
High Density and Performance Multiplication for FPGA

Martin Langhammer
Intel UK

Gregg Baeckler
Intel US

Abstract—Arithmetic based applications are one of the most
common use cases for modern FPGAs. Currently, machine
learning is emerging as the fastest growth area for FPGAs,
renewing an interest in low precision multiplication. There
is now a new focus on multiplication in the soft fabric -
very high-density systems, consisting of many thousands of
operations, are the current norm. In this paper we introduce
multiplier regularization, which restructures common multi-
plier algorithms into smaller, and more efficient architectures.
The multiplier structure is parameterizable, and results are
given for a continuous range of input sizes, although the

algorithm is most efficient for small input precisions. The
multiplier is particularly effective for typical machine learning
inferencing uses, and the presented cores can be used for
dot products required for these applications. Although the
examples presented here are optimized for Intel Stratix 10
devices, the concept of regularized arithmetic structures are
applicable to generic FPGA LUT architectures. Results are
compared to Intel Megafunction IP as well as contrasted with
normalized representations of recently published results for
Xilinx devices. We report a 10% to 35% smaller area, and
a more significant latency reduction, in the range of 25% to
50%, for typical inferencing use cases.

I. INTRODUCTION

The emergence of Artificial Intelligence (AI), Machine
Learning (ML) and Deep Learning (DL) - which for brevity
we will simply refer to as ML in this paper - is driving
architectural change and innovation across a wide range of
devices: CPU, GPU, ASIC/ASSP, and of course, FPGA.
There are two main classes of machine learning, training
and inference. Inference, with its many arrays of typically
lower precision multipliers (usually arranged as large groups
of DOT product operators), appears to be a good match for
FPGA architectures. Modern FPGAs [1][2] now have over
a million LUT/register combinations, which suggests that
they are well suited to implementing these types of arrays.
Training, by contrast, requires higher precision arithmetic,
typically FP. Although high performance embedded FP is
now supported by FPGAs [3], this paper will only examine
soft logic arithmetic suitable for inference.

A recent commercial FPGA based system, Microsoft
Brainwave [4], illustrates this. The reported performance
of 90 TOPs at a 500MHz clock rate in an Intel Stratix
10 device implies that 180K operators - and therefore
90K multipliers - are present in the device. Details of the
arithmetic format are not disclosed other than an indication
that it is a proprietary FP representation. The soft logic

comprises 933K ALMs (a brief description of FPGA logic
resources is given in the following section) on the target
device, i.e. about 10ALMs per operator (also, all the DSP
Blocks are used, which suggests that they are implementing
some of the multiplications), implying a dense, efficient soft
logic structure.

Virtually all modern FPGAs contain embedded multipli-
ers, typically based on 18 bit precision [5][6], including
low end devices [7][8]. Smaller multipliers can be extracted
from larger ones [9], but this can introduce other inefficien-
cies. Extracting subsets still powers up the entire multiplier
datapath of the DSP Block - the Xilinx 27x18 has about
four times the arithmetic density of the two extracted 8x8s,
so the power consumption is that of the entire datapath,
plus additional soft logic support, although only half of
the arithmetic capability is used. In addition, the FPGA
resource mix is compartmentalized, where similar functions
are grouped together. The connections between the DSP
Block and soft logic needed to support the DOT operator
and accumulators require a significant amount of routing,
which is further complicated by the fact that the busses
are restricted because of the relative placement of bits.
This further reduces device flexibility, and increases the
power consumption per operation. We can therefore see
that the design of efficient and high performance soft logic
arithmetic operators for machine learning inference is of
great importance.

In this paper, we introduce a new method and approach for
mapping integer multipliers to current FPGAs. Arithmetic in
FPGAs typically uses the embedded carry chain in the soft
logic structures. The new techniques will more fully utilize
the soft logic which precedes the carry chains, including the
case of summation of the generated partial products. Routing
density will be carefully considered and optimized. In the
presented constructs, any required logic which cannot be
mapped entirely to the look up tables supporting the carry
chain will be calculated out-of-band, and only the single bit
results of the out-of-band function routed to the carry chain
logic.

The rest of the paper is organized as follows. Section
II will review recent work on FPGA soft logic multipli-
cation algorithms. Section III will present the bulk of the
new algorithms and approaches, with the specific examples
illustrated in a series of figures. This will be followed by
results in section IV, where areas of different multipliers

1XXX-X-XXXXXXX-X-X/ARITH18/ c©2018 IEEE



will be tabulated. Finally, future work will be introduced in
section V, and the conclusions presented in section VI.

II. RELATED WORK

Both Intel and Xilinx have provided multipliers as part
of their IP offerings for many years. We will compare this
work to Intel and Xilinx (in the Xilinx case, based on two
recent academic works) qualitatively. The resources required
by these new algorithms are often significantly smaller than
the previously published results, but just as importantly,
use the routing resources of the FPGA more effectively. A
quantitative analysis of routing stress is beyond the scope of
this paper, but we will attempt to highlight some of the key
issues informally by discussion.

