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Abstract—In this work, we address the design of an on-chip

accelerator for Machine Learning and other computation-

demanding applications with a Tunable Floating-Point (TFP)

precision. The precision can be chosen for a single operation by

selecting a specific number of bits for significand and exponent

in the floating-point representation. By tuning the precision

of a given algorithm to the minimum precision achieving

an acceptable target error, we can make the computation

more power efficient. We focus on floating-point multiplication,

which is the most power demanding arithmetic operation.

1. Introduction

Nowadays, Machine Learning (ML) is arguably the
hottest application field for arithmetic processors. ML algo-
rithms execute a large number of operations, predominantly
multiplications, and require dedicated hardware, GPUs or
FPGAs, to accelerate the execution.

Due to the huge size of the datasets to process in ML,
the processing time and the energy necessary is very large
[1]. To increase the power efficiency, the computation is
migrated from double-precision (binary64 in IEEE 754-
2008 standard [2]) to single (binary32) and half (binary16)
precision. The precision scaling trend is particularly suit-
able for FPGA-based accelerators [3]. A big advantage
of FPGA-based accelerators is that the hardware can be
tailored exactly to match the requirements of the application.
For example, the precision required in a given part of the
algorithm. In contrast, FPGAs have lower performance and
power efficiency than on-chip accelerators.

Previously, we implemented multi-precision multipliers
[4] to increase the power efficiency of on-chip accelerators.
In this paper, we address the design of an on-chip acceler-
ator with Tunable Floating-Point (TFP) precision. That is,
the precision of operands and results can be chosen for a
single operation by selecting a specific number of bits for
significand and exponent in the floating-point representation.

By tuning the precision of a given algorithm to the
minimum precision achieving an acceptable target error, we
can make the computation more power efficient. In this
work, we present a Tunable Floating-Point multiplier (TFP-
mult) which can be used as part of on-chip accelerators.
The TFP-mult can handle significand precision from 24 to 4
bits, and exponent from 8 to 5 bits. The maximum precision
(m = 24, e = 8) is that of binary32 (single-precision),
and the tunable range includes binary16, or half-precision,
(m = 11, e = 5).

The main contributions of this paper are: 1) The design
of the TFP multiplier providing correct rounding when re-
ducing the precision of the significands. 2) The precision of
the significand m and the exponent range e can be changed
on a cycle basis. 3) To show the power efficiency obtained
for sample algorithms and the energy-error trade-offs.

2. Tunable Floating-Point

The floating-point representation of a real number x is

x = (−1)Sx ·Mx · bEx x ∈ R

where Sx is the sign, Mx is the significand or mantissa
(represented by m bits), b is the base (b = 2 in the
following), and Ex is the exponent (represented by e bits).
The representation in the IEEE 745-2008 standard [2] has
significand normalized 1.0 ≤ Mx < 2.0 and biased expo-
nent: bias= 2e−1 − 1.

The formats for binary floating-point in IEEE 745-2008
are specified in Table 1 [2].

Binary formats
Format 16 32 64 128
Storage (bits) 16 32 64 128
Precision m (bits) 11 24 53 113
Total exponent length e (bits) 5 8 11 15
Emax 15 127 1023 16383
bias 15 127 1023 16383
Trailing significand f (bits) 10 23 52 112

TABLE 1. BINARY FORMATS IN IEEE 754-2008 [2].

The dynamic range1 for binary floating-point (BFP) is

DRBFP = (2m − 1) · 22e−1 .

For example, for binary32 (m = 24, e = 8)

DRb32 = (224 − 1)22
8
−1 ≈ 9.7× 1083

which is much larger than the dynamic range
of the 32-bit fixed-point (FXP) representation:
DRFXP = 232 − 1 ≈ 4.3× 109 [5].

For the Tunable Floating-Point (TFP) representation, we
only consider dynamic ranges from and below the binary32
representation. We support significand’s bit-width from 24
to 4 and exponent’s bit-width from 8 to 5. Table 2 shows
the dynamic ranges for some TFP cases.

