A New Variant of the Barrett Algorithm Applied to
Quotient Selection

Niall Emmart*, Fangyu Zheng'*, Charles Weems*
*College of Information and Computer Sciences, University of Massachusetts, Amherst, MA 01003-4610, USA
tState Key Laboratory of Information Security, Institute of Information Engineering,
Chinese Academy of Sciences, Beijing, China
tData Assurance and Communication Security Research Center, Chinese Academy of Sciences, Beijing, China
Email: nemmart@yrrid.com, fyzheng@is.ac.cn, weems@ cs.umass.edu

Abstract—Quotient Selection (QS) is a key step in the classic
O(n?) multiple precision division algorithm. On processors with
fast hardware division, it is a trivial problem, but on GPUs,
division is quite slow. In this paper we investigate the effectiveness
of Brent and Zimmermann’s variant as well as our own novel
variant of Barrett’s algorithm. OQur new approach is shown to
be suitable for low radix (single precision) QS. Three highly
optimized implementations, two of the Brent and Zimmerman
variant and one based on our new approach, have been developed
and we show that each is many times faster than using the
division operation built in to the compiler. In addition, our variant
is on average 22 % faster than the other two implementations. We
also sketch proofs of correctness for all of the implementations
and our new algorithm.

Index Terms—multiple precision division, quotient selection,
Barrett reduction

I. INTRODUCTION

Quotient Selection (QS) is a simple computation that arises
in the implementation of multiple precision division. QS
computes the following:

_ Lalﬂ + GOJ
=14
return min(q, 5 — 1)

where [is a power of two (typically 2%, where w is the
machine word size), and 0 < ag,a; < 3, and d is a normalized
divisor 3/2 < d < (3. On processors with a hardware divide
instruction, this is a trivial operation. However, it can be quite
slow and often a performance limiter on simpler processors,
such as GPU cores, vector processors, DSPs, or embedded
processors. Since the same divisor is used repeatedly, a com-
mon solution to the problem is to use Barrett’s algorithm to
replace the division with multiplications. The contributions
of this paper are two-fold: (1) we present a novel variant of
Barrett’s algorithm that allows for faster a implementation of
QS; (2) we present three highly optimized implementations of
Barrett-based QS (BQS), and show that the implementations
are correct. These efficient implementations of BQS, using
C and assembly language, are non-trivial and we believe they
will be of interest to developers working on similar processors.

The rest of this paper is organized as follows. Section
I-A presents background information. Section I-B covers
prior work on Barrett’s algorithm. Section I-C discusses the

XXX-X-XXXXXXX-X-X/ARITH18/©)2018 IEEE

hardware requirements to support our BQS implementations.
Section II covers Brent and Zimmermann’s variant ([4]
§2.4.1) of the Barrett algorithm and presents the first two
implementations of BQS, which are based on it. Section III
covers our proposed variant of Barrett’s algorithm and the
third BQS implementation. Our experiments and results are
presented in Section IV, which show that all three BQS
implementations are much faster than the built-in compiler-
generated long division on NVIDIA GPUs, and that the third
implementation of BQS, based on our variant of Barrett’s
algorithm, is on average 22% faster than the other two variants.
Section V gives our conclusions.

A. Background

In multiple precision (MP) division, we wish to compute
| X/Q|, where X and @ are represented using a fixed radix
number system, i.e.,

n—1 m—1

X=Y wp ad Q=)
=0 i=0

where [is the radix, 0 < x;,¢q; < 3, and n > m. MP division
algorithms can be classified as either slow quadratic algorithms
(such as the grade school long division algorithm) or fast sub-
quadratic algorithms. The slow algorithms typically compute
a fixed number of quotient bits on each iteration. The fast
algorithms include Newton-Raphson, Goldschmidt division
[9] and Burnikel-Ziegler’s divide and conquer algorithm [5].
The fast algorithms typically rely on grade school division,
for example, Newton-Raphson uses grade school division to
generate an initial seed and Burnikel-Ziegler uses grade school
division for the base cases. Thus a good MP library requires
an efficient grade school implementation and one of the key
steps of the grade school algorithm is Quotient Selection. For
more information about division algorithms and QS see [4],
[12], [15].