The soft logic resources in FPGAs are comprised of many
look up tables (LUTs), which can often be decomposed into
a series of smaller LUTs. A 6 input LUT (6LUT) is the norm
for modern FPGAs; the six inputs can implement a function
of 26 combinations. The 6LUT can be decomposed: four
4LUTs in the case of the Intel device (supporting two bits
of arithmetic), and two 5LUTs for the Xilinx device, with
a single bit of arithmetic. Recent work for Xilinx devices
more fully uses the 5LUT structure. In this paper we show
improved mappings to the smaller 4LUT subset - but wider
arithmetic - of the Intel 6LUT. The Intel 6LUT structure is
known as an ALM, a term we will use in this paper.

Kumm et. al [10] described a new multiplier approach
which uses an array multiplier architecture [11], where the
partial products of each level are calculated using modified
Booth’s encoding [12][13], and then summed to the partial
products of the previous levels. This work relies on the
features of the Xilinx soft logic, in particular, that each bit
of the embedded adder is fed by two 5LUTs. The array
multiplier architecture builds a linear rather than a logarith-
mic depth structure, which will decrease performance for a
combinatorial implementation, or increase the latency for a
pipelined design. Although there is minimal logic cost in
pipelining as registers available on each bit of the adder, the
large number of registers - and therefore the switching rate
for this linear array will likely cause an increased power
consumption.

Kumm also states that this technique would not work on
similar Intel devices, as the local logic decomposition on the
Intel devices is two 4LUTs per bit, instead of 5LUTs. The
Intel 6LUT, however, can be decomposed into two arithmetic
bits rather than the single bit of the Xilinx 6LUT. We will
show that the former case provides a more efficient target
for multiplier implementation that the latter.

Walters [14], [15] presents a similar scheme for Xilinx
FPGAs, where a Booth’s coding is mapped to the LUTs,
and an array multiplier is implemented using the associated
carry chains. A tree structure is also described, albeit with a
stated caveat that the tree structure is somewhat larger than
the linear array structure. The tree structure also appears to

require the use of ternary adders, but there is no discussion
of the routing density problem of ternary addition, and the
possible system impact of filling a device with multipliers
containing them. In our experience, ternary addition places
great stress on routing, and can only be used for a subset
of the device. For current applications requiring many soft
multipliers, such as machine learning, the system arithmetic
density required may make ternary adders unusable.

III. MULTIPLIER REGULARIZATION

The canonic mapping for typically lower precision mul-
tipliers results in disjoint FPGA resource requirements with
varying multiplier size. For example, the dimensionless
arithmetic complexity of a multiplier can be estimated by the
product of the input precisions. A 4x4 multiplier is expected
to be about 16 (4 ·4), while a 5x5 multiplier is 25 (5 ·5), or
a ratio of 1.56x. In practice, however, the cost in FPGA
resources for the larger multiplier is about twice that of
the smaller one; in an Intel Stratix 10 device (using the
Intel Megafunction IP), the two cores are 11 ALMs and 22
ALMs, respectively. The difference can be largely explained
by the granularity of the resources: the 4x4 multiplier maps
directly to two pairs of 4-input (although using only two
independent inputs) LUT groups, while the 5x5 multiplier
requires a third LUT group, containing only a single partial
product. The third group must then be added separately to
the sum of the first two pairs of partial products. There are
therefore multiple inefficiencies in the 5x5 multiplier: the
logic of the third group of LUTs is only partially used - and
the associated adder is not used at all - and a final adder
level is required to add in the third partial product. Not only
are the resources of this last adder required, but also the
additional level of logic, with its attendant routing, latency,
and possible balancing implications, which impact the true
cost of increasing the multiplier precision by a bit.

By using the first of the methods described in this paper -
restructuring the partial products with out-of-band compres-
sion of triple columns - the three sets of partial products in
the 5x5 case would be reduced to two pairs, requiring only
a single adder to sum, reducing the (dimensionless) system
cost to around 20. The 6x6 case would also produce 3 pairs
of partial products, but the second method described here
- creating an alternate adder in triangular form - reduces
the 2 levels of adder to a single adder. In the case of the
7x7 multiplier, both of these methods would be combined
to make the near equivalent of the 6x6 case.

It is also possible that multiple stages of these algorithms
can be used to change one optimal form of multiplier into
another form of multiplier. For example, an 8x8 multiplier,
which appears to map directly to the FPGA, can be changed
to an 8x6 by applying the partial product compression
twice, followed by the adder triangular optimization on the
summing of the three partial products.

2 25th IEEE Symbosium on Computer Arithmetic (ARITH 2018)



Column 5 4 3 2 1 0

PP0 0 0 0 p0,2 p0,1 p0,0
PP1 0 0 p1,2 p1,1 p1,0 0
PP2 0 p2,2 p2,1 p2,0 0 0

Figure 1. 3×3 Multiplier {a2,a1 ,a0}×{b2,b1,b0}

These techniques can be used for larger multipliers as
well, but these can usually be more efficiently (power,
performance, area) implemented in embedded (hard) DSP
resources in modern FPGAs. We now define multiplier
regularization as a combination of up to three methods:

• A general multiplier mapping with some processing in
separate combinatorial circuits, where an entire level
of partial product is factored out. The combinatorial
functions do not form part of the carry chain associated
with the soft logic, and are therefore denoted as being
out-of-band.

• Multiplier mappings by refactoring arithmetic to imple-
ment a subset of the multiplication with the equivalent
of ternary addition, while only using a binary arithmetic
logic structure. This optimization initiates by forming a
triangular shaped group of partial products, often from
the first partial product refactorization.