1. The dynamic range is the ratio between the largest and the smallest
(non-zero and positive) number [5].

33XXX-X-XXXXXXX-X-X/ARITH18/ c©2018 IEEE



m e DR
storage commentbits�

24 8 9.7× 1083 32 binary32
11 8 1.2× 1080 19
4 8 8.7× 1077 12

24 5 3.6× 1016 29
11 5 4.4× 1012 16 binary16
4 5 3.2× 1010 9

16 65,536 16 16-bit FXP
� It includes the sign bit.

TABLE 2. DYNAMIC RANGE FOR SOME TFP FORMATS.

By comparing TFP with FXP ranges, the TFP ones are
much larger than the FXP for similar bits of storage. This is
advantageous especially for multiplication for which the dy-
namic range increases quadratically. As for the significand’s
precision, the optimal bit-width depends on the application.

We assume that the TFP representation is normalized to
have the conversions compatible with the IEEE 754-2008
standard. Therefore, the implicit (integer) bit is not stored.
Subnormals support is quite expensive for multiplication,
and, therefore, we opted to flush-to-zero TFP numbers when
the exponent is less than −(Emax − 1).
As for the rounding, TFP supports three types:

- RTZ Round-to-zero (truncation);
- RTN Round-to-the-nearest where half ulp2 is always

added before the rounding;
- RTNE Round-to-the-nearest-even (on a tie) which

is the default mode roundTiesToEven in IEEE 754.

3. TFP Multiplier

3.1. Baseline FP Multiplier

The starting point is a generic floating-point multiplier.
The architecture of the significand computation is sketched
in Figure 1. We assume the FP-operands to be normalized
and subnormals are flushed to zero. The implicit (integer)
bit is already included in Figure 1.

The radix-4 partial products (PPs) are added in an adder
tree to form the product in carry-save format: PS and PC .
Because of the normalization, the product is in the range
1.0 ≤ P < 4.0 and may require normalization (1 position
right shift) if P ≥ 2.0, i.e., condition OVF=1.

As normally done for a faster operation, the rounding is
performed speculatively by adding ulp

2
in the two adjacent

position m and m−1 as illustrated in Figure 2. The injection
of the rounding bit in a fixed position is done by an array
of half-adders (HA) in Figure 1. Therefore, this speculative
rounding is implemented by the pairs HA-CPA3 producing
P2 and P1. The normalized and rounded result is selected
depending on the position of the leading one in P1 and P2:

OVF = P12m−1 AND P22m−1 .

2. ulp is the unit in the last position.
3. CPA: carry-propagate adder.
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Figure 1. Significand computation in FP multiplier (for binary32 m = 24).

pos. 2m-1 2m-2 2m-3 . . . m+2 m+1 m m-1 m-2 . . . 1 0

P2: 1 b . b . . . b L R b b . . . b b
ulp/2: 1

P1: 0 1 . b . . . b b L R b . . . b b
ulp/2: 1

Figure 2. Speculative rounding for m-bit significands.

To support roundTiesToEven, we need to compute the
sticky bit

T = ORm−1

i=0
bi

For each of the cases in Figure 2, if L = 0, T = 0 and
R = 1 the bit to be added for rounding is 0. To include this
case of rounding, we need to include a third adder which
adds PS + PC (CPA P0 in Figure 1).

Moreover, if the biased exponent is 0 (subnormal or
zero) or 2e − 1 (infinity), we need to flush the significand
to zero.

The final selection of the significand is done taking
into account the leading one in P0, the OVF value, the
roundTiesToEven condition tie and the exponent flag
flush-to-0.

The architecture of Figure 1 can be optimized by sharing
parts of the datapaths (addition of the m−1 least-significant
bits, LSBs) and by using compound adders [5], or by many
other methods in the literature [6].