B. Prior Work on Barrett’s Algorithm

In 1984, Barrett [1], [2] introduced an algorithm for the
modular reduction operation. His basic idea is replacing the
expensive division with a multiplication by a pre-computed
constant which approximates the inverse of the modulus. Thus

134

the calculation of the exact quotient ¢ = | 5] is avoided by
computing the quotient ¢*:
2n
o |l
q - 2n+1 9

where L%J is a pre-computed constant. In the original Barrett
reduction, the estimate quotient ¢* € [¢ — 2, ¢], which implies
at most 2 correction steps are required.

In 1994, Dhem [7] provided a generalized version of the
Barrett reduction:

. “#J |25

279

In particular, with appropriate choices, the error on the
quotient can be reduced. Specificly when v = n + 3 and
6 = —2, only one correction step is required.

Many following papers adopted different configurations of
~ and § to achieve different goals. In 2000, GroBschadl [10]
used the FastMM algorithm proposed in [16] with v = n
and § = —n. When applying it to modular exponentiation,
no correction step of the intermediate results is necessary.
In 2010, Brent and Zimmermann [4] described the Barrett
reduction with v = n and § = 0. It requires three correction
steps but is very efficient for single-precision or low-radix
division.

These modifications are mainly related to the configuration
of v and 4. There are also many other variants of the Barrett
reduction:

Special-moduli variant. In 2009 and 2010, Knzevic et al.
provided two special sets of moduli, one can efficiently avoid
the pre-computation step in Barrett reduction [13], the other set
can be used in an interleaved modular multiplication based on
Barrett reduction to reduce the number of multiplications [14].
In 2016, Géraud et al. [8] announced a method that can double
the speed of Barrett reduction by using specific composite
moduli. And in 2017 Bos and Friedberger [3] proposed an
improved Barrett reduction over 2¥p¥ + 1.

More-pre-computation variant. In 2007, Hasenplaugh et
al. [11] modified the Barrett reduction with more pre-
computation, but reducing the overall amount of multiplication
and addition.

Non-2-base variant. In 2013, Cao and Wu [6] proved that
the base b > 3 in Barrett reduction can be replaced by the usual
base 2, which solves the data expansion problem in Barrett
reduction so as to modestly reduce the cost.

C. Assumptions about the hardware

In the implementations that follow, we rely on a few features
that are beyond what is typically provided by C. In particular
we assume that the processor has a carry flag for extended
precision addition and subtract, and a full multiplier that can
compute the low and high words of a product. In Table I we
list the functions we use and their meaning. In addition we
assume the existence of two types: uint for a unsigned integer
range from O and 5 — 1, and ulong for unsigned integers that
range from 0 to 32 — 1.

25" IEEE Symbosium on Computer Arithmetic (ARITH 2018)

II. BRENT & ZIMMERMANN’S VARIANT OF THE BARRETT
ALGORITHM

The original Barrett algorithm was conceived for high radix
multiple precision quotient estimation (and modular reduc-
tion), where the size, n, was in machine words. In this setting,
we wish to apply it to estimate a single machine word quotient,
ie.,

=

where = 2" and w is the length in bits of a machine word
and d is normalized, i.e., /2 < d < (. Barrett’s algorithm
requires computing the product of a w+-2 bit value by a w+1
bit value, the result of which needs to be divided by Qu+l
Performing these particular product and shift operations does
not align well with hardware words and both steps require
multiple instructions. There are several variants of Barrett’s
algorithm that use a less precise inverse approximation, at
the expense of more correction steps than the two required
in the original Barrett algorithm. Here we look at Brent and
Zimmermann’s variant, [4] §2.4.1, shown in Algorithm 1, and
apply it to quotient selection by adding min(¢*, 8 — 1) to
the return on line 7. The algorithm works as follows. We
require a pre-computed approximation to the inverse of the
divisor, ;1 = |3%/d]. Then line 1 computes the initial quotient
estimate, ¢* = [(a1-1)/B]. ¢* will be close to ¢, in particular,
q* < q < q* + 3, thus the correction step (lines 4 and 5) will
be run at most three times. Then we return the minimum of
¢* and [— 1 as the result.

