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Abstract—This paper presents a new approach to integer
multiple precision (MP) modular exponentiation, using
double-precision floating point (DPF) operations, that is
suitable for GPU implementation. We show speedups rang-
ing from 20% to 34% over the best prior GPU times
for sizes corresponding to common RSA cryptographic
operations (2048 to 4096 bits). Three techniques are de-
scribed. First, by adding 2104 to the high half of the
product, and 252 to the low half, we set the implicit
leading 1 in the DPF mantissa so that the full 52 explicit
bits are available for each half of the 104-bit products of
samples. Second, the DPF values are cast bitwise to 64-bit
integers for adding the column sums to get the MP result.
Normally the cast would require masking off the exponents,
but because they are constant, we can include them in
the column sums and correct just once for their total.
Third, by initializing the column sums with the appropriate
negative value to compensate for the exponent sums, no
corrective subtraction is needed. Our implementation on
an NVIDIA GTX Titan Black GPU achieves between
132.5K and 161.9K modular exponentiations per second
of size 1024 bits, with latencies ranging from 21.7 ms to
17.8 ms, making it practical for online RSA applications.
Proportional results are shown for 1536 and 2048 bits. The
implementation is so efficient that its maximum sustained
performance is actually bounded by the thermal limit of
the GPU.

In this paper we examine a new approach to multiple
precision (MP) modular exponentiation on the GPU
using double precision floating point (DPF) arithmetic.
There have been a number of papers that have used
floating point arithmetic as the basis for modular multi-
plication and exponentiation algorithms. The idea is to
leverage the high speed floating point units on the GPU
to perform integer arithmetic. Moss, Page and Smart [1]
use a mixed radix approach with a vector of co-prime
moduli, where each modulus is 12-bits in length and
compute ai · bi fmod mi using single precision floating
point (SPF) arithmetic. Fleissner [2] implements 192-bit
modular exponentiation with six 24-bit values. The 24-
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Fig. 1. Product terms to be summed for an n-sample by n-sample
multiply.

bit values are further sampled into bytes and the compu-
tations on the bytes are done using SPF arithmetic. In [3]
Bernstein et al. implement a 280-bit modular multipli-
cation based on a traditional fixed radix number system
(FRNS) with 28 limbs of 10-bit samples (each sample is
a 10-bit integer stored in a SPF) and a three-full-products
approach to Montgomery multiplication [4]. They use
a sophisticated scheme to distribute each multiplication
across 28 threads in a warp. But in essence, the column
sums of a multiple precision product (see Figure 1) can
be thought of as dot-products,

∑
i,j ai · bj where A and

B are the MP values to be multiplied and i + j equals
the column number. The ai and bi samples and all of
the computations are done using SPF arithmetic. But
we note that 28 · (210 − 1) · (210 − 1) can exceed 224

which can result in rounding errors. To work around this
problem, Bernstein et al. compute two partial sums of
at most 14 terms, which guarantees there won’t be any
rounding, and then perform the final sum using integer
arithmetic. Bernstein et al. have carefully crafted a highly
optimized implementation, but unfortunately, 10-bit sam-
ples are too small to be efficient. In their subsequent
paper [5], Bernstein et al. perform all computations
using integer arithmetic, which proved to be much faster.
Zheng et al. in [6] (and two follow-on papers [7] and
[8]) use floating point arithmetic to implement modular
multiplication, modular exponentiation, and RSA. In [6]
they use an FRNS with 23 bits per limb and Mont-
gomery’s multiple-precision modular reduction, which
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is similar to column sums in Figure 1, except each
column will have twice as many terms (see Section 2
of [4] for details). The samples and all computations
are performed using DPF arithmetic and by using 23
bits per limbs, they can guarantee that the column sum
does not exceed 253, the largest integer that can be
stored in a DPF value without rounding. [7] extends
the earlier work, using 22 and 23-bit limbs to support
RSA sizes that range from 2048 bits to 4096 bits. [7]
is the first paper that shows that floating point implemen-
tations can outperform the best integer implementations,
at least at large sizes. [8] further improves the perfor-
mance of [6] and [7] with a clever technique using signed
floating point values allowing for longer limbs to be used
(e.g., 24-bit limbs instead of 23), which means the same
MP values can be represented with fewer limbs, and
a corresponding improvement in performance. [8] also
introduces two new parallel carry resolution algorithms,
that are faster than the traditional ripple carry approach
and have an added advantage that they run in constant
time. [8] is the first paper that addresses all of the
requirements to build a GPU based RSA digital signature
server: high throughput, reasonable latency and constant
time signature generation and verfication.

