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Abstract—Neuromorphic chips are used to model biologically

inspired Spiking-Neural-Networks(SNNs) where most models

are based on differential equations. Equations for most SNN

algorithms usually contain variables with one or more ex

components. SpiNNaker is a digital neuromorphic chip that

has so far been using pre-calculated look-up tables for expo-

nential function. However this approach is limited because the

memory requirements grow as more complex neural models

are developed. To save already limited memory resources in

the next generation SpiNNaker chip, we are including a fast

exponential function in the silicon. In this paper we analyse

iterative algorithms for elementary functions and show how to

build a single hardware accelerator for exp and natural log,

for a neuromorphic chip prototype, to be manufactured in a

22 nm FDSOI process. We present the accelerator that has

algorithmic level approximation control, allowing it to trade

precision for latency and energy efficiency. As an addition

to neuromorphic chip application, we provide analysis of a

parameterized elementary function unit that can be tailored

for other systems with different power, area, accuracy and

latency constraints.

Index Terms—exponential function, logarithm function, hard-

ware accelerators, approximate arithmetic, fixed-point arith-

metic, SpiNNaker2, neuromorphic computing, MPSoC

1. Introduction

SpiNNaker is a digital neuromorphic architecture de-
signed for simulating biologically inspired neural networks
called Spiking-Neural-Networks [1]. At the heart of SpiN-
Naker is a low-power general purpose ARM processor and
therefore all the equations of neuronal models are mapped
directly onto the machine using basic ARM instructions,
contrary to the analog neuromorphic chips [2] or hybrid
analog-digital chips [3] where most models are realised
physically. One of the most common functions in SNNs
is ex, used to model exponentially decaying quantities.
Most neuron models [4] and biological learning, Spike-
Timing-Dependent plasticity, rules (further called STDP)
[5] developed on SpiNNaker all use exponentially decaying

elements. In software, it is hard to realise a very fast
implementation of this function - it requires large look-up
tables and multiplication operations and the usual latency
is 60-100 clock cycles [6]. Therefore it becomes justifiable
to dedicate silicon for the exponential function in a digital
neuromorphic chip. However, noting that each new design
costs in excess of e250k to fabricate we have a limited
number of trials to find the best solution.

In the SpiNNaker-1 system there was no hardware sup-
port for transcendental functions, including exponentials, so
the models that were developed used pre-computed look-
up-tables (LUTs); see [7] for a general analysis of this
approach. The SpiNNaker compiler would first take a high
level description of the network dynamics specified by the
user and pre-calculate a range of values of exponential decay
for a specific time constant. Then, the LUTs would be copied
into each core’s local memory and used while the application
is running. However, this approach has two limitations: 1) A
limited number of time constants and range of exponential
functions can be used due to limited on-chip memory, and
2) in case someone wants to model a learning rule that
requires timing constants to be dynamic, the regeneration
of look-up-tables on-the-fly or pausing simulation would be
required, both major performance bottlenecks. A software
exponential is also available in the SpiNNaker software
library, but with the latency of 95 clock cycles, it would
be a major limit to real-time synaptic plasticity process-
ing, where a single pair of spikes takes approximately 30
cycles as reported in [8]. Indeed when processing most
learning rules, we usually need more than one exponential
per spike pair processing. Learning rules requiring 3 or more
calls to exp already appear in computational neuroscience
literature and on SpiNNaker: e.g voltage-dependent STDP
implemented on SpiNNaker [9], BCPNN [5], [7] and neuro-
modulated STDP [10] learning rules. Lastly, similar neural
network simulations on high performance computers were
found to spend 7% of total time running soft-exp [14].

The most recent SpiNNaker-2 chip prototype has a fully
pipelined exponential built in [11]. However, the implemen-
tation is limited to the fixed-point format s16.15 (Here s
represents sign bit and the format has 16 integer and 15 frac-
tional bits) and it is not clear how to utilise a fully pipelined
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unit in the current plasticity software framework, where
multiple other calculations between calls to exponentials
are required to be done. Additionally, design in [11] uses
identity ea+b+c = ea × eb × ec to parallelize computation
and therefore requires large multipliers. Here we demon-
strate a different implementation based on iterative shift-add
algorithms that do not require implementing multiplication.
The internal iterative part is done in fixed-point carry-save
redundant number representation to reduce the critical path.
We have provided two different input and output fixed-point
formats which can be mixed to gain more accuracy on some
arguments. Furthermore, a useful intrinsic property of the
iterative algorithms is that just after a few iterations they
already contain the approximate output. We have chosen
to use this property to provide accuracy control, following
the principles of approximate computing [12] (in this case
approximation comes not from the errors in the circuit but
by not running enough iterations) in order to add options to
sacrifice some accuracy to obtain faster and more energy-
efficient elementary function. This property will provide a
platform for experimenting with concepts arising from the
ongoing discussion about the number of bits required for
representing weights in STDP [13].