For the correctness, we use the fact that u = |3?/d], and
thus 3% —d < pud < B2. There are two key parts to the proof.
First, we must show that ¢* (computed in line 1) is never an

TABLE I
NON-STANDARD C FUNCTIONS USED IN THE IMPLEMENTATIONS

Operation
r=add_cc(a, b)

Meaning
Computes the sum of a + b, sets the carry out
processor flag

r=addc_cc(a, b) Computes the sum of a + b with carry in and

carry out
r=addc(a, b) Computes the sum of a + b with carry in, does
not set the carry out
r=sub_cc(a, b) Two’s complement subtraction, a+ ~ b+ 1,
sets the carry out flag
r=subc_cc(a, b)

r=subc(a, b)

Computes a+ ~ b with carry in and carry out
Computes a+ ~ b with carry in, does not set
carry out

(r0,r1)=mul_wide(a, b)) Computes the full product of a times b, writes
the low half to r0, high half to rl

rl=mul_high(a, b) Computes the high product of a times b

135

Algorithm 1 Quotient Selection using Brent and Zimmer-
mann’s variant of the Barrett Algorithm
Require: 0 < ag,a; < f3, d is normalized, and p = |5%/d|
Ensure: ¢* = min(| (a1 + ao)/d}, 5 — 1)

1 ¢" < [(a1p)/B]
2: 17+ (a1 8+ ap) — dg*
3: while » > d do
4 r+r—d
5
6
7

¢ g +1
: end while
: return min(q*, 8 — 1)

over-estimate, i.e., ¢* < g:

o4

ap

B

ap agp
B 7)
arpd + aof
dp
a18% + aofs

g

|
| |
| =

Second, the correction step is run at most three times:
ap

=% = Fl T

{aludd; aoﬁJ 3

IN

ap ap

B

- {alﬁz_Z;dJraOBJ .
> |2 -
> q—1-2=q—-3

Algorithm 1 is simple to state, however, there are some
challenges in implementing it efficiently, namely, p and ¢*
can both exceed 5 — 1 and thus need to be represented using
multiple machine words. We develop two highly optimized
variants, shown in Figure 2 and 3, that allow p and ¢* to
be represented by single words, and we improve performance
by unrolling the loop and merging the loop comparison with
the subtraction (lines 3 and 4 of Algorithm 1). Both imple-
mentations use a common routine to compute the approximate
inverse, shown in Figure 1, which computes: 1/ = p—(8+1).
Subtracting 3 + 1 from g means 0 < u/ < J3. Figure 2 is

uint BQS_approx (uint divisor) {
ulong longdiv=divisor;

// computes floor(beta”2 / divisor) — (B+1)
longdiv=(0—1longdiv)/ divisor;
return (uint)longdiv;

}

Figure 1. Barrett Approximation

136

uint BQSvl(uint a0, uint al,
uint divisor , uint p') {
uint qstar, yO, yl, correct;

(y0,yl) = mul_wide(p', al);

y0 = add_cc(y0, al);

gstar = addc(yl, al);

(y0,yl) = mul_wide(qstar, divisor);

// adjust y0:yl to simplify correction steps

y0
yl

add_cc(y0, divisor —1);
addc (yl, 0);

//
y0

first
sub_cc (y0,
yl subc_cc(yl, al);
correct subc (0, 0);
qstar = qstar — correct;

correction step
a0);

// second correction step
y0 add_cc(y0, divisor);
yl addc_cc(yl, 0);

correct = addc(correct ,
gstar gstar — correct;

rect = 0):

// third correction step
y0 add_cc(y0, divisor);
yl addc_cc(yl, 0);

correct addc(correct ,
qstar = qstar — correct;

0);

if (al>=divisor)
gstar B—1;
return qstar;

Figure 2. Barrett Quotient Selection implementation #1

a relatively straight-forward implementation of Algorithm 1.