All of these prior papers have used narrow samples,
i.e., the number of bits in each sample is always less
than or equal to half the number of bits (width) available
in the mantissa. In this paper we introduce a new wide
samples approach, where each sample will use almost
the full precision available in the mantissa. Specifically,
we use 52 bits per sample stored in DPFs (a similar
approach could be used with 23 bits per sample stored
in SPFs). The wide samples approach combined with the
fast carry resolution algorithms developed in [8] leads
to a significant performance gain over the prior work.
In particular, comparing this work to [8] (the fastest
RSA implementation using floating point arithmetic to
date) the proposed approach is 26% faster, 22% faster,
and, 36% faster, at 2048-bit, 3072-bit and 4096-bit RSA
respectively. In reviewing the literature, we find that
Gueron and Krasnov [9] report that Intel plans to extend
the AVX-512 vector instruction set to use the DPF
units to perform 52-bit integer multiplications within
AVX vectors in a future Cannonlake architecture. In
contrast, our approach is applicable to any current or
future architecture with IEEE-754 DPF support, without
requiring any specialized, non-standard hardware.

The rest of this paper is organized as follows, Section
I describes the wide samples approach with tricks and
optimizations that would allow it to be implemented
efficiently on a wide range of processors, including
GPUs, DSPs, CPUs, and CPU vector processors (such
as AVX). Section II covers our GPU implementation
of modular multiplication and modular exponentiation

using the wide samples approach. Please note, although
RSA is the motivating problem, we do not implement
it in this paper. However, it could easily be layered
on top of the modular exponentiation routines that we
do implement. Section III presents our experiments and
results, and we close with conclusions and future work
in Section IV.

I. NEW APPROACH USING WIDE SAMPLES

The idea behind our approach is straightforward. We
will use wide samples with a 52-bit positive integer
in each sample and will compute the column sums
(essentially dot-products) with a combination of double
precision and integer arithmetic. Since the samples are
52 bits, the product a pair of ai and bi samples will
be 104 bits long and won’t fit in a double precision
value. Instead, for each term in the column sum, i.e.,
product of a pair of samples, we will compute a 52-bit
low product and a 52-bit high product. Computing low
and high products of a pair of floating point values is
a well known problem dating back to the 1970s, used
to compute the error in a floating point multiplication.
Dekker [9] solved the problem by splitting ai and bi
into upper and lower halves and computing the products
from the half precision values. Dekker’s approach is
quite slow, but with the advent of hardware based fused-
multiply-and-add (FMA), which is present on the GPU,
there is a fast algorithm as follows, where fma rz is
the CUDA built-in function for a double precision FMA
with rounding towards zero:

f u l l p r o d u c t ( double a sample , double b sample )
p h i = fma rz ( a sample , b sample , 0 . 0 ) ;
p lo = fma rz ( a sample , b sample , −p h i ) ;
re turn ( p hi , p lo ) ;

}
Figure 2. Compute the high and low product of two samples using
fused multiply and add

This approach is discussed in [10] and [11]. Internally,
the FMA hardware has to compute the product to 106
bits of precision for a DPF multiply. The first multiply
in the algorithm returns the most significant 53 bits of
the product. The second multiply subtracts the high bits
from the product, which become zeros, and are shifted
off by the normalizer, returning the least significant 53
bits of the product. Unfortunately, with this algorithm,
the low and high products of the terms in the dot-product
might not be correctly aligned. To illustrate the problem,
consider computing the dot-product of two vectors of
samples using the algorithm in Figure 2 and summing
the high and low products: let �A = �B = (250, 1) and
we wish to compute �A dot �B exactly. Computing the
full products p0 = full product(a0, b0) = (2100, 0) and
p1 = full product(a1, b1) = (1, 0). Adding the high
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d p f f u l l p r o d u c t ( double a sample , double b sample )
double c1=2104 , c2=2104 + 252 , c3=252 , sub ;

p h i = fma rz ( a sample , b sample , c1 ) ;
sub = c2 − p h i ;
p lo = fma rz ( a sample , b sample , sub ) ;

re turn ( p hi−c1 , p lo−c3 ) ;
}
Figure 3. Normalized high and low products. Note, this algorithm re-

quires rounding towards zero. Rounding towards nearest will produce
incorrect results.