• Using 2:2 compression to introduce gaps in the com-
bination of partial products so that the 1’s to 2’s
complement arithmetic for signed operations can be
implemented in the minimum number of levels.

Signed and unsigned multipliers are different cases of
these methods, and special techniques for signed multipliers
are described later in this section.

We have discussed how modern FPGAs have a dedicated
adder structure supported in the logic, typically in some
form of ripple carry adder, with each bit position fed by
LUTs. An equally important consideration is the routing
flexibility of the system, as there are only a limited number
of independent inputs for each LUT in a local group of logic.

In one example, Intel Stratix 10 devices [1] groups of
10 logic blocks (ALMs) are arranged together in a structure
known as a LAB. Each logic block can be configured into an
arithmetic mode, where four 4LUTs can feed two bits of a
ripple carry adder. These four LUTs will share 6 independent
inputs in a specified way. Each group of 10 ALMs (i.e. LAB)
will have a total number of independent inputs that in is that
the number of independent inputs per ALM, typically 25%
of the LAB number. Therefore, a large number of common
inputs must be shared across the ALMs if there are more
than 2 or 3 inputs per ALM used.

A. Out-of-Band Mapping - Simple Case

We will now illustrate the restructuring of the partial
products using the out of band combinatorial functions by
an unsigned 3x3 multiplier example. For brevity, we will
refer to the combinatorial functions here as auxiliary cells.

r2r3r4r5

0

p0,1 p1,0 p0,0p1,1p0,2p1,2p2,1p2,2

0 b2 a2 a1 0b1 a0 b0

p2,0

a0 b2

r1 r0

Figure 2. Known 3x3 Mapping

We define the multiplicand as the three bits {a2,a1,a0}
(from most significant to least significant bit) and the mul-
tiplier as {b2,b1,b0}. Figure 1 shows the partial product
generation and alignment. For example, the term p1,0 is the
bit 0 of the multiplicand (the least significant bit) ANDed
with bit 1 of the multiplier. Although ternary addition is
supported by many modern FPGA devices, the independent
number of inputs required (three input bits per output bit) is
larger than supported by the routing architecture of some
FPGAs, and can therefore not universally applied across
the FPGA. Even if ternary addition is supported, the partial
products must be generated and processed first. The typical
architectural case where some logic capability exists before
the dedicated ripple carry adder will support the calculation
and addition of two partial products, but the third will have
to be produced separately.

Figure 2 shows a structure of the known method of
multiplier mappings to the Intel FPGA architecture. The
small 3x3 multiplier case can also be decoded efficiently
directly with 5 ALMs; 4 in 6LUT mode, and 1 decomposed
into two 5LUTs.

We will now show how to transform this into the sum of
two partial products with a binary (two input) adder, with the
assistance of the out-of-band auxiliary cells. First, we extract
two entries in column 2 with the function (p0,2⊕ p1,1), which
is the redundant sum compression of those input bits. These
four constituent input bits (a2,a1,b1, and b0) can be used in
the same ALM used to calculate the redundant carry function
(a2 · b0 · a1 · b1). Moving the redundant carry function into
column 3 creates another column of three bits, but in this
case, the redundant carry can be expanded to include the
redundant sum calculation for column 3, or (a2 ·b0 ·a1 ·b1)⊕
(a2 ·b1).

There is, however, another condition that needs to be
considered. If a2 · b0, a1 · b1, and a2 · b1 are all ’1’, then
a carry will be produced in column 4. Another way of
looking at this is that if the redundant sum in column 3
is (a2 ·b0 ·a1 ·b1)⊕ (a2 ·b1), the following redundant carry
will be (a2 ·b0 ·a1 ·b1) · (a2 ·b1). To avoid creating another
auxiliary cell, we notice that the redundant sum can be
XORed with a2 · b1 in the cell of column 4, generating

25th IEEE Symbosium on Computer Arithmetic (ARITH 2018) 3



Column 5 4 3 2 1 0

PP0 0 p2,2 p2,1 p2,0 p0,1 p0,0
PP1 0 AUX2 ⊕ p1,2 AUX2 AUX1 p1,0 0

Figure 3. 3×3 Multiplier in Two Levels with Auxiliary Functions

p0,1 p1,0 p0,0p2,1p2,2 p2,0AUX1AUX2AUX2⊕ p1,2

(p0,2p1,1)⊕ p1,2 p0,2 ⊕ p1,1

r0r1r2r3r4r5

b1

a[2 : 0],b[2 : 0]

a1 b1 0a2 b2 a0 b0

Figure 4. New 3x3 Mapping

(a2 · b0 · a1 · b1)⊕ (a2 · b1)⊕ (a2 · b1), or (a2 · b0 · a1 · b1).
The redundant carry would be (a2 ·b0 ·a1 ·b1 ·a2 ·b1), which
simplifies to (a2 ·b0 ·a1 ·b1), which is what we just generated
in column 4.

An unsigned 3x3 multiplier therefore reduces to 4 ALMs:
3 ALMs in an unbroken carry chain, plus 1 ALM for the two
auxiliary functions (AUXx). This is illustrated in Figure 3.
Grouping each pair of columns into an ALM shows that
a maximum of 4 independent inputs is required per ALM,
with a total of 6 independent inputs over 4 ALMs. We are
therefore well below the maximum level of inputs per ALM,
and at only 1.5 independent inputs averaged over a group
of ALMs, expect that this will be a very low stress system
routing problem. Consequently, this multiplier should fit into
the device with high density, while maintaining high speed.