Lines 5-7 compute:
= [al(ﬂ/zﬁH)J _ {%J

Lines 8-12 compute (y0,yl) = mul_wide(¢*,d) + (d — 1).
Lines 14-30 are the unrolled correction steps. Lines 32-34
implement the min(g*, 8 — 1).

Proof of correctness sketch: Lines 5-7 generate an initial ¢*
which is less than ¢, as was proven above. Lines 8-16 compute
(y0,y1) = dg* + (d — 1) — (a18 + aop). Line 17 sets correct
to -1 if (y0,y1) is negative and O otherwise, and we have:

= d¢"+(d—1)— (apf+aog) <0
= (mf+ay)—d¢" >d—-1

correct = —1

i.e., the remainder is greater than the divisor and we must
run the correction step, which is done in line 18. Lines 20-
30 similarly implement the other two correction steps. We
note that the ¢* computations in lines 7, 18, 24, and 30 are
executed modulo [, that is, they they throw away any carry
out. However, at each step in the computation ¢* is guaranteed
to be less than or equal to g. Therefore, if there were a carry
out, it would require that ¢ > [, in which case, we would
have a; > d, since a13+ag > ¢-d. Thus, line 33 is triggered

25" IEEE Symbosium on Computer Arithmetic (ARITH 2018)

Nelie BEN e U R O N

if and only if there is a carry out in the computation of ¢* and
we can conclude the algorithm is correct.

In Figure 3, we compute ¢* as before, and then add
three. Thus, ¢* > ¢ and we approach ¢ from above. If the
computation of ¢* carries out, then we set ¢* to 5 — 1 before
the correction steps, which fits in a single word. The correction
steps are slightly more efficient because they do not have to
add d—1 to (y0 : y1), and since we are decrementing ¢*, we
can save an instruction on the last correction.

Correctness proof sketch: The difficult part of this proof is
showing that the if statement in line 9 will be triggered if
and only if there was a carry out in line 7 and/or line 8. If
there were no carry outs in line 7 or line 8, then ¢* < 8 and
the proof of correctness follows that of Algorithm 1. Next,
suppose a; = (3 — 1, then we will definitely get at least one
carry out on lines 7 and 8. However, since a; = 3 — 1, the if
statement is triggered and ¢* is set to S — 1 (as required by the
min). Likewise, if a; = 3 — 2, we will have the carry out, and
the if statement is triggered (as required). Thus, for the routine
to produce an incorrect result, we would need to have three
conditions: a; < 8 — 3, a1 < ¢*, and we have one or more
carry outs. First, let’s assume there is exactly one carry out
(in line 7 or line 8), and we have ¢* + 3 = | (na1 + 36)/5].
Thus,

Ma1+35J
g
a1ﬁ+ﬂ2 < pay + 36

a <q° = a1+6<{
—

which implies 3% < a1 (u—[)+33. However, since 1 < 23,

uint BQSv2(uint a0, wuint al,
uint divisor, uint p/) {
uint qgstar, yO, yl, correct;

(y0,yl) = mul_wide(y/, al);
y0 = add_cc(y0, al);
gqstar = addc(yl, al);
qstar = qstar+3;
if (qstar <= al)

qstar B—1;
(y0,yl) mul_wide (qgstar ,

// first correction step
y0 = sub_cc (a0, y0);
yl = subc_cc(al, yl);
correct = subc(0, 0);
qstar = qstar + correct;

divisor);

// second correction step
y0 = add_cc(y0, divisor);
yl = addc_cc(yl, 0);

correct = addc(correct ,
gqstar = qstar + correct;

0);

// third correction step
y0 = add_cc(y0, divisor);
yl = addc_cc(yl, 0);
qstar = addc(qgstar ,
return qstar;

correct);

