Radix-64 Floating-Point Divider

Javier D. Bruguera
ARM Austin Design Center
Email: javier.bruguera@arm.com

Abstract—Digit-recurrence division is widely used in actual
high-performance microprocessors because it presents a good
trade-off in terms of performance, area and power. consumption.
In this paper we present a radix-64 divider, providing 6 bits
per cycle. To have an affordable implementation, each iteration
is composed of three radix-4 iterations; speculation is used
between consecutive radix-4 iterations to get a reduced timing.
The result is a fast, low-latency floating-point divider, requiring
11, 6, and 4 cycles for double-precision, single-precision and
half-precision floating-point division with normalized operands
and result. One or two additional cycles are needed in case of
subnormal operand(s) or result.

I. INTRODUCTION

Division is one of the most representative floating-point
functions in modern processors. There exist two main families
of algorithms for calculating division in hardware [3]: digit-
recurrence algorithms, which have linear convergence and are
based on subtraction, and multiplicative algorithms, based on
multiplication and with quadratic convergence. The energy
efficiency of both approaches has been recently analyzed and
the conclusion is that the digit-recurrence approach is much
more energy efficiency [7] and requires less area.

In addition, for the floating-point precisions of interest,
double, single and half-precision, digit-recurrence methods are
much faster. Multiplicative methods rely on several iterations
of a multiply-add fused (MAF) operation, and the latency of a
single MAF is between 3 and 6 cycles [5], [9], [11]. In some
cases, this is the latency of our proposed divider for single-
precision.

In this paper a radix-64 digit-recurrence divider is described.
It is hard to get an energy and timing efficient radix-64
implementation; then, three radix-4 iterations are overlapped
in a single cycle providing 6 bits of the quotient per cycle,
which is equivalent to a radix-64 iteration. In order to reduce
the timing, speculation is used between consecutive radix-4
iterations in the cycle. The divider has been implemented in a
processor with a frequency of 3 GH z.

Probably, the most critical point in digit-recurrence division
is the quotient-digit selection. Every iteration, a digit of
the quotient is obtained. To have a simple radix-4 selection
function, independent of the divisor, the divisor needs to be
scaled to value close enough to 1 [2]. This scaling is carried
out before the digit iterations.

In addition, the first iteration, which gives the integer digit
of the divider, with value +1 or +2, is carried out in parallel
with the operands scaling, contributing to save one cycle in
single-precision.

XXX-X-XXXXXXX-X-X/ARITH18/©)2018 IEEE

The result is a low-latency divider with 11, 6, and 4
cycles latency for double-precision, single-precision and half-
precision, respectively, when the input operands and the re-
sult are normalized. These latencies include the scaling and
rounding cycles. In case of subnormal operands, one or two
additional normalization cycles are needed. Similarly, in case
of subnormal result a second rounding cycle is needed.

The rest of the paper is organized as follows: In section
IT the main features of the proposed divider are outlined.
Section III is a brief description of the foundations of digit-
recurrence division. In section IV the detailed implementation
of the divider is described. Finally, in Section V the divider
is compared with other implementations in actual processors,
and in Section VI the main conclusions are presented.

II. MAIN FEATURES

The divider performs the floating-point division of a divi-
dend, z, and a divisor, d, to obtain a quotient, ¢ = x/d. The
two operands need to be normalized, z,d € [1,2), although
subnormal operands are accepted; in this case, the subnormal
operands are normalized before the digit iterations.

If the two operands are normalized in [1, 2), the result is in
[0.5,2); this way two bits to the right of the least—significant
bit (LSB) of the quotient are needed for rounding, the guard
and the round bits. The guard bits is used for rounding when
the result is normalized, ¢ € [1,2), whereas the round bit
is used for rounding when the result is not normalized, g €
[0.5,1). In this latter case, the results is left-shifted by 1 bit,
and the guard and round bits become the LSB and the guard
bit, respectively, of the normalized result.

However, to simplify the rounding, the result is forced to be
in ¢ € [1,2). Note that ¢ < 1 only if x < d. This situation is
detected in an early stage and the dividend if left-shifted by 1
bit in such a way that ¢ = 2 x z/d and ¢ € [1,2). Of course,
the mantissa is the same as in /d but the exponent needs to
be decremented.

The algorithm used for the division is the radix-4 digit-
recurrence algorithm with three iterations per cycle, with
a signed-digit representation of the quotient with digit set
{=2,-1,0,+41,+42}; that is, being » = 4, a = 2, the radix
and the digit set respectively.

Each iteration, a digit of the quotient is obtained by means
of a selection function. In order to have a quotient-digit
selection function independent of the divisor, the divisor has
to be scaled close to 1. Of course, to preserve the result the
dividend needs to be scaled by the same amount than the
divisor.