Figure 4 shows this method mapped to the Intel Stratix
logic. Note that the arithmetic depth has also decreased from
two levels to a single level.

B. Out-of-Band Mapping - General Case

The method for the 3x3 example can be expanded for
larger multipliers, such as 5x5 and 7x7, where an odd
number of partial products exist. An even number of partial
products will create a balanced first level addition of partial
products, and therefore our goal is to transform the odd
number of partial product to an even number by removing
one of the initial partial products.

Figure 5 shows the partial products of an unsigned 5x5
multiplier. We can decompose this into two sets of partial
products, one with two partial products (but with one column
of 3 bits) and the other consisting of two partial products.
Figure 6 and Figure 7 show these two sets, respectively.

We can now reduce the first set of partial products to
two vectors by removing the 3 deep column, using the
approach of the 3x3 multiplier case. In column 4, p1,3 and
p2,2 are replaced by AUX1 = p1,3 ⊕ p2,2. In column 5, p1,4

Col. 8 7 6 5 4 3 2 1 0

PP0 0 0 0 0 p0,4 p0,3 p0,2 p0,1 p0,0
PP1 0 0 0 p1,4 p1,3 p1,2 p1,1 p1,0 0
PP2 0 0 p2,4 p2,3 p2,2 p2,1 p2,0 0 0
PP3 0 p3,4 p3,3 p3,2 p3,1 p3,0 0 0 0
PP4 p4,4 p4,3 p4,2 p4,1 p4,0 0 0 0 0

Figure 5. 5x5 Multiplier Partial Product Bits

is replaced by AUX2 = ((p1,3 · p2,2)⊕ p1,4), and the carry
into column 6 is then AUX3 = (p2,2 · p1,3 · p1,4). If we define
the multiplicand as a[4 : 0] and the multiplier as b[4 : 0], it
follows that p2,2 = a2 ·b2, p1,3 = a3 ·b1, and p1,4 = a4 ·b1.

Unlike the simpler case of the 3x3 multiplier, there are
now five independent variables in the combinatorial func-
tions, and three separate auxiliary functions are required. In-
stead, we change AUX2 and AUX3 to use p2,3 instead of p1,4,
which results in AUX2 = ((p1,3 · p2,2)⊕ p2,3) and AUX3 =
(p2,2 · p1,3 · p2,3). The AUX2 value, ((p1,3 · p2,2) · p2,3), can
then be expanded to ((a3 ·b1)·(a2 ·b2))⊕(a3 ·b2)). Similarly,
the AUX3 value, (p2,2 · p1,3 · p2,3), is (a2 ·b2 ·a3 ·b1 ·a3 ·b2),
which can then be simplified to (a2 · a3 · b1 · b2). AUX1
remains (p1,3 ⊕ p2,2), or expressed in the expanded form,
((a3 ·b1)⊕ (a2 ·b2)).

This group of functions now has four independent bits (a3,
a2, b2, and b1), and can be implemented in two auxiliary
cells. Similarly to the 3x3 case, the AUX3 function is
implemented using the available inputs of the last ALM
(columns 6 and 7) implementing the generation and addition
of the first group of partial products (Figure 6). The AUX2
function is input, and converted to AUX3 by XORing (a3 ·b2)
away. The five ALMs (four in the carry chain, and the
one for the out-of-band combinatorial functions) require
8 independent inputs. At less than 2 independent bits per
ALM, this is again a very low stress routing problem.

C. Ternary to Binary Addition Mapping

If the partial products are optimized (such as with our
compression of odd to even number of partial products),
or not, they still need to be added together. In FPGAs this
is most commonly and efficiently done using ripple carry
adders. We can take advantage of the logic in front of the
ripple carry adders to further optimize the final summation.
In particular, we can show how to add three partial products
using a binary (two-input adder), with a small number of

Column 8 7 6 5 4 3 2 1 0

PP0 0 0 p2,4 p2,3 p0,4 p0,3 p0,2 p0,1 p0,0
PP1 0 0 0 p1,4 p1,3 p1,2 p1,1 p1,0 0
PP2 0 0 0 0 p2,2 0 0 0 0

Figure 6. 5×5 Multiplier First Partial Product Set

Column 8 7 6 5 4 3 2 1 0

PP3 0 p3,4 p3,3 p3,2 p3,1 p3,0 0 0 0
PP4 p4,4 p4,3 p4,2 p4,1 p4,0 0 0 0 0

Figure 7. 5×5 Multiplier Second Partial Product Set

4 25th IEEE Symbosium on Computer Arithmetic (ARITH 2018)



Col. 8 7 6 5 4 3 2 1 0

PP0’ 0 0 p2,4 p2,3 p0,4 p0,3 p0,2 p0,1 p0,0
PP1’ 0 0 AUX2 ⊕ p2,3 AUX2 AUX1 p1,2 p1,1 p1,0 0

Figure 8. Optimized First Partial Product Set

auxiliary cells. We will show how a 6x6 multiplier can be
implemented using only two levels of logic: one for the
partial product generation (and summing of the first two
binary partial products), and one for the summation of the
three partial products produced.