Figure 3. Barrett Quotient Selection implementation #2

25" IEEE Symbosium on Computer Arithmetic (ARITH 2018)

Algorithm 2 Quotient Selection using a proposed new variant
of the Barrett Algorithm
Require: 0 < ag,a; < 3, d is normalized, and v = [32/d]
Ensure: ¢* = min(|(a18+ ap)/d],8 —1)

- q* « [(a1v)/B] + [ao/d]

2: ¢* + min(¢*, 58— 1)
3 1 (a1 B8+ ag) — dg*
4: while » < 0 do
5 ¢F+—qg—1
6: r<+<r—+d
7: end while
8: return ¢*
we have:

B2 <ai(p—pB)+38<a1B+38<p5°

Contradiction. Finally, we note that since a; < §— 3, we have
par + 3B < 2B(8 —3) + 33 =25% - 38,

thus two or more carry outs is also not possible. We can
conclude, it is okay to ignore the carry outs on lines 7 and 8.
The proof that the correction steps work is similar to above
and we omit it to save space.

III. PROPOSED NEW VARIANT OF BARRETT’S
ALGORITHM

In Section II, we noted that it was faster to choose ¢*
greater than or equal to ¢ and correct downwards, rather than
correct upwards. Here we propose a new variant of the Barrett
algorithm that selects the initial ¢* as

« ajv ao
¢ = { 3 J + M

where 0 < ag,a; < 3, v = [3?/d], and we require d to be
normalized. Our proposed variant is presented in Algorithm 2.

Correctness proof sketch: We start by noting that since v =
(%ZW , we have 32 < vd < 324 d and have two parts to show,
first, ¢* is never an under-estimate of ¢, thus ¢* > ¢. Using
the fact that || + [y] > [z + y], we have:

S

> {awd—}— aOBJ

alﬁzdfaoﬁ _JaB+tao|
—{ B J*{ d qu

Second, we show that ¢* never requires more than two
correction steps, thus ¢* < ¢+ 2. Since |z] + [y] < [z +y],
we have:

2] [

<

[alyd—kaoﬁw [a162+a1d+aof3w

IN

IN
—_
=
=
+
IS
S
+

137

uint BQS3_approx(uint divisor) {
ulong longdiv=divisor;

if (divisor == B/2)
return S—1;

// compute ceil ("2 / divisor) —
longdiv=(—longdiv/divisor);
return ((uint)longdiv)+2;

[« RN=TE-CREN e N R N O R S

}

Figure 4. Barrett Approximation

Further, if ap = 0, then ¢* is within one correction step of ¢:
aiv _awvd| a1 aq a1
{BJJF[dW*{dﬁJ*{d 5J {d
As with the Brent and Zimmermann variant, we have
the issue that v will be greater than § and thus requires
multiple machine words. The pseudocode in Figures 4 and
5 implements Algorithm 2 efficiently.

We begin with the BOS3_approx routine in Figure 4, which
computes the following function:

, [p-1 if d=p3/2
v %]—5 if /2 <d<p

The proof of correctness is straight-foward. Line 4 catches the
(/2 case. The other cases go to line 8, and since d > /2 and
d is normalized, d must not be a power of two, and therefore
does not divide 32, and we have:
p*—d p?

= le2= 1T = [T
Line 9 then subtracts 3. Thus BQS3_approx returns v — 5 — 1
when d = /2, and v — 3 when d > (/2. This is attractive
because the approximation, v’ fits in a single machine word,
whose value ranges from 1 to 5 — 1.

The BQSv3 algorithm, shown in Figure 5 uses the v’ approx-
imation to compute something closely related to Algorithm 2.
Where they differ, we will show that BQSv3 produces the
correct result.