The hardware to compute the exponent is sketched in
Figure 3. It consists in the exponents addition

E1 = Ex + Ey − Bias

followed by the speculative increment E2 = E1 + 1 in case
the significand needs normalization (OVF=1). In parallel
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Figure 3. Exponent computation in FP multiplier (for binary32 e = 8).

pos. 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 . . . 25 24 23 22 . . .
P2: 1 b b b b b b b b b L R b b b . . . 0 0 0 0 . . .
RW: 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 . . . 0 0

SB: - - - - - - - - - - - - - - - . . . - L R b . . .

Figure 4. Example of “rounding word” (RW), and selection (SB) for sticky-
bit computation for m = 11.

to the exponent addition, the implicit bit is computed:
Mi(m) = 0 if Ei = 0.

To ensure the exponent is in the allowed range, E1, or
E2, is checked against 0 and Emax. The final exponent Ez

is set depending on the signals INFTY (infinity) or ZERO
(zero and subnormals), and, for the significand selection:

flush-to-0 = ZERO OR INFTY

The sign is computed by a simple XOR-gate:

Sz = Sx ⊕ Sy.

3.2. Hardware Support for Tunable FP

In this section, we explain how to augment the unit of
Figure 1 and Figure 3 to support TFP.

For the significand computation, the challenge is to inject
the rounding bit in position r so that the m resulting bits
of the significand are correctly rounded. For example, as
illustrated in Figure 4, for the datapath of Figure 1 (the
MSB of P2 is 47 for binary32), if the required precision is
m = 11, the rounding bit is in position r = 36 if the leading
one in P2 is in position 47.

Therefore, to correctly round the TFP significand with
arbitrary m, we need to augment the hardware as follows.
1) Add a decoder to generate the “rounding word” (RW)
depending on m. By setting m > 24, the decoder selects
RW=0 to implement RTZ (truncation).
2) Change the array of half-adders (HA) in an array of full-
adders, or 3:2 Carry-Save-Adder (CSA), to allow the injec-
tion of the rounding bit in an arbitrary position depending
on m.

3:2  CSA

CPA

3:2  CSA

P1

CPA

2:1 mux1 0

CPA
P0

P2
P0

01
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<<1

3:1 mux
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radix−4

Recoding

T R E E
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tie
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24 [47,24]

sticky comp.

shift−rightSHAMT

24 24

47

23

47

25

2323

23 23

47 47

OVF

Figure 5. Significand computation to support TFP multiplication.

3) Add a variable shift-right unit to select the proper bits
for the sticky bit computation. Since the sticky comp. unit
of Figure 1 reads the m + 1 = 25 LSBs for binary32, for
a different m, we have to shift to the right the significand
so that bit L moves to position 24 (MSB) of sticky comp..
The shifting amount is SHAMT= 24−m. For the example
of Figure 4, m = 11, L is in position 37, and by shifting
right by 24-11=13 positions we obtain the correct selection.
4) Add a mask in the m-MSB of the 3:1 mux to zero the
m LSBs of the product.
This mask can be generated by the decoder. For example
for m = 11:
RW: 0000 0000 0001 0000 0000 0000

MASK: 1111 1111 1110 0000 0000 0000

The modified datapath supporting TFP m = [4, 24] for
significand computation is depicted in Figure 5. The added
or modified parts are in color in the figure.

The exponent computation in TFP is less complicated
than the significand one. The range of supported exponents
is e = [5, 8] to comprise the binary16 and binary32 formats.

The bias (B), equal to Emax, can be obtained by simple
logic as in Table 3 from the 2-LSBs of e:

B6 = e1 + e0, B5 = e1 ⊕ e0, B4 = e1 + eo .

The remaining parts of Figure 3 are not changed.
Since the TFP-unit can accommodate up to binary32,

when m < 24 or e < 8, the (24-m)-LSBs of the significand
are zero and the (8-e)-MSBs of the exponent are meaning-
less.

