
A Formally-Proved Algorithm to Compute the Correct Average of Decimal

Floating-Point Numbers

Sylvie Boldo∗†, Florian Faissole∗†, and Vincent Tourneur‡∗†
∗Inria

†LRI, CNRS & Univ. Paris-Sud, Université Paris-Saclay,

bâtiment 650, Université Paris-Sud, F-91405 Orsay Cedex, France
‡LRDE, EPITA, 14-16, rue Voltaire, F-94276 Le Kremlin-Bicêtre Cedex, France

Abstract—Some modern processors include decimal

floating-point units, with a conforming implementation

of the IEEE-754 2008 standard. Unfortunately, many al-

gorithms from the computer arithmetic literature are not

correct anymore when computations are done in radix 10.

This is in particular the case for the computation of the

average of two floating-point numbers. Several radix-2

algorithms are available, including one that provides the

correct rounding, but none hold in radix 10. This paper

presents a new radix-10 algorithm that computes the

correctly-rounded average. To guarantee a higher level

of confidence, we also provide a Coq formal proof of

our theorems, that takes gradual underflow into account.

Note that our formal proof was generalized to ensure this

algorithm is correct when computations are done with

any even radix.

1. Introduction

Floating-point (FP) computations are everywhere
in our lives. They are used in control software, used
to compute weather forecasts, and are a basic block
of many hybrid systems: embedded systems mixing
continuous, such as sensors results, and discrete, such
as clock-constrained computations. Computer arith-
metic [1], [2], is mostly known (if known at all) to
be inaccurate, as only a finite number of digits is
kept for the mantissa. On top of that, only a finite
number of digits is kept for the exponent. This creates
the underflow and overflow exceptions, that are often
dismissed. We are here mostly interested in handling
underflow.

Which numbers are available and how operations
behave on them was standardized in the IEEE-754
standard [3] of 1985, which was revised in 2008 [4].
This revision in particular includes radix-10 FP num-
bers and computations. Mainframes with decimal FP
units are now available. This leads to a new branch of
computer arithmetic dedicated to decimal arithmetic,
for developing both hardware and software.

The chosen example is very simple: how to com-
pute the average of two decimal FP numbers:

◦
(
x+ y

2

)
,

with ◦ being a rounding to nearest, for instance with
tie-breaking to even. This computation seems easy in
radix 2, but it is not that easy due to spurious overflow.
See Section 2 for references to radix-2 average algo-
rithms. This question of computing the average was
hardly studied in radix 10 before. The naive formula
(x+y)/2 is rather accurate, but does not always give
the correct result in radix 10, meaning the rounding to
nearest of the mathematical average (see also Section 3
for additional incorrect algorithms).

In order to have a high guarantee on this mathemat-
ical result, we will rely on formal methods. Floating-
point arithmetic has been formalized since 1989 in
order to formally prove hardware components or algo-
rithms [5], [6], [7]. We will use the Coq proof assis-
tant [8] and the Flocq library [9]. Flocq offers a multi-
radix and multi-precision formalization for various
floating- and fixed-point formats (including FP with
or without gradual underflow) with a comprehensive
library of theorems. Its usability and practicality have
been established against test-cases [10].

All the theorems stated in this article
correspond to Coq theorems available at:

https://www.lri.fr/∼sboldo/files/Average2n.v
Notations are as follows: ⊕ denotes the rounded
addition, � the rounded subtraction, and � the
rounded division. The significand of an FP number x
is denoted by Mx.

The outline of this article is as follows. Section 2
gives some references on previous works about com-
puting the average of binary FP numbers. Section 3
provides counter-examples to many simple algorithms,
demonstrating the need of a rather complex algorithm
described and proved in Section 4. The formal proof
and its iterations are described in Section 5. Section 6
concludes and gives a few perspectives.

73XXX-X-XXXXXXX-X-X/ARITH18/ c©2018 IEEE

2. Radix-2 Average Algorithms

How to compute the average of two FP numbers is
a problem known for decades. It has been thoroughly
studied by Sterbenz [11], among some examples called
“carefully written programs”.