products and low products of p0 and p1, yields (2100, 0)
rather than the desired sum (2100, 1), due to alignment
and round-off problems. We can resolve these problems
with a small modification, shown in Figure 3. When
computing the high product, we add 2104 and when
computing the low product we subtract off the 2104 and
add 252. This forces the alignment of the decimal places
in the high and low products, and thus the column sum
can be computed by just summing the high terms and
(separately) summing the low terms. Returning to the
example, computing the dot-product using the algorithm
in Figure 3, we will get p0 = (2100, 0) and p1 = (0, 1)
and summing highs and lows will result in (2100, 1), as
desired.

Since the high and low products have 52-bits of
precision, if we compute the sums in the floating point
domain, we will need more than the 53-bits of precision
provided by a DPF. Instead, we can take advantage of the
DPF binary representation and perform the summation
in the integer domain, as follows. In the IEEE-754
DPF binary representation, the most significant bit is
the sign bit, the next 11 bits are the exponent (with
a bias of 1023), and for normal floating point values,
the remaining 52 bits form a 53-bit mantissa, where the
most significant bit of the mantissa is always implicitly
set to one (the implicit bit is not stored in the binary
representation which saves a bit). Since the product of
two samples is guaranteed to be less than 2104, if we
compute p hi = ai ·bi+2104, then 2104 will be the most
significant bit of the result and will become the implicit
bit in the binary representation. The next 52 bits (the
explicit bits) of the mantissa will exactly match the 52-
bit high product that would have resulted from a product
computation in the integer domain. Likewise, computing
p lo = ai · bi+(2104+252)− p hi ensures that 252 will
be the implicit bit of p lo and the next 52 explicit bits
will be the low product. Thus we can recover the integer
high and low products, by masking the top 12 bits from
the DPF binary representation. This is shown in Figure
4, which uses a helper function to u64 to convert double
precision values to their binary representations. to u64
can be implemented with C unions or with inline PTX
assembly. On the GPU, floating point values and integer

i n t f u l l p r o d u c t ( double a sample , double b sample )
double c1=2104 , c2=2104 + 252 , sub ;
u i n t 6 4 t mask=252 − 1 ;

p h i = fma rz ( a sample , b sample , c1 ) ;
sub = c2 − p h i ;
p lo = fma rz ( a sample , b sample , sub ) ;

re turn ( to u64 ( p h i ) & mask , to u64 ( p lo ) & mask ) ;
}
Figure 4. Normalized high and low products. Note, this algorithm re-

quires rounding towards zero. Rounding towards nearest will produce
incorrect results.

values use the same registers, so the to u64 conversion
is essentially free.

It turns out that the masking operations end up wasting
a significant number of compute cycles, but with one
more trick, we can eliminate them, by noticing that the
sign bit of p hi is always 0 and the exponent is always
104 plus 1023 (the bias), thus the top 12 bits of p hi
is always 0x467, and the top 12 bits of p lo is always
0x433 (52 plus 1023). Instead of the masking operations,
we can include the top 12 bits in the column sums
and then by tracking how many high and low products
have been summed into each column, we can cancel off
their total with a single subtraction operation. We can
even save the final subtraction by initializing the column
sums with the correct negative values. The algorithm

# d e f i n e N 8

void s a m p l e d p r o d u c t ( u i n t 6 4 t ∗col sums ,
double ∗a samps , ∗double b samps ) {

double c1=2104 , c2=2104 + 252 , sub ;
u i n t 6 4 t mask=252 − 1 ;
i n t i , j ;

f o r ( i =0 ; i<N; i ++) {
co l sums [ i ]= m a k e i n i t i a l ( i , i + 1 ) ;
co l sums [2∗N−1−i ]= m a k e i n i t i a l ( i +1 , i ) ;