The significand and exponent bit-widths m and e can be
selected for the single operation by setting a 7-bit value in
a control register (not depicted in Figure 5).
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e (bits) Bias (bits)
e e3 e2 e1 e0 Bias B7 B6 B5 B4 B3B2B1B0

5 0 1 0 1 15

0

0 0 0

11116 0 1 1 0 31 0 0 1
7 0 1 1 1 63 0 1 1
8 1 0 0 0 127 1 1 1

TABLE 3. TABLE TO GENERATE BIAS.

4. TFP Simulation

In parallel to the hardware implementation of the TFP-
unit, it is important to implement a simulator to profile
the applications and determine the acceptable precision and
dynamic range.

A first version of the simulator consists in a library of
C functions implementing TFP operations. The supported
operations are: addition/subtraction, multiplication, division
and square root.

Each operation is implemented with a standard FP algo-
rithm by limiting the computation of the significand bits to
m and by applying the specified rounding mode. However,
all operands and results are rendered in double-precision
(double) in C. Therefore, it is necessary to trap the cases
when the unbiased 11-bit exponent exceeds the maximum
e-bit exponent generating an infinity exception, and flushing
the double to zero, when the unbiased 11-bit exponent is
less than the minimum e-bit exponent.

TFP multiplication is implemented di the C function
serially, one bit at time. TFP division and square-root are
implemented in the C functions by a radix-4 digit-recurrence
algorithm, two bits per iteration [5].

In the first version of the simulator, the algorithm under
test is coded in the C main program by invoking the TFP
operations with arbitrary m, e. Each operation may have
a different m, e, i.e., precision and dynamic range can be
changed in different parts of the algorithm.

The simulator also executes the algorithm under test in
double and provides the error in key points. Moreover, by
setting a debug option, we can display the error for each
TFP operation.

Moreover, the simulator generates TFP vectors (either in
format binary32 or binary16) to be used to test the hardware
implementation.

We briefly describe next the two test algorithms used to
verify our TFP multiplier.

4.1. Matrix Multiplication

Matrix multiplication is probably the most common
operation in ML algorithms, and common to many other
application domains. In consists of multiplications of pairs
of elements followed by additions (DOT product). It can be
implemented serially or in parallel.

We run experiments on our simulator with fractional
elements (input) in (−1.0, 1.0) and dynamic range of 24
bits. We used matrices of different sizes. As an example,
Figure 6 shows the average error for square 8×8 matrix
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Figure 6. Average error for 8×8 matrix multiplication under TFP rounding
modes.

multiplication under the three rounding modes: RTZ (trun-
cation), RTN (round to the nearest), and RTNE (IEEE 754:
roundTiesToEven).

The simulations are run with exponent bit-
width e = 8 and uniform4 significands’ bit-width
m = {24, 20, 16, 14, 11, 8, 6}. From Figure 6, we notice
that RTZ (truncation) leads to a larger error (i.e.,
factor 3, the scale is logarithmic on y-axis). The error
difference for RTN and RTNE is smaller (5–20%). For
example, for m = 11, εRTN = 0.532 · 10−3 ≈ 2−11 and
εRTNE = 0.442 · 10−3 ≈ 2−12. In Sec. 5, we discuss the
trade-offs in the hardware implementation of the RTN and
the RTNE rounding modes.

Figure 6 shows that for the RTN and RTNE simulations
the average error with respect to the double-precision sim-
ulation is below 0.1% for m = 11. This error is probably
acceptable for many applications.

We repeated the simulations for exponent bit-width
e = 5 and the resulting errors were almost identical. We
can conclude that for this range of operands and operations,
the error mostly depends on the significand precision.