This study is especially interesting as Sterbenz did
not fully give a correct program: he specified what it
is required to do, such as symmetry, gave hints about
how to circumvent overflow and advised scaling to
prevent underflow. The proposed algorithms are then

• (x ⊕ y) � 2, which is very accurate, but may
overflow when x and y share the same sign.

• (x � 2) ⊕ (y � 2) is also accurate, and may
underflow. Moreover, it requires an additional
operation.

• x⊕ ((y�x)� 2) is less accurate than the first
one, but it does not overflow if x and y have
the same sign.

A corresponding algorithm has been proved by
Boldo [12] to guarantee both the accuracy and Ster-
benz’s requirements. This gives a long program as a
full sign study is needed. Moreover, Boldo has pro-
posed another algorithm that computes the correctly-
rounded average of two binary64 FP numbers:

double average(double C, double x,
double y) {

if (C <= abs(x))
return x/2+y/2;

else
return (x+y)/2;

}

with a constant C that can be chosen between 2−967

and 2970. This program was formally proved to provide
the correct result even in case of underflow and to
never create spurious overflow [12].

A comparable algorithm is given by Goualard [13].
The problem is slightly different as he wants to com-
pute the midpoint of an interval, which does not
have the same meaning when exceptional values or
exceptional intervals are given as input. He also lists
several algorithms used in practice and their defects.
In addition to the previous ones, he cites:

• (x�(x�2))⊕(y�2), that is less accurate when
underflow happens, but behaves well with over-
flow.

• many other formulas using directed rounding
modes such as � (�(x/2) +�(y/2)), where
� denotes the rounding towards +∞. This for-
mula does not have the containment property:
the midpoint may be outside the input interval.

A last algorithm, namely x� (x� y)� 2, is given
by Kornerup et al. [14]. It is proved to provide the

correct rounding, but under strong hypotheses: either
0 ≤ y ≤ x ≤ 2y or 2y ≤ x ≤ y ≤ 0.

The collection of possible algorithms is therefore
large. Nevertheless, these simple algorithms without
any test do not compute the correct rounding when FP
computations are done in radix 10, as explained in the
next section.

3. Unsuccessful Radix-10 Average Algo-

rithms

As explained above, there are many basic formulas
which mathematically compute the average of two FP
numbers. We studied these straight-line formulas, but
we found counter-examples for each one. Therefore,
we had to create a more complex algorithm described
in Section 4. All counter-examples given in this part
use a radix-10 FP format with four significant digits.
They can easily be generalized to any higher precision.

3.1. Formulas based on (x⊕ y)� 2

The most naive formula is (x ⊕ y) � 2, which
provides a correct rounding in radix 2, provided that
no overflow occurs.

In radix 10, the result of the division of an FP
number by 2 is either correct (when the mantissa is
even) or a midpoint (when the mantissa is odd). The
tie-breaking rule of the rounding mode is therefore
used to choose the direction of the rounding in this
latest case. Using this fact, it is easy to build counter-
examples: if an FP number is negligible compared to
the other one in the addition and the division by 2
needs to be rounded, the result will be incorrect. For
instance, let x = 3001× 1010 and y = 1000× 10−10.
The rounded sum of x and y is equal to x because y
is too small, and the division of x by 2 needs the tie-
breaking rule to be rounded (x/2 = 1500.5 × 1010).
With a tie broken to even (here towards −∞), we get
(x ⊕ y) � 2 = 1500 × 1010. But since y is positive,
the exact value (x + y)/2 is slightly greater than the
midpoint 1500.5× 1010, so the rounding should have
been towards +∞ and should have produced the result
1501× 1010.

Let us try to improve this formula by replacing the
division by 2 by a multiplication by 5 followed by a
division by 10. Indeed, in radix 10 the division by 10
is always exact (except in case of underflow), since
we just have to reduce the exponent by 1. A formula
using this method may be (x ⊕ y) ⊗ 5 � 10. But the
previous counter-example still is problematic with this
formula, since the error comes from the addition (y is
absorbed in x). It seems that all straight-line algorithms
involving only x⊕ y will fail the same way.