Proof of correctness: the first thing we must show is that
even though the algorithm ignores carry outs in line 7, if a
carry out had occurred, then it would trigger line 9, which
saturates ¢* with 8 — 1. This proof is similar to the proof in
Section II. We begin by noting that if a; = 8 — 1, then line
7 must carry out (because add is either 1 or 2), and, the if
statement on line 8 will be triggered, which will result in ¢*
being set to 5 — 1 as required. Next, let’s assume that we get
a carry out in line 7, but the if statement on line 8 is not
triggered. We have three conditions, a; < — 2, a carry out,
ie, ¢+ 8=V a1/8] + a1 +add, and ¢* < a;:

Q,
0 <

62

l//al

a <¢° = a1+ﬁ§{5

| + a1+ add
— B2°<ia; +add- g8

Since v/ < 8 —1, add <2 and a; < 3 — 2, we have:

B <viay+add-B<(B-1)(B-2)+20=F"~p+2

138

Nele I e Y N O R S

16

17
_ 18
J+1 =q+1 1o

20
21
22
23

uint BQSv3(uint a0, uint al,
uint divisor, uint v’) {
uint qstar, yO, yl, add, correct;

add

(a0<divisor) ? 1 :
yl mul_high (v, al);
gstar yl+al+add;
if (qstar < al)

gstar B—1;
(y0,yl) mul_wide (qgstar ,

23

= divisor);
// first correction step

y0 = sub_cc (a0, y0);

yl = subc_cc(al, yl);

correct = subc(0, 0);

gstar gstar + correct;

// second correction step
y0 add_cc(y0, divisor);
yl addc_cc(yl, 0);
gstar addc (qgstar ,
return qstar;

correct);

Figure 5. Barrett Quotient Selection implementation #3

Contradiction. Finally, we note, when a; < 8 — 2, a double

carry out on line 7 is not possible. We can conclude that line 9

is run if and only if there was a carry out on line 7 as required.
For the next part of the proof, there are three cases.

Case 1. Suppose d > (/2 and ag > 0, then we have

/

5] revaaa = | s]
- 2452+ (7]
a1v aop

|

Thus lines 5-9 compute ¢* = min Q
exactly as Algorithm 2.

J+ 12
|+ [al.a-1).

Case 2. Suppose d > (/2 and ap = 0. This case is almost
the same, except | % | = 0, whereas add will be 1. Thus, the
q* estimate computed in lines 5-9 will be one greater than the
q* estimate of Algorithm 2. However, we also showed that
when ap = 0, ¢* of Algorithm 2 is at most one correction
step away from ¢. Thus the ¢* computed in lines 5-9 is at
most two correction steps from ¢, as required.

1
g
av

B

Case 3. Suppose d = (/2. In this case, lines 5-9 compute
(excluding the min):
(B—1)ay

5

2a7 — 14 add = 2a1 + ((ap < £/2)70 : 1)

*

J—i—al—i—add

since d is a power of two, we can think of this division as an
arithmetic shift right by w — 1 bits, in which case, the correct

25" IEEE Symbosium on Computer Arithmetic (ARITH 2018)

// set carry=1 if lo>=d, 0 otherwise
sub_cc (a0, divisor);

// add=hi + 1 + carry

add = subc(al, 8—2);
yl = mul_high (v, al);
gstar = yl + add;

Figure 6. Leveraging the carry flag to replace the ternary operation

answer should be

¢ = (@B +ag)>>(w—1)
= 2a1+(a0>>w—1)
= 2a1+ ((ap < 5/2)70: 1)

in other words, ¢* will be exactly ¢ with no correction steps
required.

Lines 12-21 perform the two unrolled correction steps in
an efficient manner, and the correctness argument is similar to
the earlier algorithm. We can conclude that the pseudocode in
Figures 4 and 5 is correct.

There is one last trick we can do to improve the performance
of BOS3. We can replace lines 5-7 with the code in Figure 6,
which leverages the carry flag to replace the ternary operator,
which further improves the performance on the GPU.