Most of the algorithms for evaluating elementary func-
tions are categorised into two types: polynomial approxima-
tions or convergence algorithms [15], [16]. For this work, we
have chosen a well-known convergence algorithm presented
in [15] which provides exponential and natural logarithm
functions with overlapping hardware components. The unit
is included in a prototype neuromorphic chip as an AHB
slave that can be driven from ARM core by writing and
reading the set of specific memory locations, similarly to
the implementation demonstrated in [11]. Design synthesis
studies are executed on the makeChip hosted design ser-
vice platform [17] for the GLOBALFOUNDRIES 22FDX
technology [18].

2. SpiNNaker neuromorphic chip

In this section we briefly present the SpiNNaker chip -
the main building component of a million core computing
cluster designed specifically to simulate large scale spiking
neural networks. SpiNNaker is a large collection of low
power computational nodes that are able to send and receive
signals (similar to neuronal spikes in the brain) to/from
any other node in the network, and can be programmed
to run a piece of code upon receiving each spike in such
a way to model biological neurons and the synapses that
connect them. The SpiNNaker chip comprises 18 ARM968
processors as well as a block of shared SDRAM of 128MB.
Typically each ARM968 in the SpiNNaker chip will be
allocated up to 255 neurons so a single chip can have
approximately 4000, where the exact number depends on
the complexity of simulation models. An ARM968 con-
tains 64 kB of data storage memory DTCM (data Tightly-
Coupled-Memory) and also 32 kB of instruction memory,
named ITCM (instruction memory). The executable pro-
gram is constructed according to the high level description

provided by user, which takes into account things such as
neuron models and learning rule types. The compiled code
is then downloaded to ITCM while any data structures,
including LUTs for exponential function, that are used while
application is running, are stored in DTCM. See [19] for a
more detailed review of the architecture and software; Also
see [20] for comparison to other neuromorphic systems.

The first prototype chips of the next-generation
(SpiNNaker-2) architecture were already manufactured and
tested [11], [21]. The core of the SpiNNaker-2 chip is a
number of ARM Cortex M4F processing elements (PEs).
Each PE has some local memory which will be split for
code and data as in SpiNNaker-1 ITCM and DTCM. An
off-chip DRAM will be shared among all the cores. Each
PE is equipped with a DMA controller to copy data from
DRAM to a PE and vice versa. Each SpiNNaker-2 chip
has a router used to send spike packets from any core to
any other core on the system. It is also used to send data
bursts from core-to-DRAM or core-to-core. The accelerator
documented in this manuscript is included next to each PE.
The first prototype chips with this accelerator included were
already designed and are in the process of manufacturing in
a 22 nm FDSOI technology.

3. Algorithm

In this section we will discuss the iterative shift-add
algorithms presented in Chapter 8 of [15] which can be
used to find exponential and natural logarithm functions. To
save space, here we only show a variant of the algorithm
that computes exponential function, but as shown in [15]
logarithm is very similar.

3.1. Iterative algorithm

The main algorithm is based on the convergence princi-
ple: the sequences Ln and dn defined as

L0 = x

Ln+1 = Ln − ln(1 + dn2
−n)

(1)

dn =

{
1 if Ln ≥ ln(1 + 2−n)

0 otherwise
(2)

Now a sequence En is defined such that at any step n
of the algorithm,

En+1 = En + dnEn2
−n (3)

Then if L0 = x is in the convergence domain x ∈
[0, 1.56202...], this gives:

lim
n→∞Ln = 0

lim
n→∞En = E0e

L0 .
(4)

To speed-up this algorithm two additions in equations
1 and 3 are done using carry-save adders. Using carry-save
adders requires changing this algorithm in various ways,
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TABLE 1. APPROXIMATE MINIMUM AND MAXIMUM RANGES OF
VALUES OF exp OPERATION WITH DIFFERENT 32bit 2’S COMPLEMENT
FORMATS. ∗ - SATURATES TO 0X0 BELOW THIS RANGE; † - SATURATES

TO 0X7FFFFFFF ABOVE THIS RANGE.