4.2. Gaussian Elimination

Gaussian elimination is an algorithm used in linear
algebra to solve systems of linear equations.
A system with n linear equations in n unknowns xi

⎧⎪⎪⎨
⎪⎪⎩

a1,1x1 + a1,2x2 + . . .+ a1,nxn = b1
a2,1x1 + a2,2x2 + . . .+ a2,nxn = b2

...
an,1x1 + an,2x2 + . . .+ an,nxn = bn

can be represented by storing ai,j and bi in a (n + 1) × n

4. The value is kept constant for all operations in the algorithm.
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Algorithm 1 Gauss elimination.
/* rows transformation to upper triangular matrix */
for i=1 to n do

for j=i+1 to n+1 do
t=a[j][i]/a[i][i];

for k=i to n+1 do
a[j][k]=a[j][k]-t*a[i][k];

end for
end for

end for

/* backward substitutions */
x[n]=a[n][n+1]/a[n][n];

for i=n-1 down to 1 do
s=0;

for k=n down to i+1 do
s=s+a[i][k]*x[k];

end for
x[i]=(a[i][n+1]-s)/a[i][i];

end for

matrix

A =

⎡
⎢⎢⎣

a1,1 a1,2 . . . a1,n b1
a2,1 a2,2 . . . a2,n b2

...
...

. . .
...

...
an,1 an,2 . . . an,n bn

⎤
⎥⎥⎦

The Gaussian elimination algorithm consists of two steps:

1) A first pass on the rows of matrix A to transform
it in an upper triangular matrix;

2) A backward substitution step in which xi are com-
puted from the last row and backwards.

The pseudo-code to implement the Gaussian elimination is
illustrated in Algorithm 1.

Also for this algorithm we run simulations with frac-
tional inputs in (−1.0, 1.0) and dynamic range of 24 bits.
As an example, we use a order 5 system (5 unknowns).
Figure 7 shows the average error under the three rounding
modes: RTZ, RTN, and RTNE. The simulations are run with
exponent bit-width e = 8 and uniform m with bit-width
m = {24, 20, 16, 14, 11, 9, 7} for the significands.

For the Gaussian elimination the error for the three
rounding modes is similar.

5. Hardware Implementation

For the implementation of the multiplier we opted for a
45 nm CMOS library of standard cells by using commercial
synthesis and place-and-route tools (Synopsys). The FO4
delay5 for this low power library is 64 ps and the area of
the NAND-2 gate is 1.06 μm2.

We set as a target clock period a delay of about 15 FO4
which is comparable to the clock cycle of industrial designs:
17 FO4 in [7]. Therefore, since 15 FO4 � 1.0 ns, the target
throughput is 1 GFLOPS for a single TFP multiplier.

5. A 1 FO4 delay is the delay of an inverter of minimum size with a
load of four minimum sized inverters.
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Figure 7. Average error for Gaussian elimination (order 5) under TFP
rounding modes.

To reach the target clock period, the architecture of
Figure 5 must be pipelined in two stages, with pipeline
registers placed after the adder tree (PS and PC ) for the
significand datapath.

We evaluated the implementation of two TFP variants:
one with roundTiesToEven (RTNE) rounding mode, the
other with round to the nearest (RTN) mode.

The RTN unit, with respect to Figure 5, does not require
the blocks CPA (P0), the shifter, and the sticky bit com-
putation. Moreover, the selection logic is simplified. The
RTN unit (significand plus exponent datapaths) is shown in
Figure 8. The blue horizontal cut indicates the position of
the pipeline registers (same placement for both units).

For comparison purposes, we also implemented two
plain binary32 multipliers supporting RTN and RTNE
rounding modes. The latter is the unit in Figure 1.

A post-synthesis comparison of the implemented units
is reported in Table 4.

For all units, the delay of the critical path is considered
the same, since the difference of a few pico-seconds is
due to the heuristics of the synthesis. The multiplier array
(PPgen+Tree) is the same for all units and sets the minimum
cycle time achievable. All units meet the timing constraint
of TC = 1.0 ns.

By comparing the area of the binary32 and TFP units for
the two modes, the overhead is about 16% for RTN and 23%
for RTNE. The extra area is due to the additional/augmented
blocks represented in color in Figure 5. For example, the
shifter contributes to an area of 580 NAND2 (about 4% of
the area for the TFP RTNE multiplier), and the CSAs in
place of HAs, increase the area of the TFP units by about
250 NAND2 equivalent gates.

The power estimations of the four units stimulated by
binary32 patterns, follow a similar trend than the area,
however, the impact of the additional blocks on the power
is reduced: about 10% for RTN and 16% for RTNE.