IV. EXPERIMENTAL SETUP AND RESULTS

To test our Quotient Selection, we run four implementations:
the three variants, BQSv1 (see Figure 2), BQSv2 (see Figure
3), BQSv3 with the carry replacement for the ternary operator
(see Figures 5 and 6), and the fourth uses the compiler’s built-
in 64-bit divide. The implementations are each run on four
different NVIDIA GPU cards: a GTX Titan Black (Kepler
micro-architecture), a GTX 980 (Maxwell), a Tesla P-100
(Pascal), and a Tesla V-100 (Volta). The GTX Titan Black and
GTX 980 were hosted on a consumer grade machine (Core i5-
7400 at 3 GHz, Gigabyte B250M-DS3H motherboard, 16 GB
memory) running 64-bit Ubuntu 16.04.1. The two Tesla cards
were hosted on a server grade machine (Xeon E5-2650 v3 at
2.3 GHz, 128 GB memory) running CentOS. The operations
listed in Table 1 were carefully optimized in a combination
of C and PTX assembly language, to gain access to the carry
flags and instructions that generate and make use of them.

To test each algorithm, we generate 100K' random 64-bit
numbers and one random normalized 32-bit divisor per thread
(the GPUs all use 32-bit ALUs) and run 2048 blocks of 128
threads. Each thread runs the 100K random instances divided
by its random divisor (and pre-computed approximation). We
use a shuffling scheme so that each thread runs the instances in
a slightly different order, which ensures that the performance
results reflect any warp divergence in the code. The threads
each compute a checksum of all the resulting quotients and
write the checksum word to global memory. The measured
running time is the time to load the 100K numerators from
GPU global memory, compute the quotients and checksum,

10n Volta, we run 1M instances to reduce the run-to-run variability and
normalize the running time by dividing by 10.

25" IEEE Symbosium on Computer Arithmetic (ARITH 2018)

TABLE II
RUNNING TIME OF THE IMPLEMENTATIONS ON FOUR GPUS (TIME IN MS)

GTX GTX Tesla Tesla

Titan Black 980 P-100 V-100

(Kepler) (Maxwell) | (Pascal) | (Volta)

BQSvI 329.9 377.0 216.1 73.7
BQSv2 324.8 358.9 199.9 79.3
BQSv3 265.9 303.2 164.5 63.9
Compiler 2095.4 2027.5 1151.7 317.4

TABLE IIT
RUNNING TIME RATIOS OF THE IMPLEMENTATIONS ON FOUR GPUS

GTX GTX Tesla Tesla

Titan Black 980 P-100 V-100

(Kepler) (Maxwell) | (Pascal) | (Volta)

BQSvI 1.24 1.24 1.31 1.15
BQSv2 1.22 1.18 1.22 1.24

BQSv3 1 1 1 1

Compiler 7.88 6.69 7.00 4.96

and write the final checksum back to global memory. It does
not include the time for the CPU to generate the random
data, copy data to/from the GPU or to verify the results. Each
implementation (kernel) is run 10 times and we report the
average running time (in milliseconds) of each implementation
on each of the four GPUs in Table II.

On Kepler, Maxwell and Pascal, BQSv2 is a bit faster than
BSQvl1. On Volta it’s the reverse, with BSQv1 beating BQSv2.
All three versions are much faster than the compiler built-
in 64-bit divide. Of the variants, BQSv3 is the fastest on
all architectures. In Table III, we scale the running times by
the fastest implementation on each GPU (BQSv3). We see
that BQSv3 is roughly 15% to 30% faster, with an average
improvement of 22% over the other two Barrett variants.

V. CONCLUSION

Quotient selection can be a performance-limiting step in
multiprecision division on processors that lack hardware sup-
port for division, such as GPUs, DSPs, and some embedded
processors. We have presented implementations of variants of
Barrett’s quotient selection algorithm that significantly outper-
form the use of compiler-generated division operations on four
models of NVIDIA GPU. One of the implementations is based
on a direct interpretation of a variant proposed by Brent and
Zimmermann. The second adds an optimization we identified
that provides a modest improvement to their correction step.
We then present a new variant on Barrett’s algorithm that cor-
rects downwards, rather than upwards. All three of our highly-
optimized C/assembly implementations outperform quotient
selection using the compiler-generated division operation. But
our new variant of the Barrett algorithm outperforms both
versions of the Brent and Zimmerman variation by an average
of 22%. We also provide proof sketches to show that all of the
implementations are correct. These implementations assume
a fairly common set of underlying hardware capabilities that
should make the applicable to a wide range of processors other
than NVIDIA GPUs.