Format I/O Exp IN Exp OUT
S16.15/S16.15 −10.4∗ to 11.1† 0.000031(2−15) to 65536(216)
S0.31/S0.31 −1 to 0† 0.368 to 1
S16.15/S0.31 −21.488∗ to 0† 2−31 to 1
S0.31/S16.15 −1 to 1 0.368 to e

including allowing d to have value −1. To save space we
skip the detailed explanation and just show our circuits in
carry save form. Refer to [15] for more details.

3.2. Range reduction and reconstruction

The algorithm presented in section 3.1 converges only
when x is in a limited range. To provide a full range
exponential and logarithm function for formats s16.15 and
s0.31 we must do range reduction. This comes in a form of
reducing initial x to the convergence range of the iterative
algorithm and then reconstructing the result.

3.2.1. Exponential. If x is in the range demonstrated in
Table 1, find x′ such that:

x′ = x− n× ln(2), (5)

where

n = �x× 23

16
�. (6)

Note that 23
16 is only around 0.4% smaller than 1

ln(2) .
This gives us, when considering the range of possible argu-
ments in s16.15 format, x′ ∈ [∼ −0.0751,∼ 0.7307]. Then:

exp(x) = exp(x′ + n× ln(2)) = 2n × exp(x′). (7)

Now we can calculate exp(x′) using the iterative algo-
rithm and then find the final result in the full range just by
shifting n number of places as shown in Equation 7. In total,
range reduction for exponential requires only multipliers
by constant (Equation 5 and Equation 6) and an adder
(Equation 5). Note that for evaluating Equation 7, we will
need a shifter with n ∈ [−31, 15].

3.2.2. Logarithm. If x is in the range demonstrated in
Table 2, find x′ ∈ [ 12 , 1] such that:

x′ =
x

2k
. (8)

If x is represented in fixed-point number system, we
can find k by counting leading zeros. When we have x′
which is reduced to convergence rate of the algorithm in
Section 3.1, we can calculate natural logarithm ln(x′). Then
we can reconstruct the result in the full range of x:

ln(x) = ln(x′) + ln(2k) = ln(x′) + k × ln(2). (9)

TABLE 2. APPROXIMATE MINIMUM AND MAXIMUM RANGES OF
VALUES OF ln OPERATION WITH DIFFERENT 32bit 2’S COMPLEMENT
FORMATS. ‡ - SATURATES TO 0X80000000 BELOW THIS RANGE; † -

SATURATES TO 0X7FFFFFFF ABOVE THIS RANGE.

Format Ln IN Ln OUT
S16.15/S16.15 0.000031(2−15) to 65536(216) −10.4 to 11.1
S0.31/S0.31 0.368‡ to 1 −1 to 0
S16.15/S0.31 0.368‡ to e† −1 to 1
S0.31/S16.15 2−31 to 1 −21.488 to 0

Therefore, in total range reduction and reconstruction for
natural logarithm requires a bidirectional shifter and a count-
leading-zeros module (Equation 8) as well as multiplier by
constant and an adder (Equation 9).

4. Implementation

In this section we demonstrate how to implement the
algorithm presented in section 3 in hardware.

4.1. Single iteration

Figure 1. Architecture of a single iteration of the algorithm presented in
Section 3. The internal representation is 39bit carry-save number system.
Dashed arrows show carry-save busses that are made out of two 39bit
busses for intermediate carry and intermediate sum. Solid lines are busses
for binary numbers in non-redundant representation. Units labelled [3:2]
are carry save adders [22] that add a carry save number with a binary
number, with the propagation delay of a single full-adder. Units labelled
[4:2] function as two [3:2] carry save adders chained in series to allow
adding two numbers already in carry-save representation. For [4:2], rather
than chaining two [3:2] adders, we have used a fast algorithm presented on
page 123 of [16]. Two’s complement of En is achieved by inverting all bits
of the intermediate sum and intermediate carries, feeding these two values
into a [4:2] adder, together with the original version of En and using a
fifth input to [4:2] that is available as carry-in, to add 1 - this gives us
subtraction En −En2−n. Signal exp not log is used to choose d, which
is different for exp and log.