}

f o r ( i =0 ; i<N; i ++) {
f o r ( j =0 ; j<N; j ++) {

p h i = fma rz ( a samps [ i ] , b samps [ j ] , c1 ) ;
sub = c2 − p h i ;
p lo = fma rz ( a samps [ i ] , b samps [ j ] , sub ) ;
co l sums [ i + j +1] += to u64 ( p h i ) ;
co l sums [ i + j ] += to u64 ( p lo ) ;

}
}

}

Figure 5. MP Sampled Product Algorithm

u i n t 6 4 t m a k e i n i t i a l ( i n t h igh coun t ,
i n t l ow coun t ) {

u i n t 6 4 t v a l u e = h i g h c o u n t∗0x467 + low coun t∗0x433 ;

re turn −(( v a l u e & 0xFFF)<<52);
}

Figure 6. MP Sampled Product Algorithm
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in Figure 5 computes an 8-sample (416 bits) by 8-
sample multiple precision full product returning the 16
column sums of the result. The algorithm uses a routine
called make initial (shown in Figure 6) which takes
two arguments, the high product count and low product
count, and generates the appropriate initial value for the
column sum that will cancel the 0x467s and 0x433s.
Since the mantissa part is 52 bits, we can add up to 212

product terms in a column before we have to worry about
overflowing the 64-bit integer sums and we can ignore
any carry outs generated by the 0x467s and 0x433s.

If the loops of the algorithm in Figure 5 are completely
unrolled and we make some reasonable assumptions
about the code generated by the CUDA tool chain, then
an N -sample by N -sample product will require exactly
3N2 double precision floating point operations and 4N2

32-bit additions (two 32-bit addition instructions per 64-
bit addition in the algorithm). This can be extremely fast
on GPU cards with high double precision throughput.

II. IMPLEMENTATION OF MODULAR
EXPONENTIATION USING WIDE SAMPLES

In this section, we discuss the implementation of
modular multiplication and exponentiation. Although we
do not implement RSA, it could easily be layered on top
of the modular exponentiation routines. Since the moti-
vating problem is typically RSA, our modular exponenti-
ation routine needs to meet a few key requirements: 1) it
must achieve high throughput at moderate batch sizes; 2)
the latency must be reasonable (<100 ms); 3) the running
time must be independent of the secret key so that we
don’t leak information; 4) we must support 1024-bit,
1536-bit and 2048-bit modular exponentiations, which
are suitable for RSA-2048 through RSA-4096.

There are a number of algorithms to compute a
modular exponentiation, AK mod P . The most well
known is exponentiation by squaring, but it’s quite slow.
Two faster techniques are fixed window exponentiation

Fig. 7. 1040-bit (20 samples at 52-bits/sample) modular multiplication is partitioned acress 4 threads

(also known as k-ary exponentiation) and sliding win-
dow exponentiation. The sliding window method is the
fastest, but has the potential to leak information about the
secret key, so we use a fixed window approach. To ensure
constant time, we always do a multiplication step for
each group of w bits, even in the case where the window
bits are zero. For more on exponentiation algorithms,
please see [12]. The modular exponentiation algorithms
all require a modular multiplication subroutine to do the
actual computations.

For modular multiplication there are several choices
to compute A ·B mod P . Several papers have explored
mixed radix number systems (see for example [1], [13]).
Our wide samples approach could be used to support a
mixed radix approach, but it’s our belief, based on our
prior evaluations, that while these parallelize well, they
are less performant than a traditional FRNS. In the FRNS
space, there are two common approaches that avoid long
division, which is very slow on the GPU. These are the
Barrett reduction [14] and the Montgomery product [4].
At relatively small sizes using the O(N2) algorithms,
the Montgomery product is more efficient and regular,
thus we use Montgomery for our implementation.

Further if we relax the requirement that the Mont-
gomery product returns a value between 0 and P−1, and
instead allow the return of values between 0 and 2P −1,
then the correction step can be eliminated entirely, as
per Orup [15] and later Walter [16]. Eliminating the
correction step improves performance and it removes
another potential source of timing attacks.