74 25th IEEE Symbosium on Computer Arithmetic (ARITH 2018)

3.2. Formulas based on (x� 2)⊕ (y � 2)

In order to circumvent the x ⊕ y, we now try
another formula: (x � 2) ⊕ (y � 2). This algorithm
also works well in radix 2, except when underflow
occurs. Unfortunately, this algorithm does not avoid
the previous issue. If we consider the previous counter-
example x = 3001 × 1010 and y = 1000 × 10−10 of
Section 3.1, then x/2 is a midpoint and (x�2)⊕(y�2)
does not produce the correct rounding.

Let us assume we have an FMA operator avail-
able, it is now possible to get rid of one division
to have only two roundings: ◦(x × 0.5 + (y � 2)).
The division of y by 2 may be inexact, but the
other operations (division of x and addition) are done
without intermediate rounding, thanks to the FMA
operator. This means that the sign of y will impact the
rounding of x/2 in the previous counter-example. But
we can still find cases where the result is incorrect:
let x = 2001 × 1010 and y = 2001 × 108. We get
y� 2 = 1000× 108, the exact result of this division is
a midpoint which has been rounded. This value is then
added to x/2 = 1000.5×1010, and this gives the value
1010.5× 1010, which is rounded to 1010× 1010. The
expected result is the rounding of 1010.505 × 1010,
which is 1011× 1010.

Despite these cases where this formula gives a
wrong result, it is a basic block of our algorithm (see
Section 4). In addition to this block, we need a test in
order to apply this formula only when correct.

4. Algorithm for the Average of Decimal

FP Numbers

Now let us focus on our solution, presented in
Algorithm 1 and let us prove its correctness. We
consider for now radix-10 FP numbers with unbounded
exponent range, and a precision greater than 1. This
generic FP format is denoted by F. The proof with
gradual underflow is described later on in Section 5.
We also assume that an FMA is available, which is
common on processors with a decimal FP unit.

1 Function Average10(x, y)

2 (a, b) = TwoSum (x, y)
3 if ◦(a× 0.5− (a� 2)) = 0 then

4 return ◦(b× 0.5 + (a� 2))
5 else

6 return ◦(a× 0.5 + b)

Algorithm 1: Decimal Average Algorithm

The FMA operator is indeed used at Lines 3, 4,
and 6. This algorithm also relies on the TwoSum
operator [15], [16], which computes the sum (a in

the following formulas) of two FP numbers and
the rounding error (b). It is known that (a, b) =
TwoSum (x, y) =⇒ x + y = a + b, as the error
of an FP addition can always be exactly represented
with an FP number (and TwoSum exactly computes
it). The average of the input of TwoSum is then equal
to the average of its output. Since b is the rounding
error of a, we also have |b| ≤ ulp (a)

2 .
The average computed by the algorithm is then

the average between a and b (the output of TwoSum,
Line 2). Using the hypothesis given by the TwoSum
function, we prove that in both cases of the test at
Line 3, this algorithm computes the correctly rounded
average. This test checks whether a/2 is exactly rep-
resentable in the FP format F, by computing the sub-
traction between the exact value a/2 and the rounded
value a� 2.

Note that we suppose in this section that a is
positive, the generalization to negative values is done
by symmetry (see Section 5.3.2).

Let us detail the proof with first a few intermediate
lemmas.

Lemma 1. Let m = g+ 1
2×ulp (g) with g ∈ F, m > 0

and 0 < e ≤ ulp (g)
2 .

• m� e = g
• m⊕ e = succ (g)

Proof. The proof relies on the fact that m is the mid-
point between g and succ (g) and that e is positive and
small enough. This can be explained more easily by
looking at the respective values of the various variables
as shown in Figure 1.

This lemma does not hold when m is a negative
power of the radix. A similar lemma could be stated
without assuming that m > 0 but this special case has
to be removed or handled. For the sake of simplicity,
we preferred this limited version, and in the following
proof, we used this lemma only with m = a > 0.