As for the TFP units, the area in the functional blocks
of RTNE is about 20% larger than in the RTN unit. This
overhead is reduced to about +17% when the input and
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Figure 8. TFP multiplier (RTN variant).

pipeline registers are accounted for. The power overhead
for the RTNE unit is about 14%.

The TFP multiplier is intended to be used in accelerators
as an element of a multi-lane vector unit. Although the
overheads are not very large, for a given area or power
footprint we can fit more RTN units. For example, if the
power budget is 150 mW we can fit 8 RTN-mults vs. 7
RTNE-mults. Moreover, the error analysis in Sec. 4 suggests
that the difference between the RTN and RTNE rounding
modes is not critical. For these reasons, we selected the RTN
unit of Figure 8 for the evaluation of the power efficiency
by TFP.

To have a more accurate evaluation, we built the layout
for a single TFP RTN-mult of Figure 8. The post-layout
timing and area resulted to be better than the estimates of
Table 4: the delay of the critical path changed to 943 ps
(almost identical), but the total area is reduced to 10,930
NAND2 equivalent gates, about 15% less than the post-
synthesis estimate. This reduction has a positive effect on
the power dissipation as explained next.

For the power dissipation, we created traces from the
simulator by extracting the actual operands multiplied in
the algorithm, and we run post-layout simulations (Synopsys
VCS) for several test cases.

5.1. Power dissipation: binary32 vs. TFP multiplier

We also built the layout for a binary32 multiplier sup-
porting RTN, referenced as b32-mult in the following. The
actual area of the unit is also reduced with respect to the
post-synthesis evaluation, 9,790 NAND2, and the TFP area
overhead is reduced to about 11% (16% in Table 4).

Since the TFP RTN-mult is obtained by adding func-
tional blocks to the binary32 multiplier, clearly, multiplica-

RTN RTNE TFP
binary32 TFP binary32 TFP difference

max. delay [ps] 950 944 945 948 -

AREA(1)

comb. 9,560 11,540 13,760 +20%
regs. 1,180 1,320 1,180 1,320 –
Total 10,740 12,860 11,690 15,080 +17%

+16% +23%

Total power(2) 17.04 18.98 18.13 21.57 +14%
+10% +16%

(1)[NAND2 equiv.], (2)[mW] at 1 GHz

TABLE 4. POST SYNTHESIS COMPARISON BETWEEN binary32 AND TFP
MULTIPLIERS FOR RTN AND RTNE MODES.

tions of the same operands will result in higher power dis-
sipation for the TFP unit. However, the TFP-mult produces
results of arbitrary precision (m, e) correctly rounded, while
the b32-mult produces binary32 results. Consequently, to
save power when a reduced precision is sufficient, binary32
results need to be processed (rounding of m-bit significands
and exponent adjustment) adding latency to the algorithm
execution and increasing the power dissipation.

Next, we illustrate an example to show the TFP unit be
more power efficient than the binary32 one, for multiple
operations in reduced significand precision (m < 24). The
experiment consist in the following two cases:

1) Multiplication Z = X×Y for X and Y with e = 8
and precisions m = {24, 20, 16, 14, 11, 8, 6}.

2) Multiplications (two) Z = (X × Y ) × W for
X , Y and W with e = 8 and precisions m =
{24, 20, 16, 14, 11, 8, 6}. The intermediate product
X × Y is the m-bit significand output for the
TFP-mult and a binary32 output for the binary32
multiplier.

The results for the total average power dissipation are
reported in Table 5 and the trends are shown in Figure 9.

The performance of the TFP-mult is almost the same
for the two test cases, the plots are almost completely
overlapped in Figure 9 (squares).

Since the TFP-mult is an augmented b32-mult unit,
when both operands are in the same format (binary32 for
m = 24, or TFP-format for m < 24), for case 1, the TFP-
mult consumes on the average 9% more than the b32-mult.
However, while the TFP-mult produces correctly rounded
significands in m-bit TFP-format, the b32-mult produces
significands in full binary32 range (m = 24).