This can also be used as a part of the adder tree of
larger multipliers, such as when there are 5 partial products
(such as an N × 10 multiplier). In that case, three of the
partial products would be added with the ternary to binary
conversion of this section, and the remaining two partial
products with a binary adder. The result is then generated
using another binary adder.

Figure 9 shows the six pencil and paper partial products
for the example 6x6 multiplier. These are added pairwise
(by the ripple carry adder associated with them) to create
three second level partial products, x, y, and z of Figure 10.
The LSB of each partial product pair is denoted with an
’L’ suffix, to indicate that these can be solely calculated by
combinatorial logic, and do not have to be tied to the ripple
carry adder. The bits xL, yL, and zL are p0,0, p2,0, and p4,0
respectively. An arithmetically identical arrangement of the
bits of Figure 10 is shown in Figure 11.

Although ternary addition is supported by most current
FPGAs, it may not be ubiquitously usable because of the in-
put routing stress (independent input flexibility is discussed
earlier in Section II). Instead, a combination of 3:2 and
2:2 redundant form compression may be implemented in
a portion of the logic associated with the ripple carry adder,
again supplemented by some out-of-band (i.e. not directly
on the carry chain) combinatorial cells. Figure 12 shows the
summation of three partial product pairs using two adder
levels.

In the construction of Figure 13, columns of 3 bits are re-
duced to 2 columns of 1 bit each, using 3:2 compression. Be-
cause of routing density limitations, 3:2 compression cannot

Col. 11 10 9 8 7 6 5 4 3 2 1 0

PP0 0 0 0 0 0 0 p0 ,5 p0 ,4 p0 ,3 p0 ,2 p0 ,1 p0,0
PP1 0 0 0 0 0 p1,5 p1 ,4 p1 ,3 p1 ,2 p1 ,1 p1 ,0 0
PP2 0 0 0 0 p2,5 p2,4 p2 ,3 p2 ,2 p2 ,1 p2 ,0 0 0
PP3 0 0 0 p3,5 p3,4 p3,3 p3 ,2 p3 ,1 p3 ,0 0 0 0
PP4 0 0 p4,5 p4,4 p4,3 p4,2 p4 ,1 p4 ,0 0 0 0 0
PP5 0 p5,5 p5,4 p5,3 p5,2 p5,1 p5 ,0 0 0 0 0 0

Figure 9. Partial Products for a 6x6 Multiplier

Col. 11 10 9 8 7 6 5 4 3 2 1 0

PP0+PP1 0 0 0 0 x7 x6 x5 x4 x3 x2 x1 xL
PP2+PP3 0 0 y7 y6 y5 y4 y3 y2 y1 yL 0 0
PP4+PP5 z7 z6 z5 z4 z3 z2 z1 zL 0 0 0 0

Figure 10. Partial Product Pairs for a 6×6 Multiplier

Col. 11 10 9 8 7 6 5 4 3 2 1 0

PP0+PP1 z7 z6 z5 z4 x7 x6 x5 x4 x3 x2 x1 xL
PP2+PP3 0 0 y7 y6 y5 y4 y3 y2 y1 yL 0 0
PP4+PP5 0 0 0 0 z3 z2 z1 zL 0 0 0 0

Figure 11. Alternate arrangement PP pairs for a 6×6 multiplier

XLX10X2YLX3Y1X4X5Y3 Y2X6Y4X7Y5Z4Y6Z5Y70

0 0 0 0 Z3 ZL

r0r2 r1r3r4r5r6r7r8r9r10r11

Z7 0 Z6

Z2 Z1

Figure 12. Summation of Three PPs in Two Binary Adder Layers

be performed contiguously across the bit vectors. Instead,
we perform 3:2 compression on alternate 3 high columns,
and otherwise input already compressed bits, which are
calculated in the out-of-band auxiliary cells. For smaller
multipliers, such as we typically see in machine learning
inference applications, the partial triangulation of the partial
product pairs will only produce a few 3 bit columns. The
number of external combinatorial cells is therefore low.

The 3:2 compression of the middle columns requires that
the more significant two bit columns be 2:2 compressed to
maintain a 2 bit column height throughout the bit vectors.

The equations for the 3:2 compression performed in both
the in-line cells and the auxiliary cells are as follows:

s1 = x4 ⊕ y2 ⊕ zL

c1 = Majority(x4,y2 ,zL)

= (x4 ·y2)+(x4 · zL)+(y2 · zL)

hs1 = x5 ⊕ y3 ⊕ z1(auxiliary cell)
hc1 = Majority(x5,y3 ,z1)(auxiliary cell)

s2 = x6 ⊕ y4 ⊕ z2

c1 = Majority(x6,y4 ,z2)

hs2 = x7 ⊕ y5 ⊕ z3(auxiliary cell)
hc2 = Majority(x7,y5 ,z3)(auxiliary cell)

As previously mentioned, some 2:2 compressors are needed
to maintain the shift pattern. These can be directly imple-
mented in the logic associated with that section of the carry
chain, using a half adder (HA) construction:

s3 = z4 ⊕ y6 c3 = z4 · y6

s4 = z5 ⊕ y7 c4 = z5 · y7

Col. 11 10 9 8 7 6 5 4 3 2 1 0

Line0 z7 z6 s4 s3 hs2 s2 hs1 s1 x3 x2 x1 xL
Line1 0 c4 c3 hc2 c2 hc1 c1 0 y1 yL 0 0