Lemma 2 states the properties of an FP number
that cannot be exactly divided by 2:

Lemma 2. Let x ∈ F.

x/2 /∈ F =⇒ |Mx| ≥ 2× 10p−1 + 1 ∧ odd (Mx)

Proof. Let x ∈ F such as x/2 /∈ F.
Assume by contraposition that even (Mx), so

Mx

2 ∈ Z.
Let n = Mx

2 , x
2 = Mx

2 × 10Ex = n × 10Ex . We have
x ∈ F, so |Mx| < 10p, which implies |n| < 10p. We
can deduce x

2 ∈ F, because x
2 = n× 10Ex with:

n ∈ Z ∧ Ex ∈ Z ∧ |n| < 10p

Therefore, the first assumption even (Mx) was false,
because it contradicts x

2 /∈ F, so we have odd (Mx).

25th IEEE Symbosium on Computer Arithmetic (ARITH 2018) 75

Figure 1. Layout of the values of Lemma 1.

R

g− g = m� e succ (g) = m⊕ e
m

m+ em− e

Now, assume that |Mx| < 2× 10p−1.
We have odd (Mx), so even (Mx − 1) and Mx−1

2 ∈ Z.
Let n = 10 × Mx

2 , so x
2 = n × 10Ex−1. With the

equality Mx

2 = Mx−1
2 + 1

2 , we prove that n ∈ Z:

n = 10×
(
Mx − 1

2
+

1

2

)
= 10× Mx − 1

2
+ 5

Moreover, with the assumption |Mx| < 2× 10p−1, we
bound the value of n:

∣∣Mx

2

∣∣ < 10p−1, so |n| < 10p.
So x

2 ∈ F, because x
2 = n× 10Ex−1 with:

n ∈ Z ∧ Ex − 1 ∈ Z ∧ |n| < 10p

Again, by contradiction, the assumption
|Mx| < 2× 10p−1 is false, so |Mx| ≥ 2× 10p−1.

We have odd (Mx) ∧ |Mx| ≥ 2 × 10p−1, but
even (2× 10p−1), so |Mx| > 2 × 10p−1, and finally,
odd (Mx) ∧ |Mx| ≥ 2× 10p−1 + 1

Let us now state the main theorem (nearly) stating
the correctness of Algorithm 1.

Theorem 1. Let a ∈ F and b ∈ F such that

|b| ≤ 1
2 × ulp (a) and a > 0:

• If a
2 ∈ F:

◦
(
a+ b

2

)
= ◦(b× 0.5 + a� 2)

• If a
2 /∈ F:

◦
(
a+ b

2

)
= ◦(a× 0.5 + b)

Proof. Let a ∈ F and b ∈ F such that |b| ≤ 1
2×ulp (a)

and a > 0.

• When b = 0:

◦
(a
2
+ b

)
= ◦

(
a

2
+

b

2

)
= ◦

(a
2

)

So we can assume that b �= 0 in the following
of the proof.

• First case: a
2 ∈ F

◦ (b× 0, 5 + a� 2) = ◦
(
b

2
+

a

2

)
= ◦

(
a+ b

2

)

• Second case: a
2 /∈ F

With the equality Ma

2 = Ma−1
2 + 1

2 , we have
a
2 =

(
Ma−1

2 + 1
2

)
× 10Ea .

According to Lemma 2, we have odd (Ma), so
even (Ma − 1), and Ma−1

2 ∈ Z.
This lemma also tells |Ma| ≥ 2 × 10p−1 + 1,
so:

2× 10p−1 + 1 ≤ |Ma| < 10p

=⇒ 2× 10p−1 ≤ |Ma − 1| < 10p + 1

=⇒ 10p−1 ≤
∣∣∣∣Ma − 1

2

∣∣∣∣ < 10p + 1

2

=⇒ 10p−1 ≤
∣∣∣∣Ma − 1

2

∣∣∣∣ < 10p

Let c = Ma−1
2 × 10Ea , c ∈ F because:

Ma − 1

2
∈ Z ∧ Ea ∈ Z ∧

∣∣∣∣Ma − 1

2

∣∣∣∣ < 10p

We also have ulp (a) = ulp (c) because Ea =
Ec, 10p−1 ≤ Ma < 10p, and 10p−1 ≤ Mc <
10p.
We can rewrite a

2 as:

a

2
= c+

1

2
× 10Ea = c+

1

2
× ulp (c)

– If b > 0, we have: 0 < b ≤ 1
2 ×ulp (a).