Figure 1 illustrates a hardware unit for a single iteration
step of the iterative algorithm. The input to this module is
En and Ln, values from the previous iteration, and the out-
put is an update of these variables as per equations 1 and 3.
At the bottom we have two 3:1 multiplexers that correspond
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to different operations on En and Ln depending on value
d ∈ {0, 1,−1}. When d is calculated, the multiplexers at
the bottom choose appropriate next iteration value.

It can be seen from the circuit that it has 7 different paths
almost independently running in parallel. We have found
that the middle part, where we calculate d is a critical path of
this unit. To improve this path, we have implemented value d
as one-bit-hot pattern [0012, 0102, 1002] instead of the actual
values [0, 1,−1], which allowed the bottom multiplexers
to be faster. Another slow component on this path is the
4 bit carry-propagate adder in the middle which is used to
calculate non-redundant representation of L∗n = 2nLn. We
have split this adder into two 2 bit adders run in parallel, one
returning a 2 bit result and another that is adding lower bits
returning a 2 bit result with carry out. Then we have used
this 5 bit value in the d look-up-table to make appropriate
choice. Because two 2 bit adders can run in parallel, this
also gave us a small improvement on the critical path.

4.2. Main architecture

Figure 2. Architecture of the multiple precision exponential and natural
logarithm unit. Range reduction and reconstruction stages in the first and
the last clock cycles correspond to the operations shown in Section 3.2.
Multiplexers are controlled by an FSM. Block ”Log LUTs” represents a
function which sends a corresponding ln(1+dnk2

−n) value (Equation 1)
to each iteration depending on nk∈[1,4]. The values in these LUTs are
stored in the fixed-point format s4.34. Because equation 1 contains a
subtraction, we store these log table values as 2’s complement values in
order to be able to do just carry-save additions inside the iteration unit.

Now, we define integer I �= 0 as number of iteration
modules instantiated and connected in series. In Figure 2
we demonstrate a top level architecture that has 4 such
iterations instantiated and runs them in a loop (Here I = 4).
First of all, 32 bit data is taken from the bus when available
and sent through range reduction (Section 3.2) module in
the first clock cycle. To obtain near full 32 bit accuracy,
range reduction stage is done as 40 bit operations, i.e. the
constants in range reduction equation are hard-coded with 40
bits in the fractional part. Then, the range reduced value is
passed into the next clock cycle to start the main calculation
using the iterative algorithm. The internal calculation is done
using 39 bit fixed-point values, with 1 bit for sign, 4 bits
for the integer part and 34 bits for the fractional part. The
middle datapath is run for N clock cycles which is set-
up beforehand. In our implementation, by default N = 8,
which gives 32 iterations in total. Each iteration sub-unit
keeps track of the iteration number that it is running which
is used to index the log tables for ln(1 + dn2

−n) when
calculating Equation 1. For example, iteration block 1 is
running iterations with n1 ∈ {1, 5, 9, 13, 17, 21, 25, 29}.
Finally, on the last clock cycle, range reconstruction is done
again using 40 bit constants. In the end, result is read out to
the bus either in s16.15 or s0.31 fixed-point formats, which
simply involves a fixed shifter.

5. Results

5.1. Accuracy and monotonicity

To measure accuracy of the unit and verify it over a wide
range of available arguments, we have compared the unit
to double-precision exponential function of the C standard
library math.h. The experiments in this section were run by
simulating the Verilog design of the unit. Given an argument
x, we calculate absolute error:

Δexp = |exp′(x)− exp(x)|, (10)

where exp′ is hardware accelerator function and exp
is math.h function exp(). By sweeping through all possible
s16.15 arguments for exponential, we have found that, when
the unit is configured to do 8 iterations with N = 8, 99.8%
of values had an absolute error below one LSB (2−15 =
0.000030517578125, the smallest value representable by the
Least Significant Bit in s16.15 format), meaning that the re-
sult from the exponential hardware accelerator is one of two
neighbouring values of the double-precision floating point
sample. Small number of samples, 0.2% had a maximum
absolute error of 1.45 LSB. By running a sweep over all
values, we have also verified that the exponential function
at this accelerator configuration is monotonic.

For the natural logarithm accelerator with N = 8
we have also run an exhaustive test of approximately 2
billion samples across the range of possible inputs x ∈
[LSB, 65536). We have found that 99.999% of samples had
an absolute error below one LSB and a very small number
of tests had a maximum error of 1.01 LSB. By sweeping
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over all possible arguments, we have found that logarithm
function at this accelerator configuration is also monotonic.