The performance of the b32-mult changes drastically for
reduced significand precision when only one operand is in
TFP-format (case 2). In this, case for precisions lower than
m = 20, the TFP-mult is more power efficient than the b32-
mult. This is illustrated by the cross-over of the red/blue
curves in Figure 9 at m � 18, and by the ratios < 1.0 in
Table 5.
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Pave Z = X × Y Z = (X × Y )×W
m TFP-mult b32-mult ratio TFP-mult b32-mult ratio

24 15.51 14.24 1.09 15.72 14.42 1.09
20 14.19 12.89 1.10 14.26 13.63 1.05
16 11.14 10.26 1.09 11.10 11.86 0.94

14 10.17 9.42 1.08 10.09 11.26 0.90

11 8.58 7.91 1.08 8.54 10.28 0.83

8 6.05 5.67 1.07 5.98 8.52 0.70

6 5.08 4.72 1.08 5.07 7.36 0.69

Pave [mW] measured at 1 GHz.

TABLE 5. AVERAGE POWER DISSIPATION FOR TFP-MULT AND
B32-MULT (RTN).
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Figure 9. Trends of average power dissipation for comparison TFP-mult
vs. b32-mult.

5.2. TFP Multiplier Experiments

We sampled the same m and e values used in Sec. 4
for the matrix multiplication and the Gauss elimination
algorithm.

By comparing power figures for the same m, but dif-
ferent exponent bit-width e, we noticed a small difference.
The reason is that most of the power in a FP multiplier is
dissipated in the significand computation. For example by
comparing e = 8 and e = 5 for m = 11, the difference
in power dissipation in the exponent path is less than 30%.
However, the exponent path impacts less than 3% the total
power of the TFP-mult with m = 11. Therefore, from a
power dissipation point of view, going from e = 8 to e = 5
results in a overall power reduction of less than 1%.

Since the power savings in reducing the exponent bit-
width are not significant, and to simplify the presentation
of the experimental results, we opted for test patterns with
fixed exponent e = 8.

For the two algorithms of Sec. 4, we run post-layout
power estimation for the following significand bit-widths:

• Matrix multiplication, square 8×8 matrices:
m = {24, 20, 16, 14, 11, 8, 6}.

• Gaussian elimination, systems of order 5:
m = {24, 20, 16, 14, 11, 9}.

With respect to the error plots in Sec. 4, we omitted the

Matrix multiplication Gauss elimination
m Pave [mW] ratio Pave [mW] ratio

24 15.51 1.00 13.85 1.00
20 14.19 0.91 12.11 0.87
16 11.14 0.72 9.80 0.71
14 10.17 0.66 8.69 0.63
11 8.58 0.55 7.93 0.57
9 6.24 0.45
8 6.05 0.39
6 5.08 0.33

Pave measured at 1 GHz.

TABLE 6. AVERAGE POWER DISSIPATION FOR TFP-MULT (RTN) AS m
SCALES (e = 8).
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Figure 10. Trends of average power dissipation for TFP-mult (RTN) as m
scales (e = 8).

case for Gaussian elimination m = 7 because the error is
too large.

The results for the total average power dissipation are
reported in Table 6 and plotted (together with the trends) in
Figure 10.

The average power dissipation, estimated post-layout,
for m = 24, i.e., binary32 operands, is 15.51 mW at 1
GHz. The smaller value with respect to the post-synthesis
estimation, 18.98 mW in Table 4, is due to the denser actual
layout than the estimated one. Consequently, the switched
capacitance is reduced and so it is the power dissipation.

The trends in Figure 10 show a linear decrease of power
dissipation for the matrix multiplication algorithm as m
is scaled. Therefore, when the error (lower precision) is
acceptable, we can save power by reducing the precision
of the algorithm.