87

With the radix-4 algorithm, 2 bits of the quotient are ob-
tained every iteration. As three radix-4 iterations are performed
per clock cycle, 6 bits of the quotient are obtained every cycle,
which is equivalent to a radix-64 divider.

In addition, note that the first quotient digit, which is the
integer digit of the result, can take only values {+1,+2},
and its calculation is much simpler than the calculation of
the remaining digits. Then, it is obtained in parallel with the
operand prescaling, saving one additional iteration in single-
precision.

On the other hand, there is an early-termination mode for
exceptional operands. The early termination occurs when any
of the operand are NaN, infinity, or zero, or in case of a
division by a power of 2 with both operands normalized. In
the latter case, the result is obtained by merely decrementing
the exponent of the dividend.

In summary, the main features of the radix-64 divider are
the following:

o Prescaling of divisor and dividend

« First quotient digit (integer digit) obtained in parallel with

the operands prescaling

o Comparison of the scaled dividend and divisor and left

shift of the dividend to have the result in [1, 2)

o Three radix-4 iterations per cycle, giving 6 bits per cycle

o Half, single and double-precision

o Subnormal support, with normalization cycles before the

iterations

o Early termination for exceptional operands

III. DIGIT-RECURRENCE DIVISION

Digit-recurrence division is an iterative algorithm which
computes a radix-r quotient digit ¢;41 and a remainder every
iteration. The remainder reml[i| is used to obtain the next
radix-r digit. For a fast iteration, the remainder is kept in
carry-save of signed—digit redundant representation. In our
implementation, we have chosen a radix-2 signed—digit rep-
resentation for the remainder, with a positive and a negative
word.

Particularizing to radix-4, r = 4, the partial quotient before
iteration ¢ is defined as

Qlil =Y ¢ x4~ (1)
j=0

and the radix-4 algorithm, considering a scaled divisor close
to 1, is described by the following equations,

it1 SEL(remli]) 2
remli+1] = 4 xremli] —d X g1 3)

being rem[i] an estimation of the remainder rem|[i] with a
few bits. For this implementation, it has been determined that
only the 6 most-significant bits (MSB) of the remainder are
required, three integer bits and three fractional bits [3].

Then, every iteration a quotient—digit is obtained from the
current remainder, and a new remainder is computed for the
next iteration. Then, the number of iterations is

it = [/ logy(4)] o)

being n the number of bits of the result, including the bits
required for rounding.

The latency of the division, the number of cycles, is directly
related to the number of iterations. It depends also on the
number of iterations performed per cycle. Three iterations per
cycle has been implemented to obtain 6 bits per cycle, which
is equivalent to a radix-64 division. Then, the latency for a
normal division is

cycles = [it/3] + 2 ®)

Apart from the cycles needed for the iterations, [it/3], there
are two additional cycles for operand prescaling and rounding.

Some examples of digit-recurrence division, including
radix-4, can be found in [1][3].

The naive implementation is shown in Figure 1. Note that
only the most-significant bits of the remainder are used to
select the quotient digit. The remainder is updated using carry-
save adders (CSA) and stored in redundant representation.
Then, the quotient digit selection needs the ¢ most-significant
bits of the remainder to be added in a carry-propagated adder
(CPA) to get its non-redundant representation.

However, this naive implementation is too slow; to speed
up the cycle, speculation in remainder calculation and quotient
digit selection between iterations has been used, as explained
in the following section.

IV. ARCHITECTURE

The divider is composed of three parts: prescaling logic,
digit-recurrence logic, and rounding logic. The prescaling and
rounding take one cycle each, whereas the digit-recurrence
logic, because of the iterative nature of the digit-recurrence
algorithms, is reused during several consecutive cycles. In
the following subsections the prescaling and digit logic are
described. Rounding can be the standard digit-recurrence
division rounding.

In addition, to reduce the latency by 1 cycle in single-
precision, the first quotient digit, the integer digit which can
take values +1 or 42 only, is calculated in parallel with the
prescaling.

The number of bits n to be obtained in the iterations
include the integer bit, the fractional bits, and the guard bit
for rounding. If the integer digit is obtained in the operands
prescaling cycle, the number of bits n is decremented by one.
Then, for practical floating-point formats, the number of bits
n, the number of iterations, and the number of cycles (see
equations (4) and (5)) are:

o Double precision (n = 53): it = 27, cycles = 11

« Single precision (n = 24): it = 12, cycles = 6

o Half precision (n = 11): it = 6, cycles = 4
Note that in addition to the digit cycles, the latencies include
the prescaling and rounding cycles.