So 0 < b
2 ≤ 1

2 × ulp (a). Therefore,
according to Lemma 1:

◦
(a
2
+ b

)
= ◦

(
a

2
+

b

2

)
= succ (c)

– If b < 0, we have: 0 < −b ≤ 1
2 ×

ulp (a). So 0 < − b
2 ≤ 1

2 × ulp (a).
Therefore, with Lemma 1 again:

◦
(a
2
− (−b)

)
= ◦

(
a

2
−
(
− b

2

))
= c

76 25th IEEE Symbosium on Computer Arithmetic (ARITH 2018)

So, in every case, we have:

◦
(a
2
+ b

)
= ◦

(
a

2
+

b

2

)

There is left to prove that the test ◦(a×0.5− (a�
2)) = 0 corresponds to a/2 ∈ F. This is indeed the
case with an unbounded exponent range as both are
equivalent to a/2 = a� 2.

Note that, at Line 6 of the algorithm, b is not
divided by 2. In practice, we are only interested in
the sign of b. Therefore, we may use either b or b� 2.
We choose to use b for two reasons. First, it saves
an FP operation. Second, when considering gradual
underflow, it becomes crucial as a small b may lead to
have b� 2 = 0 and to lose the sign information.

5. Formal Proof

All lemmas and theorem of Section 4 have been
formally proved using the Coq proof assistant [8]. Coq
comes with both a specification language and a tactic
language to perform proofs in an interactive way.

This section is organized as follows. Section 5.1
presents the Flocq library and its formalization of
FP numbers. To fully explain our main theorem,
Section 5.2 presents the formalized algorithm: this
is straightforward as it only requires knowledge of
Flocq’s notations to define FP algorithms in a given
rounding mode. Section 5.3 emphasizes on the several
generalizations of our algorithm proof and how the
proof assistant has helped us to generalize the correct-
ness proof of the algorithm in several ways.

5.1. Overview of the Flocq library

We use Flocq, a library of FP arithmetic written
in Coq, that contains most basic technical results we
needed to achieve our formal proofs [9], [10].

Flocq provides an abstract representation of FP
numbers. FP numbers in a given format (such as
binary32 or decimal64) are just a subset of real num-
bers R. FP formats are intended to characterize num-
bers of the form m·βe (with m and e integers). Several
formats are available, such as fixed-point and floating-
point formats. The radix will here always be 10.

The two formats we use are FLX and FLT. The
FLX format corresponds to FP numbers with un-
bounded exponents. It depends on the precision p and
requires |m| < βp. The FLT format takes gradual
underflow into account. It therefore depends on both
the precision p and the minimal exponent emin. It
requires both |m| < βp and e ≥ emin.

Given a format, the common rounding modes are
formally defined (such as towards +∞ or towards

zero). Rounding to nearest is more interesting: the
IEEE-754 roundings to nearest, with tie-breaking to
even or away from zero are available, but a generic
rounding to nearest is also available. More precisely,
we have a rounding to nearest, which rounds to the
nearest FP number when unique, and chooses depend-
ing on a tie-breaking rule denote by τ when on a
midpoint. This allows us to do a single proof for
both IEEE-754 roundings to nearest, but also for all
rounding to nearest with any tie-breaking-rule (tie-
breaking to odd, tie-breaking towards zero, or any
combination). See also Section 5.3.2.

5.2. Formalization of the algorithm

In the second line of the average Algorithm 1, a
TwoSum is called to transform the inputs. Although
there is an existing formalization of the TwoSum algo-
rithm in Coq, we are not interested here in relating it to
our formalization. Indeed, the TwoSum algorithm has
been formalized in radix 2 in PFF, another Coq library
of FP numbers [17]. Hence, integrate TwoSum in our
development would require to write a radix-10 Flocq
version of the algorithm. It raises the general question
of interoperability between Coq libraries, known to be
difficult to handle.

Actually, we know that the inputs of our algorithm
are outputs of a TwoSum. The only thing we need to
assume is that the absolute value of the second input
is less than or equal to half of the ulp of the first
one (i.e. Rabs y <= ulp x / 2). As explained
in Section 4, this hypothesis is crucial to prove that
our algorithm provides a correctly-rounded result.