Table 3 lists maximum absolute error and whether func-
tion is monotonic or not for all configurations N ∈ [1...8].
Figures 3 and 4 show absolute errors (without the absolute
value) of number of arguments spread through full ranges for
exp and log in s16.15. From these figures it can be seen that
most of the values in exponential have absolute error below
one LSB, except for the arguments close to the maximum,
where function starts to produce errors that are below two
LSB values. Analysis that is demonstrated in Figures 3 and 4
correspond to the first row of Table 3.

Table 4 provides the results for when the accelerator is
used with s0.31 fixed-point format.

Figure 3. Absolute errors of s16.15 exponential.

Figure 4. Absolute errors of s16.15 logarithm.

TABLE 3. ACCURACY AND MONOTONICITY OF EXPONENTIAL AND
LOGARITHM FUNCTIONS FOR DIFFERENT NUMBER OF ITERATIONS N ,

IN THE ACCELERATOR WITH 4 ITERATIONS PER CLOCK CYCLE AND
s16.15 INPUT AND OUTPUT FORMAT.

LSB = 2−15 = 0.000030517578125.

exp ln
N max Δexp Monotonic max Δlog Monotonic
8 0.00004425 Yes 0.00003082 Yes
7 0.00023559 Yes 0.00003082 Yes
6 0.00387969 Yes 0.00003082 Yes
5 0.06096649 Yes 0.00003112 Yes
4 0.99264343 Yes 0.00004089 No
3 15.3052932 No 0.00019928 No
2 241.053592 No 0.00268463 No
1 3352.69732 No 0.03837280 No

5.2. Synthesis study

We have executed a synthesis study of the presented de-
sign using the makeChip hosted design service platform [17]

TABLE 4. ACCURACY AND MONOTONICITY OF EXPONENTIAL AND
LOGARITHM FUNCTIONS FOR DIFFERENT NUMBER OF ITERATIONS N ,

IN THE ACCELERATOR WITH 4 ITERATIONS PER CLOCK CYCLE AND
s0.31 INPUT AND OUTPUT FORMAT.

LSB = 2−31 = 0.000000000465661.

exp ln
N max Δexp Monotonic max Δlog Monotonic
8 0.000000000722 Yes 0.000000001387 Yes
7 0.000000003744 No 0.000000003613 Yes
6 0.000000059274 No 0.000000040312 Yes
5 0.000000945120 No 0.000000645976 No
4 0.000014910344 No 0.000010420316 No
3 0.000236990545 No 0.000170091129 No
2 0.003536022179 No 0.002655907041 No
1 0.045793333569 No 0.038344341439 No

for the GLOBALFOUNDRIES 22FDX technology [18]. An
ultra-low voltage 9t-CNRX Standard-Cell Library with mul-
tiple voltage threshold options is used for implementation.
Namely two main categories of cells are used: Low-Voltage-
Threshold (Further called LVT) and Super-Low-Voltage-
Threshold (Further called SLVT) cells - the former with the
larger propagation delay but significantly less leakage than
the latter, much faster cells. A nominal supply voltage of
0.50V is considered for low power operation. Synthesis is
performed in a worst case operating condition at 0.45V and
0C. The power consumption of the circuit is analysed in a
typical process condition at worst case power conditions of
0.55V at 85C.

Firstly we synthesised multiple accelerators with differ-
ent copies of iterations (Fig.1) I placed per clock cycle. In
Tables 5 and 6 we show multiple accelerators synthesised
with I ∈ {1, 2, 3, 4, 6, 8} for different clock constraints
fclk = 150MHz (Table 5) and fclk = 250MHz (Table 6).
The tables list the area, which is approximate area be-
fore place and route, the percentage of SLVT cells used
(this gives a hint of major leakage increase and that the
synthesizer is struggling to meet the timing constraints)
and whether timing was met or not after optimisation
stage and using SLVT library. When fclk = 150MHz, for
I ∈ {1, 2, 3, 4}, SLVT cells are not required and for I > 4,
a lot of SLVT cells are placed on the path with iterations
to meet timing constraints. When fclk = 250MHz, SLVT
cells are required for all the accelerator versions. However,
when fclk = 250MHz, I ∈ {1, 2}, SLVT cells are used
only on the range reduction and reconstruction paths, as
the iterative path of the circuit has a smaller propagation
delay. When I > 2, percentage of SLVT cells rapidly
increases to meet the timing constraints on the iterative path.
Finally the limitations of this algorithm are reached when
fclk = 250MHz and I = 8 where timing constraint cannot
be met even with SLVT cells on the critical path.