Figure 13. Redundant Compression of Partial Product Pairs

25th IEEE Symbosium on Computer Arithmetic (ARITH 2018) 5



XLX10X2YLX3Y1

{X5,Y3,Z1}{X7,Y5,Z3}

r1 r0r2r4r11 r9r10 r8 r7 r6 r5 r3

0 Z7
C2 S2

⊕Maj· ⊕

{Z5,Y7}Z6

C1 S1

0
{Z4,Y6}

{X4,Y2,ZL}{X6,Y4,Z2}

Maj⊕⊕·

⊕⊕Maj Maj

S3C3S4C4

Figure 14. Summation of Three PPs in One Binary Adder Layer

At this point, each column has a maximum of two bits, and
can be added together with an 11 bit ripple carry adder. The
two LSBs form part of the sum without addition, and one
bit is needed for overflow from the z7 position. Figure 14
shows how the summation of three partial product pairs can
be mapped to a single adder level.

D. Operand Width Compression

The carry chain in the above example can be reduced
to 10 bits, using the existing logic. This will potentially
increase system speed (because of a shorter carry chain).
System fitting may also be improved, especially if many
multipliers are used (as is the case in most machine learning
applications). Not only can an additional LSB (in column 2)
be calculated combinatorially (thereby given greater flexibil-
ity in the placement of the multiplier), this method can be
applied when the final carry chain uses a non-integer number
of ALMs (in the case of an 11 bit carry chain, 5.5 ALMs
are used, restricting the independent utilization of the final
LUT).

Figure 15 shows the 2:2 compression on the least signifi-
cant bits from the compressed three bit columns, i.e. columns
2, 3, and 4.

The logic equations are:

sL1 = x2 ⊕ yL cL1 = x2 · yL

sL2 = x3 ⊕ y1 cL2 = x3 · y1

This may not give a logic reduction in all cases. If we
consider each pair of columns mapped to an ALM, the
largest number of independent inputs of an ALM would be
in the case of a full pair of 3:2 compressors implemented in
logic.

One example is the ALM containing {s1,cL2,hs1,c1},
which expanded out is the set {x4 ⊕ y2 ⊕ zL,x3 ·
y1,hs1,Majority(x4,y2,zL)}. The independent inputs in this
case are x4,y2,zL,x3,y1, and hs1. This will only be possible
if the ALM allowed fully independent inputs to both ripple
carry adder bits. In a more typical FPGA, cL2 (i.e. (x3 ·y1))
would need to be calculated externally in a auxiliary cell,

Col. 11 10 9 8 7 6 5 4 3 2 1 0

Line0 z7 z6 s4 s3 hs2 s2 hs1 s1 sL2 xL1 x1 xL
Line1 0 c4 c3 hc2 c2 hc1 c1 cL2 cL1 0 0 0

Figure 15. Further Redundant Compression of Partial Product Pairs

Col. 7 6 5 4 3 2 1 0

PP0 0 0 (p0,3) (p0,3) p0,3 p0,2 p0,1 p0,0
PP1 0 0 (p1,3) p1,3 p1,2 p1,1 p1,0 0
PP2 (p2,3) (p2,3) p2,3 p2,2 p2,1 p2,0 0 0
PP3 (p3,3) p3,3 p3,2 p3,1 p3,0 0 0 0

Figure 16. 4×4 Signed Multiplier Pencil and Paper Partial Products

7 6 5 4 3 2 1 0

(s4) s4 s3 s2 s1 p2,0 0 0
c4 c3 c2 c1 Comp 0 0 0

Figure 17. Signed 4×4 Multiplier Compressed Partial Products

and then connected to the actual LUT routing. This would
somewhat defeat the point of the LSB 2:2 compressors, al-
though the improved placement characteristics, as explained
above, may make this worthwhile.

In the final adder configuration described in Figure 15,
the most densely routed ALM is {s2,hc1,c2,hs2} , or {x6⊕
y4 ⊕ z2,hc2,Majority(x6,y4,z2),hs2}. Although there are 5
independent variables here, the manner that the routing is
mapped to the two LUTs in the ALM is supported.

E. Signed Multiplier Analogue

Optimization of the unsigned multiplier is simpler than
the signed multiplier, as extensions of partial results can be
made with zeroes. Another issue with signed multipliers is
the possible generation of the true negative (2’s complement)
of the multiplicand.

Figure 16 shows a partial product set in the style of
Figure 1 for a 4x4 signed multiply, with the sign extensions
denoted by (). The first three partial products are calculated
by a ANDing of the multiplicand bits with the respective
multiplier bit - the same as for the unsigned multiplication,
although in this case a sign extension is also performed. The
last partial product is negated if the multiplier MSB is ’1’.
This is normally implemented by inverting the bits of the
multiplicand, and then adding a ’1’ to the LSB position of
that partial product. Here there is no obvious place to add
the ’1’ bit. Using a separate adder for the single bit would
be inefficient.

One solution is to add the first two partial products
normally, but use a 2:2 compression on the second pair,
offset by a bit, to create ’0’ in the place of the p3,0. This is
shown in Figure 17. The bit ’Comp’ is ’1’ in the case of a
negative multiplier, ’0’ otherwise.