For the required modular multiplication, which range
in size from 1024 bits to 2048 bits, the GPU does not
have enough register resources to run a multiplication per
thread, and keep everything on chip. So instead we use
a warp parallel approach pioneered by Jang et al. [17]
where the multiple precision values, A, B, P , and S are
partitioned across a group of threads as shown in Figure
7. In this example, a 1024-bit modular multiplication
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is computed using 20 samples of 52 bits per sample.
The samples are partitioned across 4 threads. Since
20×52 is 1040, the top 16 bits are initially zero padded,
but it gives us the extra bit of space needed for Orup
& Walter’s method. At a high level, the Montgomery
product is computed as follows:

1: S ← 0
2: for i=0 to 19 do

3: S ← S +A · bi
4: S ← S + P · qi
5: S ← S/252

6: end for

7: return S

where qi is the smallest positive value less than 252

such that S + P · qi is evenly divisible by 252 and
S/252 is implemented by shifting all of the column
sums one position to the right. This organization of
the computation is typically called Coarsely Integrated
Operand Scanning (CIOS), see [18] for details.

The modular multiplier consists of three subroutines.
Figure 8 computes a row product, i.e., S ← S +X · t,
where X is a multiple precision value and t is a 52-bit
sample, using our wide samples approach. The template
parameter limbs is the number of limbs in each thread.
Figure 9 computes the full Montgomery product of A,
B, and P , and returns the resulting column sums. It
uses three template arguments where n specifies the total
number of limbs in an instance, threads is the number of
threads assigned to each instance and limbs is the number
of 52-bit limbs in each thread. Note, in some cases, n
might be less than threads · limbs. The algorithm first
initializes the column sums. Then it iterates through the
limbs of B, accumulating A · bi followed by P · qi into
the column sums. Since the column sums are 64 bits per
limb, rather than the 52 bits of the sample, the column
sums form a redundant representation where the upper
12 bits of each column overlap with the next (more
significant) column sum. At the end of each iteration,
we must shift the column sums one sample, or 52 bits
to the right. To implement this, each thread splits the
least significant column sum into an upper 12 bits and a

t e m p l a t e<i n t l imbs>
void rowmul ( u i n t 6 4 t sums [ l i m b s + 1 ] ,

double term , double v [ l i m b s ] ) {
double hi , temp , lo , c1=2104 , c2=2104 + 252 ;

f o r ( i n t i n d e x =0; index<l i m b s ; i n d e x ++) {
h i = fma rz ( term , v [ i n d e x ] , c1 ) ;
temp=hi−c2 ;
l o = fma rz ( term , v [ i n d e x ] , temp ) ;
sums [ i n d e x +1] += to u64 ( h i ) ;
sums [ i n d e x ] += to u64 ( l o ) ;

}
}

Figure 8. 52-bit sampled row multiplier

t e m p l a t e<i n t n , i n t t h r e a d s , i n t l imbs>
void modmul ( u i n t 6 4 t sums [ l i m b s +1 ] , double a [ l i m b s ] ,

double b [ l i m b s ] , double p [ l i m b s ] , double np0 ) {
u i n t 3 2 t groupBase = t h r e a d I d x . x & ˜ ( t h r e a d s −1);
u i n t 6 4 t send64 , mask52=0xFFFFFFFFFFFFFull ;
double term , temp , c1=2104 ;

/ / i n i t i a l i z e t h e low l i m b s
f o r ( i n t word =0; word<l i m b s ; word ++)

sums [ word ]= m a k e i n i t i a l (2∗word , 2∗word + 2 ) ;

f o r ( i n t i =0 ; i<n ; i ++) {
/ / i n i t i a l i z e t h e h igh l imb
i f ( i<n−1−l i m b s )

sums [ l i m b s ]= m a k e i n i t i a l (2∗ l imbs , 2∗ l i m b s ) ;
e l s e i f ( i<n−1)

sums [ l i m b s ]= m a k e i n i t i a l ( 2∗ ( n−1−i ) , 2∗( n−2−i ) ) ;

/ / a c c u m u l a t e b i ∗ A , f o l l o w e d by q i ∗ P
t e rm = s h f l ( b [ i % l i m b s ] , i / l i m b s + groupBase ) ;
rowmul<l imbs >(sums , term , a ) ;

temp =( double ) ( sums [ 0 ] & mask52 ) ;
te rm = fma rz ( temp , np0 , c1 ) ; / / h igh prod
t e rm = fma rz ( temp , np0 , c1−t e rm ) ; / / low prod
t e rm = s h f l ( term , groupBase ) ;
rowmul<l imbs >(sums , term , p ) ;