139

ACKNOWLEDGMENT

This work was partially supported by National Science
Foundation (NSF) under Award No. CCF-1525754 and Na-
tional Key R&D Program of China under Award No.
2017YFB0802103.

REFERENCES

[1] Paul Barrett. Communications Authentication and Security Using Public
Key Encryption: A Design for Implementation. PhD thesis, University
of Oxford, 1984.

[2] Paul Barrett. Implementing the rivest shamir and adleman public

key encryption algorithm on a standard digital signal processor. In

Conference on the Theory and Application of Cryptographic Techniques,

pages 311-323. Springer, 1986.

Joppe W. Bos and Simon Friedberger. Fast arithmetic modulo 2% pY

+ 1. In 24th IEEE Symposium on Computer Arithmetic, ARITH 2017,

London, United Kingdom, July 24-26, 2017, pages 148-155, 2017.

Richard P Brent and Paul Zimmermann. Modern computer arithmetic,

volume 18. Cambridge University Press, 2010.

C. Burnikel and J. Ziegler. Fast recursive division. Technical Report

MPI-1-98-1-022, Max-Planck-Institut fuer Informatik, 1998.

Zhengjun Cao and Xiangjia Wu. An improvement of the barrett modular

reduction algorithm. Int. J. Comput. Math., 91(9):1874-1879, 2014.

JF Dhem. Modified version of the barrett algorithm. Technical report,

Technical report, Jul, 1994.

[8] Rémi Géraud, Diana Maimut, and David Naccache. Double-speed

barrett moduli. In The New Codebreakers - Essays Dedicated to David

Kahn on the Occasion of His 85th Birthday, pages 148—158, 2016.

Robert E Goldschmidt. Applications of division by convergence.

Massachusetts Institute of Technology, 1964.

[10] Johann GroBschidl. High-speed RSA hardware based on barret’s
modular reduction method. In Cryptographic Hardware and Embedded
Systems - CHES 2000, Second International Workshop, Worcester, MA,
USA, August 17-18, 2000, Proceedings, pages 191-203, 2000.

[11] William Hasenplaugh, Gunnar Gaubatz, and Vinodh Gopal. Fast
modular reduction. In /8th IEEE Symposium on Computer Arithmetic
(ARITH-18 2007), 25-27 June 2007, Montpellier, France, pages 225—
229, 2007.

[12] A. H. Karp and P. Markstein. High-precision division and square root.
ACM Transactions on Mathematical Software (TOMS), 23(4):561-589,
1997.

[13] Miroslav Knezevic, Lejla Batina, and Ingrid Verbauwhede. Modular
reduction without precomputational phase. In International Symposium
on Circuits and Systems (ISCAS 2009), 24-17 May 2009, Taipei, Taiwan,
pages 1389-1392, 2009.

[14] Miroslav Knezevic, Frederik Vercauteren, and Ingrid Verbauwhede.
Faster interleaved modular multiplication based on barrett and mont-
gomery reduction methods. IEEE Trans. Computers, 59(12):1715-1721,
2010.

[15] Donald Ervin Knuth. The art of computer programming, Volume II:
Seminumerical Algorithms, 3rd Edition. Addison-Wesley, 1998.

[16] Wolfgang Mayerwieser, Karl C Posch, Reinhard Posch, and Volker
Schindler. Testing a high-speed data path the design of the rsaf crypto
chip. In J. UCS The Journal of Universal Computer Science, pages
728-743. Springer, 1996.

[3

=

[4

=

[5

—_

[6

=

[7

—

[9

—

140 25" IEEE Symbosium on Computer Arithmetic (ARITH 2018)