The 2:2 compression here is a half adder analogous to
the method of Figure 15. Note that each bit is the logical
AND of two inputs bits, but the distribution of the routing
in the ALM makes it possible to fully route this pattern.
There is also an alternate way of implementing the 1s to
2s complement addition. By inspection of Figure 17, the bit
position underneath p2,0 bit does not contain a value. Also,
the L bit can either be ’0’ or ’1’. Adding a ’1’ into the p3,0
bit can be accomplished by forcing a carry in from the p3,0
bit position into the ripple carry adder. Note that the p3,0 bit

6 25th IEEE Symbosium on Computer Arithmetic (ARITH 2018)



Table I
COMPARED MULTIPLIER AREA AND LATENCY RESULTS

Precision
Ours Intel Xilinx

Area Depth Area Depth Area Depth

4x4 8 1 11 2 12 2
5x5 13 2 22 3 20 3
6x6 21 2 30 3 24 3
7x7 25 2 34 3 36 4
8x8 36 3 36 3 40 4
9x9 43 3 48 4 55 5

cannot be changed, but if the ripple carry adder started at p3,0
instead of p2,0, feeding a 1 into both the empty column at
p2,0 and as a carry in to p2,0 will both leave p2,0 unchanged,
and force a carry in into the rest of the ripple carry adder.

IV. RESULTS

To normalize the comparisons, we will describe the re-
sources used in terms of 6LUTs. As described earlier in
Section II, Intel and Xilinx devices have different logic
structures: the Intel 6LUT (ALM) fractures into two bits,
each with two 4LUTs as inputs, and the Xilinx 6LUT
contains a single bit, with the 6LUT fracturing into two
5LUTs, which feed a single bit adder. Kumm and Walters
both map a Booths coding to the deeper logic structure of
the Xilinx architecture while our approach uses the denser
arithmetic structure of the Intel devices.

Based on the algorithms of Section III, there are two
main components of a regularized multiplier: partial product
generation, and the summation of the partial products. The
first level summation of the partial products occurs in the
same logic where the partial products are created, and the
sums of partial product pairs are then added in the second
level. Recall that multiplier regularization creates a set of
partial product pairs, and that the summation of partial
products contains a multiple of pairs.

For an MxN multiplier, the number of ALMs in the partial
product pairs is approximately:

PP =

(
M
2
+2

)⌊
N
2

⌋
+(N mod 2)

and the number of ALMs in the summation of the pairs:

∑ =

(
M
2
+2

(⌊
N
2

⌋
−1

))
(�log2 N�−1)+(�log2 N −1� mod 2)

Conceptually, the there will always be an even pair of
partial products generated using the out-of-band auxiliary
cells. The width of this pair (which incorporates a one bit
left shift of the more significant partial product, plus an
additional bit for wordgrowth) will be two bits more than the
precision of the multiplicand. The number of partial products
will also be an even pair, then arranged in a reduction tree.
A small additional number of auxiliary cells is required to
ensure this.

In Kumm [10], multiplier resources requirements are
expressed in slices:

Table II
ASYMMETRIC AREA AND LATENCY RESULTS

Precision Area Depth

4x3 6 1
5x4 11 2
5x3 7 1
6x5 16 2
6x4 12 2
6x3 8 1
7x6 23 2
7x5 19 2
7x4 14 2
7x3 9 1

Area(slices) =
⌈

M
4
+ 1

⌉⌊
N
2
+ 1

⌋

where each slice contains 4 bits, or four 6LUTs.
The [10] and [14], [15] multipliers appear to be al-

most identical for array multiplication, so we will use the
methodology behind the area equation above for the Xilinx
numbers. Note that this equation will provide pessimistic
results for the lower precisions typically associated with
machine learning inference, so we manually construct the
architectures for these, producing possibly slightly optimistic
results. For example, we compute 40 6LUTs for the 8x8
unsigned case; Walters reports 43 6LUTs.

We will use the Intel Megafunction results (in the Quartus
tool), without ternary addition, for the Intel numbers. We
will not report Xilinx Logicore numbers, as both Kumm and
Walters report that their algorithms are significantly smaller
that the Xilinx IP. Our numbers are rounded up to the nearest
ALM; in several of these multipliers, the actual area is one
half ALM smaller, which can be reused for other logic in
some cases. Logic depth, rather than latency, is given to
focus on the arithmetic core, rather than the complication
of normalizing the cost of any pipeline balancing. The
comparison of area and delay of the three methods is given
in Table I.

Note that our 4x4 implementation de-regularizes the mul-
tiplication first (by splitting it into a 4x3 and 4x1) and
then regularizes it (by collapsing the 4x3 into a 4x2 plus a
auxiliary cell), and then adding the result of the 4x2 multiply
to the unused adder in the 4x1 calculation. This multiplier
has therefore a deeper combinatorial path internally. This is
unlikely to impact system speed, as the span of this logic is
very low.

The area and latency of the Intel Megafunction IP com-
pares closely to the Kumm and Walters results. Our results
are typically 10% to 35% smaller, but the latency is signif-
icantly reduced, with a 25% to 50% reduction.

For completeness, we also report area and latency for
non-symmetric multipliers in Table II, which show that the
method of this paper applies to non-square multipliers as
well.

