- or
under-budgeted, we will eventually outperform it.
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Figure 5: A comparison of our proposal against conventional LSD-
first arithmetic. (a) shows how the conditioning of input matrix
Am affects the solve time of both ARCHITECT ( ) and our
proposal ( ) compared to LSD-30. ARCHITECT computes faster
than LSD-30 only when m � 0.013, but our proposal beats LSD-
30 when m � 0.11. (b) shows that even though both ARCHITECT
and our proposal lead to a slowdown compared to LSD-8, there is
nevertheless a point—at m > 2—whence LSD-8 does not converge
at all, hence our speedup (and ARCHITECT’s) is infinite.

To further evaluate the performance of our proposal,
Figure 6 presents a side-by-side comparison of solving
different linear systems using our method and ARCHITECT.
The results show that, generally, as m increases, more time
is required in order to achieve a sufficiently accurate result.
Most strikingly, our method demonstrates high efficiency
with corresponding decreases in computation time being
found versus ARCHITECT. When computing a well condi-
tioned matrix with m = 0.046, our design is 1.77× faster
than ARCHITECT, while for m = 6 it is some 2500× faster.
Our proposal outperformed ARCHITECT in all tested cases,
with a geometric mean 20.1× speedup obtained.

5.3. Scalability Comparison

To evaluate the scalability of our proposed method,
Figure 7 shows how the requested accuracy, controlled by
η, affects the solve time and the number of computed
digits. We can see from Figure 7a that ARCHITECT requires
increasingly more time to reach a solution than our proposal
as the requested accuracy increases. With low accuracy
requirements, such as η = 2−4, our method is 1.82× faster
than ARCHITECT. In the case of high accuracy, such as
when computing to η = 2−256, our method is 193× faster.
From a more fundamental perspective, Figure 7b shows the
relationship between the requested accuracy and the total
number of digits calculated. Our method calculates 1.04×
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Figure 6: How the conditioning of Am affects the solve time of
ARCHITECT ( ) and our proposal ( ).

fewer digits than ARCHITECT with η = 2−4, increasing to
44.1× fewer digits when η = 2−256.

Figures 7a and b also demonstrate how don’t-care and
don’t-change digit avoidance individually affect computa-
tion time and the number of computed digits. As expected,
don’t-care digit elision leads to the majority of our de-
sign’s efficiency savings over ARCHITECT. The gap between
the don’t-change plus don’t-care and don’t-care-only lines
widens as η reduces, however, indicating that consideration
of don’t-change digits becomes more important with higher
accuracy requirements. This makes sense since, as η falls,
more iterations are required to achieve convergence, thus
affording more opportunity for don’t-change digit elision.

Finally, Figure 7c shows the minimum number of on-
chip memory blocks that need to be instantiated in order
for our proposed solver and ARCHITECT to reach particular
accuracies. For lower-accuracy cases (η ≥ 2−32), both
designs require approximately the same amount of memory,
although our proposal is slightly inferior due to don’t-change
detection overheads. The advantages over ARCHITECT’s
memory addressing explained in Section 4.2 come to the
fore with higher accuracy requirements. For the lowest η
tested, 2−256, we observed a 22.4× memory reduction.

6. Conclusion & Future Work

In this paper, we proposed a new methodology for the
creation of iterative numeric solvers in hardware in which
the achievable result accuracy is bounded only by the size of
the available memory. Our work relies on online arithmetic
operators in order to generate results from most-significant
digit first. Efficiency over ARCHITECT, the state-of-the-art
arbitrary-accuracy hardware solver, was achieved using digit
dependency and forward error analyses to identify both sta-
ble and unimportant—don’t-change and don’t-care—digits,
excluding them from calculation. Our don’t-change analysis
holds for any iterative method, and was realised in hardware
using simple runtime detection logic. For the identification
of don’t-care digits, we presented a theorem for stationary
iterative methods allowing many low-significance digits to
be ignored without impacting upon the solver’s ability to
reach a result of any accuracy.
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Figure 7: How the requested accuracy bound η affects (a) the solve
time, (b) the total number of digits calculated and (c) the minimum
memory requirement for ARCHITECT ( ), our proposal ( )
and ours with don’t-care digit omission only ( ), with m = 1.

We evaluated our proposals using the Jacobi method.
Versus ARCHITECT, we showed a mean 12.8× reduction
in the number of digits generated in order to solve a set
of differently conditioned matrices to the same accuracy.
In those cases, elision of redundant digit calculation led
to a geometric mean 20.1× speedup. The monotonicity
of our don’t-care line allows us to eliminate the need to
revisit and refine earlier approximants, leading to an up-to
22.4× memory footprint reduction. Making more efficient
use of a given-sized memory enables us to advance much
deeper into the iteration-precision space than ARCHITECT
allowed. Finally, versus a fixed-precision Jacobi solver con-
structed from conventional LSD-first arithmetic operators,
we demonstrated that our proposal is able to solve more
difficult linear systems, as ARCHITECT did, and that we
require less solve time when a system is well conditioned.

In the future, we will attempt to extend our don’t-care
digit analysis to other iterative algorithms, including Krylov
subspace methods such as conjugate gradient descent. We
will explore the possibility of more aggressive don’t-change
digit analysis, likely to be algorithm-specific, that may allow

us to do away with the runtime detection proposed in this
work, thereby achieving further performance improvements.
We are particularly keen to see if it is possible to obtain the
same rates of growth in MSD stability and LSD signifi-
cance, thus achieving parallel don’t-change and don’t-care
lines. Doing so would enable the creation of efficient, fixed
compute-resource hardware with no bounds on accuracy,
and may allow us to generalise the e-method [18].
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