/ / because o f t h e Montgomery p r o p e r t y , t h e l e a s t
/ / s i g n i f i c a n t 52 b i t s o f t h e l e a s t s i g n i f i c a n t
/ / t h r e a d w i l l a lways be z e r o . So we can use
/ / wrap around w i t h o u t any a d d i t i o n a l z e r o i n g .
send64 = s h f l ( sums [ 0 ] & mask52 , t i d . x +1 , t h r e a d s ) ;
sums [ 0 ] = sums [ 1 ] + ( sums [0])>>52);

/ / a l l o t h e r l i m b s s h i f t r i g h t by one column
f o r ( i n t word =1; word<l imbs−1;word ++)

sums [ word ]= sums [ word + 1 ] ;
sums [ l imbs−1]=sums [ l i m b s ] + send64 ;

}
/ / t h e h igh l imb i s empty , z e r o i t
sums [ l i m b s ] = 0 ;
}
Figure 9. 52-bit sampled modular multiplication based on a CIOS
Montgomery product

lower 52 bits. The upper 12 bits gets added to the next
column to the left. The lower 52 bits gets sent, using
a shfl, to the thread to its right for inclusion in the
most significant column. Once we have iterated through
all n of the bi terms, the column sums will represent
Montgomery product in redundant (overlapped) form.

Before the next multiply step can be computed, we
have to return the result to a non-redundant 52-bit
sampled form, which is equivalent to resolving the
carries between the columns. In a sequential processing
situation, this would be a trivial problem, just start at the
right most column and sweep the carries across to the
left. Jang et al. [17] used the following parallel approach:

1: resolve the carries within each thread
2: while any thread has a carry out do

3: move the carry to the next higher thread
4: resolve carries within each thread
5: end while

On average, this approach is quite fast. However, it
is possible that the while loop will run multiple times
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as a carry ripples from the least significant thread all
the way through to the most significant thread. Since
there is a loop structure, it will not run in constant time,
and therefore runs the risk of leaking information about
the secret key. Dong et al. came up with two clever
solutions to this problem. For the first they essentially
built a hierarchial carry look-ahead adder in software
using ballot instructions (see [8] for details). For the
second, they realized that their multiplier allowed for
a small amount of redundancy. So rather than having
to ripple a carry all the way to the left, they only
need to push it as far as the next thread. With their
multiplier design, the next thread can always absorb a
single carry in, and when it does so, the representation
becomes mildly redundant. It turns out the same trick
works here in our wide samples approach. Instead of
requiring samples to range from 0 to 252−1 (inclusive),
we will allow them to range from 0 to 252. As discussed
in Section 1, if the product of the a and b sample is less
than 2104 then everything just works. Thus if a and/or b
are less than 252, it is fine. The only questionable case is
when both a and b are exactly 252. However, when we
run this case through the high-low multiplier and subtract
off the required 0x467 and 0x433 from the top 12 bits,
we find the high word is 252 and the low word is 0,
exactly as required. Thus, we can allow the wider range
in the samples which allows us to use a very efficient
carry resolution routine, shown in Figure 10.

These three routines serve as the implementation of
the modular multiplier. The other routines required to
implement fixed window exponentiation are straightfor-
ward, requiring only data loading, data storing, and some
sampling routines that convert a standard 32-bit FRNS
to and from a 52-bit sampled representation.

III. EXPERIMENTAL SETUP AND RESULTS

To evaluate our wide samples approach to modular
exponentiation, we ran experiments on a GeForce GTX
Titan Black card, which uses a Kepler micro-architecture
with 15 SMs with a nominal clock rate of 889 MHz
and a maximum clock rate of 1280 MHz. The Titan
Black card supports high throughput double precision
floating point operations. The card is hosted by a 64-
bit Ubuntu Server (version 16.04 LTS) machine, with
an MSI Z270M motherboard and an Intel Core i5-7400
running at 3.0 GHz with 16 GB of main memory. We
have installed CUDA version 8.0 and NVIDIA driver
version 375.26 and use GMP version 6.1.1 to verify the
modular exponentiation results generated on the GPU.