For the Gauss elimination case, the curve in Figure 10 is
placed below the matrix multiplication’s curve because one
of the multiplications’ operands is the result of a division
(t in Algorithm 1) and it is multiplied for all the elements
of the row. This results in reduced switching activity in the
multiplier array, which contributes to the largest part of the
power dissipated in the unit. Also in this case, the power
dissipation drops linearly as m is scaled.

In summary, the results of Table 6 show that by using
TFP multipliers we can achieve a good power efficiency and
maintain correct rounding to achieve the target error.
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Algorithm 2 binary32 to binary16 reduction.
/* range checking (exponent) */
Eb16 = Eb32−Bb32 +Bb16 = Eb32− 112 // must be positive

/* check lower bound (exponent) */
Eb16−Emax(5b) < 0 → Eb32−112−31 = Eb32−143 < 0

/* check significand for non-zero bits */
zero = 0;
for i=0 to 12 do

zero = zero OR Mb32(i);
end for

if ((Eb16 > 0)AND(Eb32 − 143 < 0)AND(zero = 0)) then
reduce to binary16

else
keep binary32

end if

6. Accelerator Interface

The TFP multiplier is intended to be part of an accelera-
tor. When data are moved out to the memory, or some other
unit, we can save power in buses by reducing the storage to
one of the standard IEEE 754 formats.

Next, we propose a simple method to convert error-free
a binary32 FP number in a binary16 FP number, when
the non-zero bits of the binary32 significand can be repre-
sented by a binary16 significand (i.e., number of non-zero
bits ≤ 10), and the range is representable (i.e., unbiased
exponent [−15, 15]). This conversion can be useful when
the final result of the TFP accelerator can be represented in
a smaller format.

The algorithm is shown in Algorithm 2 and its simple
hardware architecture is sketched in Figure 11.

The reduction of the exponent (first statement in Algo-
rithm 2) can be implemented by a 4-bit adder since the 4
LSBs of -112=(1001 0000)2 are zero. In contrast, to check
the lower bound (second statement in Algorithm 2) a 8-bit
adder is needed since -143=(1 0011 0001)2 is odd.

To check whether the 13 LSBs of the significand (M in
Figure 11) are zero (“for” loop in Algorithm 2), we can use
a tree of OR gates. The selection is done with a multiplexer
based on the MSB (sign bit) of Eb16 and Eb32 − 143, and
on the output of the OR-tree. Clearly, the sign bit of the
binary32 is transferred to the binary16 FP number.

The small hardware of Figure 11 can either be included
in the single TFP unit (such as the TFP-mult), or at the
accelerator’s interface when results are committed to the
register file.

7. Conclusions and Future Work

In this paper, we presented a Tunable Floating-Point
representation to reduce precision and dynamic range of
floating-point numbers when the rounding error produces
still acceptable results. The main purpose of TFP is to reduce
the energy footprint of accelerators by introducing flexibility
in the choice of significand and exponent bit-widths.

2:1 mux1 0

binary32

c2
c1

zero

binary16

5c1 c2

E

E

=−112 =−143
1001 0000 1 0111 0001

8

84 4

sign
4−bit CPA

sign
8−bit CPA

b32

b16

zero

MM

. . .. . .

. . .. . . . . .. . .

. . . . . . . . . .

OR

TREE

012

Figure 11. Hardware for binary32 to binary16 reduction.

The main contribution is the design of a TFP multiplier
providing correct rounding for the selected precision, and
reduced power dissipation. The TFP-mult can be deployed
in an array to form a multi-lane multiplier.

We also designed a TFP simulator for the dual purpose
of profiling applications and providing actual traces for the
hardware verification and to estimate the power savings.

In presenting the results of the two simple algorithms
implemented, we opted for a simple round-to-the-nearest
(RTN) unit. However, in future work, we plan to implement
a TFP-mult supporting IEEE 754’ roundTiesToEven (RTNE)
and make programmable the rounding mode by disabling
the blocks not used in a specific mode. In this way, we can
increase the flexibility of the accelerator and keep a good
power efficiency.

We also plan to extend TFP to the other operations:
addition, division and square root.
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