Note that, due to the fact that the first quotient digit is
calculated in parallel with the pre-scaling, in single precision
the number of bits has been reduced from 25 to 24, and with
n = 25 the number of iterations would be it = 13, and the

88 25" IEEE Symbosium on Computer Arithmetic (ARITH 2018)

t MSBs of .
s remi]
4 x rem[i]
m m
2d -d 0 d 2d
SELECT
. MUX
qli+1]
A 4
‘ CSA ‘
< [
2 rem[i+1]
Lt Msb's
m m
-2d -d 0 d 2d
qli+2]
rem[i+2]

reml[i+3]

Fig. 1. Naive implementation of a radix-64 divider with three radix-4
iterations per cycle

number of cycles cycles = 7. Therefore, the latency has been
reduced by 1 cycle.

A. Operand Prescaling and Integer Digit Calculation

During the prescaling, the divisor is scaled to a value close
to 1 so that the quotient digit selection is independent of
the divisor. It has been determined that, for a radix-4 digit
recurrence, it is enough to have the scaled divisor in the range
[1—-1/64,1+1/8] [2].

The divisor is multiplied by a scaling factor M =1+ b x
273, with 0 < b < 8, and b = T, this scaling factor depends
only on the value of the divisor. As shown in Table I, only

TABLE I
DETERMINATION OF THE PRESCALING FACTOR

0.1x12223 M
000 1+1/2+1/2
001 1+1/4+1/2
010 1+1/2+1/8
011 1+1/2+0
100 1+1/4+1/8
101 1+1/4+0
110 1+0+1/8
111 1+0+1/8

three bits of the divisor need to checked to get M. Note that
for the prescaling, the divisor is supposed to be in [0.5, 1). The
prescaling has been implemented as the addition of the divisor
plus 2 (or 1) multiples of the divisor [2]. The dividend has to
be prescaled by the same amount to get the correct result.

The block diagram of this cycle is shown in Figure 2. During
this cycle, in addition to the operands prescaling, the first
iteration is carried out:

1) The operands are scaled. As part of the scaling, redun-
dant carry-save representations of divisor and dividend
are obtained.

2) The redundant prescaled divisor and dividend are as-
similated to a non-redundant representation to get the
remainder after the first iteration. The non-redundant
divisor is used in the digit iterations as well.

3) The operands are compared and the dividend is left-
shifted by 1 bit if x < d. To save time, the comparison
is carried out in parallel with the prescaling.

In parallel with the operands’ redundant to non-redundant
conversion, the integer digit of the quotient is obtained as well.
This is a simplified digit quotient calculation, because as the
quotient is positive and in [1,2), the integer radix-4 digit can
only take values ¢ = +1, or ¢ = +2. A simplified radix-4
iteration is performed to obtain the integer digit of the quotient.
The integer digit calculation is replicated for x < d and for
x > d, obtaining two quotient digit candidates, for dividend
larger than divisor and for dividend smaller than divisor. The
result of the comparison selects the correct digit and next
remainder. Note that the difference between both cases is that
the dividend is 1-bit left-shifted if the divisor is larger than
the dividend.

The next remainder, rem[1], (see equation (3)) is obtained
from the non-redundant scaled dividend (positive word of
the remainder) and the non-redundant scaled divisor (negative
word of the remainder), shifted 1 bit to the left if the quotient
digit is +2 and not-shifted if the quotient digit is +1.

B. Digit Iteration

The actual implementation of the floating-point divider per-
forms three radix-4 iterations per cycle. So, the logic has been
optimized taking this fact into account. Figure 3 shows the
block diagram of a digit-iteration cycle; that is the computation
of three radix-4 iterations. Note that, the implementation in

25" IEEE Symbosium on Computer Arithmetic (ARITH 2018) 89

divisor dividend
divisor dividend
l i 1 2 3 1 1 2 3 1
- > - -+ > - >
‘ MUX ‘ ‘ MUX ‘ ‘ MUX ‘ ‘ MUX
CSA CSA
redundant redundant
SUB scaled 1 1 . T scaled
divisor *; *VF v $ v v dividend
quotient digit quotient digit
selection selection
d‘iv‘isor> MUX
i ADD dividend ADD
divisor >
dividend
divisor >
dividend
° 1 s scaled
g v < dvidend

'ﬂ MUX ‘ MUX

\ v l i

scaled divisor a1 rem[1]

Fig. 2. Prescaling and integer quotient-digit calculation

Figure 3 is split into two parts, (1) digit selection and, (2)
remainder calculation.

The remainders are computed speculatively according equa-
tion (3). So, five remainders are computed every iteration, one
remainder for each value of the quotient digit, and the correct
remainder is selected when the digit has been obtained. Note
that, the remainder has to be left-shifted by two bits as part
of the computation of the next remainder.