To test the performance for each size k (1024, 1536,
or, 2048 bits), we generate the number of random
instances in accordance with Table I. Each random
instance consists of three randomly generated values A,
K, and P , each of which is k bits in length. There are no

t e m p l a t e<i n t t h r e a d s , i n t s i z e>
void r e s o l v e ( u i n t 6 4 t ∗sums ) {

u i n t 6 4 t mask52=0xFFFFFFFFFFFFFull , send64 ;

# pragma u n r o l l
f o r ( i n t i n d e x =1; index<s i z e ; i n d e x ++) {

sums [ i n d e x ]+= sums [ index−1]>>52;
sums [ index−1]=sums [ index−1] & mask52 ;

}

/ / 12− b i t c a r r y t o n e x t t h r e a d
send64 = s h f l ( sums [ s i z e −1] , t i d . x−1, t h r e a d s ) ;
sums [ s i z e −1]=sums [ s i z e −1] & mask52 ;

/ / must p r o p a g a t e t h r o u g h two l i m b s t o e n s u r e a
/ / s i n g l e b i t c a r r y which can be absorbed
sums [0]+= send64>>52;
sums [1]+= sums[0]>>52;
sums [ 0 ] = sums [ 0 ] & mask52 ;

}

Figure 10. 52-bit sampled carry resolution routine

restrictions on A or K, but P must be odd as required
for use in Montgomery reductions. The test procedure
is straightforward. Generate the random instances on the
CPU and for each instance pre-compute two terms that
are dependent on P : R mod P and R2 mod P , where
R is 252·�k/52�. Then copy the five k-bit values for each
instance to the GPU. On the GPU we first launch warm
up kernels, followed by the timing runs. Once all the
timing runs are complete, we copy the results back to the
CPU where they are checked for correctness using GMP.
For the timing runs, we launch the kernel and measure
the execution time. The kernel loads the instance data
from GPU global memory, computes AK mod P , and
writes the result back to global memory. The timing
runs do not include any of the CPU processing time
such as generating the random instance data, the pre-
computations, copying the instances to and from the
GPU or verifying the result.

The modular exponentiation kernel can be compiled
with a number of different parameters, such as threads
per instance, samples per thread, threads per block,
maximum number of registers to use per thread, etc.
For each size k, we test a few of the possibilities and
pick the set of parameters that produces the best overall
throughput. The parameter values are summarized in
Table I. One result that is surprising is that we achieve
the best performance with a single large block per SM
rather than multiple smaller blocks. With other kernels
it’s common to see multiple smaller blocks outperform
a single large block.

In Table II we give the throughput (modular expo-
nentiations per second) and latency of the wide samples
approach on a Titan Black card. As can be seen from the
table, a single warm up run followed by small number of
timing runs gives the best performance. As we increase
the number of timing runs, the performance drops, but
then levels off. In the last two rows for each size, we do
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TABLE I
PARAMETER THAT DELIVER THE BEST THROUGHPUT ON 1024, 1536 AND 2048 BIT MODULAR EXPONENTIATION

Bits Threads / Instance Samples / Thread Threads / Block Max Registers Blocks Instances
1024 4 5 768 80 15 2880
1536 8 4 768 80 15 1440
2048 8 5 768 80 15 1440

TABLE II
PERFORMANCE RESULTS FOR THREE SIZES AND DIFFERENT WARM

UP COUNTS AND TIMING RUN COUNTS

Warm Up Timing Average Average
Bits Runs Runs Throughput Latency
1024 1 4 161.9K 17.8 ms

1 50 138.2K 20.8 ms
1 100 135.7K 21.2 ms

100 200 133.0K 21.7 ms
100 500 132.5K 21.7 ms

1536 1 4 45.2K 31.9 ms
1 50 38.1K 37.8 ms
1 100 37.7K 38.2 ms

100 200 37.1K 38.8 ms
100 500 37.1K 38.8 ms

2048 1 4 19.4K 74.4 ms
1 50 17.8K 81.0 ms
1 100 17.7K 81.3 ms

100 200 17.5K 82.3 ms
100 500 17.5K 82.3 ms

100 warm up runs and then either 200 or 500 timing runs.
The throughput and latency of these last two rows are
similar and represents the steady state for the size. The
nvidia-smi utility can be used to monitor the current state
of the GPU, including temperature, power consumption,
clock rates, etc. What we see is that at the start of a
set of runs, the GPU core clock rate is 1280 MHz and
the power consumption of the GPU hits the maximum
allowed, which is 250 watts. The GPU responds by