In Coq, we define the Algorithm 1 as:

Definition average10 (x y : R) :=
if (Req_bool

(round (x/2 - round (x/2))) 0)
then round (y/2 + round (x/2))
else round (x/2 + y).

Note that Req_bool u v is a predicate which
returns true if u is equal to v and false otherwise. Our
aim is to prove that this algorithm provides a correctly-
rounded result, which corresponds to the following
theorem (format x means that x ∈ F in the given
format):

Theorem average10_correct :
forall x y, format x → format y →
Rabs y <= ulp x / 2 →
average10 x y = round ((x+y)/2).

We define format and round depending on the
chosen format. We have first proved this theorem in the
FLX format (meaning with an infinite exponent range)
assuming the precision is greater than 1. We have also
proved that it holds with gradual underflow (the FLT
format), see Section 5.3.1.

25th IEEE Symbosium on Computer Arithmetic (ARITH 2018) 77

5.3. Generalization of the results

On the one hand, proof assistants could be difficult
to use as every detail must be justified. On the other
hand, they may assist the user with the generalization
of results: removing hypotheses for instance. We pro-
vide in this section three different generalizations of
the correctness proof of our average algorithm.

5.3.1. Gradual underflow. The first generalization
is underflow’s handling. The formal proof has first
been done in the Flocq’s FLX format (FP numbers
with unbounded exponents). While trying to perform
the reasoning with the FLT format (taking gradual
underflow into account), we had to patch the Coq
proofs to show how the algorithm remains correct with
gradual underflow. We distinguished two cases:

• if b = 0, then a might be a subnormal number.
In the FLX format, a �= 0 ⇒ o(a) �= 0, which
is not necessarily true in the FLT format when
a is subnormal. Hence, the test we make in
Line 3 of Algorithm 1 does not check whether
a/2 is exactly representable in the FLT format.
Nevertheless, as b = 0, it does not matter
which executed branch is taken. The returned
value is indeed correctly-rounded in both cases.

• if b �= 0, as |b| ≤ ulp (a)
2 , a is necessarily

greater than or equal to 10p+emin and hence
both a, a/2, and a�2 are normal FP numbers.
As a consequence, the test we make at Line 3
of Algorithm 1 really checks whether a/2 is
exactly representable and the previous proof
holds.
Moreover, when b is subnormal, its sign may
be lost when computing b/2 (when b =
succ (0)). However, as explained in Section 4,
as b is not divided by 2 at Line 6 of Algo-
rithm 1, we avoid this problem.

5.3.2. Symmetry. We consider a generic tie-breaking
rule τ . We proved that, for all τ , if we compute with
this tie-breaking rule, then the result is the correctly-
rounded average with the same tie-breaking rule. We
assumed until then that a > 0. We of course want to
generalize this to any a.

Given a tie-breaking rule τ , if we consider the
function that associates to x the value −◦τ (−x), it is
a rounding to nearest with another tie-breaking rule,
that we denote τ̃ . For the IEEE-754 tie-breaking rules,
this is useless as both are symmetric.

With a negative a, the application of the theorem
to −a, −b and τ̃ proves that average10τ̃ (−a,−b) =
◦τ̃ ((a+b)/2). By easy manipulations and the definition
of τ̃ , we get average10τ (a, b) = ◦τ ((x + y)/2) for a
negative a. When a = 0, we easily prove that b = 0
and we compute the correct 0.

5.3.3. Even radix. At last, we formally proved that
Algorithm 1 remains correct for any even radix β. It
is possible to put the radix as a parameter of the proof
environment and then to replay the formal proofs to see
where it breaks. As we never use specific properties
of 10 apart from its parity, most pieces of the proofs
remain the same. Nonetheless, we had to handle rather
simple proof goals about integer arithmetic that were
automatically done by Coq for β = 10.

6. Conclusion and Perspectives

Correctly rounded algorithms to compute the av-
erage of two FP numbers exist in radix-2 arithmetic.
Unfortunately, they are not correct in radix-10 arith-
metic. In this paper, we have shown that various
naive possibilities are unsuccessful and do not return
a correctly-rounded average. Then, we have provided
and proved an algorithm averaging two decimal FP
numbers with correct rounding. Our algorithm may
seem costly compared to straight-line formulas, due
to the 6 flops of the TwoSum algorithm. However,
it is quite short, easy to understand and correct for
any precision p ≥ 2. Even if its correctness proof
is rather technical, it is quite readable. Furthermore,
the algorithm remains correctly-rounded if we take
gradual underflow into account. A surprising point is
that the structure of the proof stays the same and that
the modifications were minor.