Next, we make a sweep of the clock speed constraint in
the range fclk = {50, 75, 100, 125, 150, 175, 200, 225, 250}
and sample area and leakage (normalised) to compare two
accelerators with I = 1 and I = 4 (Figures 5 and 6). It
can be seen in Figure 5 that area is growing, as more larger
LVT cells are used, until 150MHz. After that point, the syn-
thesizer starts using SLVT cells (starting with the smallest
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size) to meet the timing constraint. Additionally, notice that
the accelerator with I = 1, single iteration per clock cycle,
does not require a significant amount of SLVT at any of the
clock frequencies used and area keeps increasing only on
the range reduction and range reconstruction paths.

Figure 6 shows leakage comparison. It can be seen that
leakage for the accelerator with I = 1 increases at around
fclk = 225MHz when the synthesizer starts adding SLVT
cells on the range reduction and range reconstruction paths.
On the other hand, accelerator with I = 4 has a rapid
increase in leakage when fclk > 150MHz due to increased
usage of SLVT cells both on the iterative path and range
reduction and reconstruction paths.

TABLE 5. SYNTHESIS OF ACCELERATORS WITH DIFFERENT NUMBERS
OF ITERATIONS PER CLOCK CYCLE. CLOCK WAS CONSTRAINED AT

150MHz

Iterations per
cycle, I

Area
(μm2)

SLVT
cells

Timing
met

Max la-
tency

1 4507 0% Y 34
2 6097 0% Y 18
3 9482 0% Y 13
4 12342 0% Y 10
6 15034 29.2% Y 8
8 19518 47.4% Y 6

TABLE 6. SYNTHESIS OF ACCELERATORS WITH DIFFERENT NUMBERS
OF ITERATIONS PER CLOCK CYCLE. CLOCK WAS CONSTRAINED AT

250MHz

Iterations per
cycle, I

Area
(μm2)

SLVT
cells

Timing
met

Max la-
tency

1 6108 7.3% Y 34
2 8755 3.1% Y 18
3 10361 21.2% Y 13
4 11524 36% Y 10
6 17368 59.6% Y 8
8 21893 68.7% N 6
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Figure 5. Area of two versions of the accelerator when synthesised with
different clock constraints.
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Figure 6. Leakage of two versions of the accelerator when synthesised with
different clock constraints.

5.3. Place and route study

TABLE 7. COMPARISON OF THE EXPONENTIAL ACCELERATOR
SYNTHESISED WITH A COMPLETE PE AT OPERATING CONDITIONS OF

0.5V AND 250MHz CLOCK FREQUENCY, TO SOFTWARE
IMPLEMENTATION. ∗ - INCLUDES 2 CYCLES FOR READING AND

WRITING OPERATIONS.

Exp accelerator Software exp
Throughput 20.8-50M exp/s 2.6M exp/s
Latency 5-12 cycles/exp∗ 95 cycles/exp
Energy per exp 0.16nJ/exp-

0.39nJ/exp
2.74nJ/exp

Total area 5928 µm2 -

The prototype core (later called PE - Processing Ele-
ment), which will be later used as a building element in the
SpiNNaker-2 massively parallel neuromorphic system, has
been implemented with the presented elementary function
accelerator (Version with I = 4 iterations per clock cycle)
included. Figure 7 shows the layout of a single PE after
place and route stage, with the accelerator highlighted in
red. Figure 8 shows the accelerator layout in more detail.

We have tested the accelerator by running realistic soft-
ware test cases including arbitrary number of calls to exp
and logarithm function, on a netlist of a complete PE.
Table 7 provides comparison of the accelerator to a similar
software implementation of a fixed-point exponential used in
current SpiNNaker systems. It can be seen that at some area
we can obtain much higher throughput exponential function
with very small energy consumption compared to software
version.