TABLE III
PERFORMANCE COMPARISON

Jang et
al. [17]

Emmart and
Weems [19]

Yang et
al. [20]

Dong et
al. [7]

Dong et
al. [8] Proposed

CUDA platform GTX 580 GTX780Ti GT 750m GTX Titan GTX Titan Black GTX Titan Black
Architecture Fermi Kepler Kepler Kepler Kepler Kepler

# of SMs 16 15 2 14 15 15
Int Mul/SM (/Clock) 16 32 32 32 32 32
Shader clock (MHz) 1544 876 967 837 889 889

RSA / Mod Exp 0.49 - 0.49 0.49 0.49 -
Scaling Factor 2.203 1.015 14.072 2.322 2.04 1

Scaled Performance
1024-bit Mod Exp (ops/s) 26,500 129,700 73,800 98,000 107,600 132,500
1536-bit Mod Exp (ops/s) - - - 28,200 31,000 37,100
2048-bit Mod Exp (ops/s) 3,700 10,900 - 13,400 13,100 17,500
Constant Time (all sizes) No No No No Yes Yes

Latency Under 100ms Yes No No Yes Yes Yes

ratcheting down the core clock rate. At the end of the
first few runs it has dropped down to 1030 MHz, and by
about the 100th run, the clock rate settles between 862
MHz and 875 MHz and the power consumption hovers
at around 245 watts. We can conclude that the kernel
is not compute bound or memory bound, it’s actually
limited by power consumption.

In Table III we compare our results against some
recent paper that have implemented 1024-bit (and larger)
modular exponentation or 2048-bit RSA. For each paper,
we list the architecture, # of SMs, clock rate, integer
multiplies per clock cycle, a scaling factor, scaled per-
formance results, and whether the algorithms would be
expected to run in constant time and with a low enough
latency to be suitable for a GPU based RSA solution.
We compute a scaling factor so we can compare results
across GPU cards, which have differnces in the # of SMs,
clock rates, integer multiplies per cycle and whether
the paper measures modular exponentiations or RSA
decryptions. At 1024 bits, we find that the proposed
wide samples approach significantly outperforms the
prior results with the exception of [19], where it is
marginally faster. However, it is worth noting that at
1024-bits [19] is using an instance per thread model, and
has a latency well over 100 ms. At 1536 and 2048 bits
the wide samples approach is 20% and 34% faster than
the next fastest result [8], respectively. Further, we are
comparing our steady state performance to what likely
a peak performance rate in the other papers.
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Based on the throughput results, the good latency char-
acteristics, and favorable comparisons to other papers,
we believe a wide samples approach would be a good
choice for a GPU based RSA digital signature server.

IV. CONCLUSIONS AND FUTURE WORK

The important contribution of this paper is the combi-
nation of three tricks that allow efficient use of wide
samples. The first trick is the injection of 2104 and
252 into the floating point computations to solve the
normalization/alignment problems. The second is taking
advantage of the IEEE 754 representation, whereby the
least significant 52 bits of the double precision value
exactly match the integer high and low products, and
performing the column sums with unsigned 64-bit inte-
gers. The third trick is to take advantage of the fact that
the upper 12 bits of a high product are always 0x467
and for a low product they are always 0x433. Rather than
repeatedly masking off the top bits, we can include them
in the column sums and cancel them off with a single
subtraction or alternatively by initializing the column
sum with the right initial value. Combined with the carry
resolution routines of [8], the wide samples approach is
the best performing CUDA implementation of modular
exponentiation to date, at the three tested sizes.

There is still a lot of work to be done in the future.
First, we would like to integrate these routines into an
RSA digital signature server and validate that the RSA
routines are indeed secure, with no correlation between
the distribution of running times and the secret key
(as was done in [8]). Second, these same techniques
could be used to implement elliptic curve cryptography
(ECC) primitives. It would be interesting to compare
the performance of ECC based on wide samples to
other ECC implementations in the literature. Finally,
we believe that it might be possible to improve the
performance of libraries such as QD and CAMPARY
using the same techniques we have developed here.
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