25th IEEE Symbosium on Computer Arithmetic (ARITH 2018) 7



Both our reported results, and the current Intel Mega-
function multipliers, were synthesized and fit using Quartus
17.1, targeting a Stratix 10 10S280ES-2 device. We do not
report speeds here. For both the new multipliers and the
Megafunction multipliers, we were able to achieve over
700MHz by pipelining the multipliers fully, for all of the
reported precisions. This, however, is not a true indication of
multiplier performance. The implementation of the machine
learning systems that are likely to use these operators will
typically use many thousands in a single design. These
system level designs will reveal additional characteristics
about the advantages and disadvantages of both the new
and known algorithms, such as the impact of ALM input
routing density, ALM packing efficiency, and the effect of
heterogenous routing paths, such as the placement effects of
the logic on the carry chain compared with the out-of-band
auxilary logic.

V. FUTURE WORK

The true impact of these new multipliers can only be seen
when aggregated into large datapaths, such as the dot product
structures typically used in machine learning applications.
We have some early results, where device filling designs
on the Stratix 10 10S280ES-2 device achieve in excess of
500MHz. There are numerous additional steps in packing
such a large number of operators efficiently, and as stated
previously, the analysis of routing stress is beyond the scope
of this paper. Our next steps will be to construct a number
of designs, across a wide set of precisions, and formalize the
methods needed to achieve consistent placement efficiencies
and performance.

VI. CONCLUSIONS

In this paper, we have described a set of new methods to
improve the area and latency (logic depth) for low precision
FPGA soft logic multipliers, such as those increasingly being
used for machine learning applications. Compared to recent
published results, our area - using a FPGA 6LUT metric -
is up to 35% smaller. In addition, our logic depth is greatly
reduced, with 25% to 50% fewer levels. Our methodology
optimizes the Intel arithmetic soft logic structure, which
fractures to two bits per ALM. We also briefly analyse FPGA
routing density, with the goal of managing the number of
independent routes to a logic group. Although ternary ad-
dition is available on Intel devices, we specifically architect
our multipliers to use only binary adders, and try to limit
the average number of independent routes to a logic group
to near this level.

REFERENCES

[1] Intel Stratix 10 High-Performance Design Handbook, 2017,
https://www.altera.com/content/dam/altera-www/global/en
US/pdfs/literature/hb/stratix-10/s10 hp hb.pdf.

[2] UltraScale Architecture and Product Data Sheet: Overview,
2018, https://www.xilinx.com/support/documentation/data
sheets/ds890-ultrascale-overview.pdf.

[3] M. Langhammer and B. Pasca, “Floating-point DSP
block architecture for FPGAs,” in Proceedings of the
2015 ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays, ser. FPGA ’15. New York,
NY, USA: ACM, 2015, pp. 117–125. [Online]. Available:
http://doi.acm.org/10.1145/2684746.2689071

[4] Microsoft unveils Project Brainwave for real-time AI,
2017, https://www.microsoft.com/en-us/research/blog/
microsoft-unveils-project-brainwave/.

[5] UltraScale Architecture – DSP Slice. User Guide, 2017,
https://www.xilinx.com/support/documentation/user guides/
ug579-ultrascale-dsp.pdf.

[6] Arria10 Device Overview, 2014, http://www.altera.com/
literature/hb/arria-10/a10 overview.pdf.

[7] 7 Series DSP48E1 Slice User Guide, 2016,
https://www.xilinx.com/support/documentation/user guides/
ug479 7Series DSP48E1.pdf.

[8] CycloneV Device Handbook, 2015, https://www.altera.com/
content/dam/altera-www/global/en US/pdfs/literature/hb/
cyclone-v/cyclone5 handbook.pdf.

[9] Deep Learning with INT8 Optimization on Xilinx Devices,
2017, https://www.xilinx.com/support/documentation/white
papers/wp486-deep-learning-int8.pdf.

[10] M. Kumm, S. Abbas, and P. Zipf, “An efficient softcore
multiplier architecture for xilinx fpgas,” in 2015 IEEE 22nd
Symposium on Computer Arithmetic, June 2015, pp. 18–25.

[11] C. R. Baugh and B. A. Wooley, “A two’s complement
parallel array multiplication algorithm,” IEEE Transactions
on Computers, vol. C-22, no. 12, pp. 1045–1047, Dec 1973.

[12] A. D. Booth, “A signed binary multiplication technique,” The
Quarterly Journal of Mechanics and Applied Mathematics,
vol. 4, no. 2, pp. 236–240, 1951. [Online]. Available:
+http://dx.doi.org/10.1093/qjmam/4.2.236

[13] O. L. Macsorley, “High-speed arithmetic in binary comput-
ers,” Proceedings of the IRE, vol. 49, no. 1, pp. 67–91, Jan
1961.

[14] E. G. Walters, “Partial-product generation and addition for
multiplication in FPGAs with 6-input LUTs,” in 2014 48th
Asilomar Conference on Signals, Systems and Computers,
Nov 2014, pp. 1247–1251.

[15] ——, “Array multipliers for high throughput in xilinx
FPGAs with 6-input LUTs,” Computers, vol. 5, no. 4, 2016.

[Online]. Available: http://www.mdpi.com/2073-431X/5/4/20

8 25th IEEE Symbosium on Computer Arithmetic (ARITH 2018)