Moreover, our algorithm still works for any even
radix. The algorithm provided by Boldo [12] for the
radix-2 case exploits the fact that there is a division by
2 in the average computation. We think it is possible
to provide a similar correct algorithm to compute x+y

10

in radix-10 arithmetic, or more generally x+y
β with an

even radix β. In contrast, we compute the average of
two FP numbers without exploiting specific properties
of 10 (apart from its parity). That is why our algorithm
can be generalized to any even radix β.

In addition, we have formalized the algorithm in
the Coq proof assistant. A comprehensive proof of its
correctness has been provided in order to increase the
confidence in our results. We first proved its correct-
ness using the FLX format of Flocq, which assumes
the exponents are unbounded. Then, it has been easy
to adapt the proofs using the FLT format, in which
gradual underflow is taken into account. Furthermore,
the correctness of the algorithm has been formally
proved for any even radix. The formalization and the
proof consist in about 700 lines of Coq code, which
is rather concise and comparable in magnitude with
the formal proof provided by Boldo for binary FP
arithmetic.

A first perspective is overflow’s handling. Provided
that the TwoSum algorithm returns finite FP numbers,
our algorithm does not overflow. However, a difficulty

78 25th IEEE Symbosium on Computer Arithmetic (ARITH 2018)

arises from the possible occurrence of spurious over-
flow in the TwoSum algorithm [18], and even more
spurious in our case as (a+ b)/2 may be finite when
a ⊕ b is not. Nevertheless, overflow is easy to check
a posteriori. Indeed, if TwoSum returns at least one
special FP number (NaN, +∞ or −∞), our average
algorithm returns either NaN or an infinity.

Another possible perspective is the generaliza-
tion of the algorithm to compute the average
X1+X2+···+Xn

n of n decimal FP numbers X1, X2,
. . . , Xn. It is a more difficult problem and it is even
not always possible to compute a correctly rounded
summation of n FP numbers for n > 3 [14], except
for the use of a long accumulator [19].

The raise of decimal FP arithmetic creates the need
for certifying decimal FP programs. In the case of our
decimal average, we could have written a C program,
but we could not have formally certified it. There are
available tools to formally verify C programs, such as
Frama-C and Why3 [20], [21] that were used for the
radix-2 average algorithm [12]. However, they do not
support decimal arithmetic. There is support neither in
the annotation language, nor in the various translations
and computations of the tools to handle decimal FP
numbers and operations. If we choose to stay within
Coq, the Flocq library offers support for vectors of
bits for binary FP numbers (so that overflow and
exceptional values may be taken into account), but not
for decimal numbers. This can be developed, but it is a
cumbersome unrewarding task, that probably requires
critical decimal applications to be completed.

Acknowledgment

This research was partially supported by
Labex DigiCosme (project ANR-11-LABEX-
0045-DIGICOSME) operated by ANR as part of the
program “Investissement d’Avenir” Idex Paris-Saclay
and by FastRelax ANR-14-CE25-0018-01.

References

[1] D. Goldberg, “What every computer scientist should know
about floating-point arithmetic,” ACM Comput. Surv., vol. 23,
no. 1, pp. 5–48, Mar. 1991. [Online]. Available: http:
//doi.acm.org/10.1145/103162.103163

[2] J.-M. Muller, N. Brisebarre, F. de Dinechin, C.-P. Jeannerod,
V. Lefèvre, G. Melquiond, N. Revol, D. Stehlé, and S. Torres,
Handbook of Floating-Point Arithmetic. Birkhäuser, 2010.

[3] “IEEE standard for binary floating-point arithmetic,” AN-

SI/IEEE Std 754-1985, 1985.

[4] “IEEE standard for floating-point arithmetic,” IEEE Std 754-

2008, Aug 2008.