Furthermore, in Table 8 we compare the exp accelerator
and in Table 9 the natural logarithm accelerator to some
other similar systems available in the literature. It can be
seen that our solution has advantage by providing options for
controlling energy and accuracy of the accelerator as well
as providing different input/output formats. Additionally,
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TABLE 8. COMPARISON OF THE EXPONENTIAL ACCELERATOR SYNTHESISED WITH A COMPLETE PE AT OPERATING CONDITIONS OF 0.5V AND
250MHz CLOCK FREQUENCY, TO SIMILAR SYSTEMS. ∗ - ACCELERATOR ONLY (NO PROCESSOR INVOLVED); † - INCLUDES LOGARITHM FUNCTION.

Our work† [11] [23] [24]
Technology 22nm 28nm FPGA 65nm
Throughput 20.8M-50M exp/s 83M exp/s 4.4M exp/s 24.8M exp/s
Pipelined No Yes No No
Energy per exp 0.16-0.39nJ/exp 0.44nJ/exp - 0.002nJ/exp*
Format fixed fixed float fixed
Monotonic Yes - - -
Accuracy control Yes No No No
Multi-format Yes No No No
Area 5928 µm2 10 800 µm2 - 20 700 µm2

TABLE 9. COMPARISON OF THE LOGARITHM ACCELERATOR
SYNTHESISED WITH A COMPLETE PE AT OPERATING CONDITIONS OF
0.5V AND 250MHz CLOCK FREQUENCY, TO SIMILAR SYSTEMS. † -

INCLUDES EXPONENTIAL FUNCTION

Our work† [23]
Technology 22nm FPGA
Throughput 20.8M-50M ln/s 5.5M ln/s
Pipelined No No
Energy per exp 0.16-0.39nJ/ln -
Format fixed float
Monotonic Yes -
Accuracy control Yes No
Multi-format Yes No
Area 5928 µm2 -

Figure 7. Layout of a processing element (PE) after place and route. Cells
marked ...macro bundled at north-west corner belong to local SRAM. The
rest of the cells at the south-east corner belong to an ARM M4F based PE.
Out of that, cells highlighted in red belong to the exp/ln accelerator with
N = 4 iterations together with some AHB bus wrappers.

our implementation achieves strictly increasing, or mono-
tonic function - unfortunately the systems that we compare
to did not report about this property. However, by using
the iterative algorithm (which makes it hard to introduce
pipelined operation) and introducing more control of the
unit we pay a small price in throughput compared to the
previous SpiNNaker-2 prototype [11].

Figure 8. Layout of a processing element (PE) after place and route, zoomed
in to the area at the bottom of the chip.

6. Conclusion

In this paper we have presented a parameterized ap-
proximate elementary function accelerator with accuracy
control and multiple input/output formats, which can be
adapted to a specific system with different constraints.
This problem comes down to a 4-dimensional problem of
optimising power(leakage)-area-accuracy-latency. We have
demonstrated results of various accelerators by covering a
large space of constraints in this 4-dimensional problem.
Furthermore, we have shown how this method is used to
design the accelerator for a neuromorphic chip. Our results
of benchmarking the design show very high throughput of
elementary functions with low energy consumption. Low
energy consumption and additional options for reducing it
further by controlling the accuracy of the unit will provide
a suitable elementary function platform for neuromorphic
applications.

For future work, we plan to extend the input/output types
with single-precision floating point, which is supported by
ARM M4F. This will involve adding a conversion to and
from the internal fixed-point representation s4.34. For im-
proving accuracy, for example removing errors at the end of
the range of s16.15 exponential function, we are planning to
explore various rounding algorithms [25], [26] which would
be included into the last clock cycle with range reduction
operations. Additionally, we are planning to experiment with
higher-radix implementation of the iterative algorithm [27]
to speed up the iterative part of the accelerator - as described
in [15], a radix-2k version of the iterative algorithm imple-
mentation presented here would converge in n/k iterations,
instead of n when radix-2 is used, to give n-bit accuracy. The
only difficulty with higher radix algorithms would be larger
look-up tables for natural logarithm entries in Ln iteration;
also a choice of dn value, which in higher radix can adopt
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more values than dn ∈ {−1, 0, 1}, on each iteration would
result in more sophisticated d look-up tables and larger
bottom multiplexers in the main iteration block. Finally, we
plan to do a comprehensive comparison between the two
exponential units that were designed for SpiNNaker-2 to
understand differences between recurrence algorithms (this
work) and polynomial approximation algorithms ([11]) in
modern 22 nm and 28 nm technologies.
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