[5] V. A. Carreño and P. S. Miner, “Specification of the IEEE-
854 floating-point standard in HOL and PVS,” in HOL95:

8th International Workshop on Higher-Order Logic Theorem

Proving and Its Applications, Aspen Grove, UT, Sep. 1995.

[6] D. M. Russinoff, “A mechanically checked proof of IEEE com-
pliance of the floating point multiplication, division and square
root algorithms of the AMD-K7 processor,” LMS Journal of

Computation and Mathematics, vol. 1, pp. 148–200, 1998.

[7] J. Harrison, “Formal verification of floating point trigonometric
functions,” in Proceedings of the Third International Confer-

ence on Formal Methods in Computer-Aided Design, Austin,
Texas, 2000, pp. 217–233.

[8] The Coq Development Team, The Coq Proof Assistant Refer-

ence Manual v8.6, 2016.

[9] S. Boldo and G. Melquiond, “Flocq: A unified library for prov-
ing floating-point algorithms in Coq,” in 20th IEEE Symposium

on Computer Arithmetic, E. Antelo, D. Hough, and P. Ienne,
Eds., Tübingen, Germany, 2011, pp. 243–252.

[10] ——, Computer Arithmetic and Formal Proofs. ISTE Press
- Elsevier, Dec. 2017.

[11] P. H. Sterbenz, Floating point computation. Prentice Hall,
1974.

[12] S. Boldo, “Formal Verification of Programs Computing the
Floating-Point Average,” in 17th International Conference

on Formal Engineering Methods, ser. Lecture Notes in
Computer Science, M. Butler, S. Conchon, and F. Zaı̈di,
Eds., vol. 9407. Paris, France: Springer International
Publishing, Nov. 2015, pp. 17–32. [Online]. Available:
https://hal.inria.fr/hal-01174892

[13] F. Goualard, “How do you compute the midpoint of
an interval?” ACM Trans. Math. Softw., vol. 40, no. 2,
pp. 11:1–11:25, Mar. 2014. [Online]. Available: http:
//doi.acm.org/10.1145/2493882

[14] P. Kornerup, V. Lefevre, N. Louvet, and J.-M. Muller, “On the
computation of correctly rounded sums,” IEEE Transactions

on Computers, vol. 61, no. 3, pp. 289–298, March 2012.

[15] T. J. Dekker, “A floating-point technique for extending the
available precision,” Numerische Mathematik, vol. 18, no. 3,
pp. 224–242, 1971.

[16] D. E. Knuth, The Art of Computer Programming, 3rd ed.
Reading, MA, USA: Addison-Wesley, 1998, vol. 2.

[17] M. Daumas, L. Rideau, and L. Thery, “A Generic Library
for Floating-Point Numbers and Its Application to Exact
Computing,” in Theorem Proving in Higher Order Logics,
ser. Lecture Notes in Computer Science. Edinburgh,
United Kingdom: Springer Berlin / Heidelberg, 2001, pp.
169–184. [Online]. Available: https://hal.archives-ouvertes.fr/
hal-00157285

[18] S. Boldo, S. Graillat, and J.-M. Muller, “On the robustness
of the 2Sum and Fast2Sum algorithms,” ACM Transactions

on Mathematical Software, vol. 44, no. 1, Jul. 2017.
[Online]. Available: https://hal-ens-lyon.archives-ouvertes.fr/
ensl-01310023

[19] U. W. Kulisch, Advanced arithmetic for the digital computer

- design of arithmetic units. Springer, 2002.

[20] S. Boldo and J.-C. Filliâtre, “Formal verification of floating-
point programs,” in Proceedings of the 18th IEEE Symposium

on Computer Arithmetic, P. Kornerup and J.-M. Muller,
Eds., Montpellier, France, Jun. 2007, pp. 187–194. [Online].
Available: http://www.lri.fr/∼filliatr/ftp/publis/caduceus-floats.
pdf

[21] S. Boldo, “Deductive formal verification: How to make
your floating-point programs behave,” Thèse d’habilitation,
Université Paris-Sud, Oct. 2014. [Online]. Available: http:
//www.lri.fr/∼sboldo/files/hdr.pdf

25th IEEE Symbosium on Computer Arithmetic (ARITH 2018) 79