The quotient-digit selection uses an estimation of the re-
mainder to obtain the next quotient digit (equation (2)). As
said in Section III, it has been determined that only the 6
most-significant bits (MSB) of the remainder are required,
three integer bits and three fractional bits. The quotient digit
selection function is shown in Table II(a). The intervals
4 x rem|i] for the selection of every digit has been obtained
following the methodology described in [3].

To select digits ¢; 42 and g;13 the 9 MSBs of the specu-
lative rem[i 4+ 1] are assimilated. Note that, the 9 MSBs are
assimilated because although the selection function for g;12
only needs the 6 MSBs, 2 additional bits are required for the

90

selection of ¢; 13 because of the 2-bit left-shift of rem/[i + 2],
and another additional bit is used to catch the carry into the
least-significant position of the 8 bits.

Digit g;41 selects the 9 MSBs, among the 5 speculatively
calculated MSBs, that are going to be used in the selection of
¢i+2. Note that only 6 bits are used in the selection.

The 6 MSBs so obtained may be different to the 6 MSB
obtained directly from rem/|i+ 1], because the +1 to complete
the 2’s complement of the sum word, in the assimilation of
reml[i + 1], is added at a different position. In the actual
implementation in Figure 3, it is added at the position of the
8th MSB whereas, in case of being obtained directly from
rem|i+ 1], it would be added at the position of the 6th MSB.
Consequently, the carry into the 6th MSB can be different.
This difference makes the end-points of the intervals in Table
II(a) get a wrong selection when the carry into the 6th MSB
bit is zero. This is corrected with the selection function shown
in Table II(b). Note that the selection of the interval end-points
depends on the carry into the 6th MSB (carry column in the
table) .

25" IEEE Symbosium on Computer Arithmetic (ARITH 2018)

6 MSBs of

|
4 x rem[i] '
6 6 | OMSBs | [OMSBs | [OMSBs | [OMSBs| [9MSBs | '
! aftera ‘ ! aftera ‘ ! aftera ‘ ! aftera ‘ aftera | :
cbapp ||| 20left | 2bleft | obleft | | 2bleft | | 2bleft | |
| shift 1 | shift | | shift | | shift ! shift :\\I
. of O L% o o o
o o o o o
‘ SELECT ‘ ‘ 9b ADD P ‘ 9b ADD P ‘ 9b ADD P ‘ 9b ADD P ‘ 9b ADD P I
|
9)(ok o) 9)(|
. » I
alit1 b |
alitt] S |
‘ 7MSBs |
6 MSBs & of -qd | rem(i+1]
I Iy |
'y A A A= —mmmmme A < <
~=2d -d 0 d 2d > | g 2 2
D N S T B I -2d - 2d
6 27 «? 747 «? | i I . |
7 7 7 I
1 1 1 1 1 | v v v
‘ SELECT ‘ ‘ 7b ADD P ‘ 7b ADD P ‘ 7b ADD F ‘ 7b ADD F ‘ 7b ADD F | ‘ CSA ‘ ‘ CSA coe CSA
| 4remli+1]-qd
- 6 6 6 6 6 :
q[|+2] 6 MSBs |
I LN)
|
' A A I
qli+2] | qli+2]
—T—"_’V'L'JX_‘ I > MUX
‘ : rem[i+2]
| -2 d <Y 2d
6 | i) — \
3 | i vl
SELECT : ‘ CSA ‘ ‘ CSA ‘ cee CsA
| 4rem[i+2]-qd
| oo o
i+3
« : ali+3] % MUX ‘
qli+3] |
Digit | Remainder
lection ! calculation .
selection | CarEHa T rem[i+3]

25" IEEE Symbosium on Computer Arithmetic (ARITH 2018)

Fig. 3. Digit cycle logic

91

TABLE II
QUOTIENT-DIGIT SELECTION

4 X rem]i] Qit1
[13/8,31/8] +2
[4/8,12/8] +1
[—3/8,3/8] 0
[—12/8, —4/8) -1
[—32/8, —13/8] -2

(a) Standard selection intervals

4 x reml[i] carry Git+1
31/8 1 12
[13/8,30/8] - +2
12/8 0 +2
12/8 1 +1
[4/8,11/8] - +1
3/8 0 +1

3/8 1 0
[-3/8,2/8] - 0
—4/8 0 0
—4/8 1 -1
[—12/8,—5/8)] - -1
—13/8 0 -1
—13/8 1 —2
[—32/8, —14/8] - -2
31/8 0 -2

(b) Modified selection intervals

Therefore, it is clear that the carry into the 6th bit is required
for the selection of the ¢[i 4 2] digit. Hence, the 9-bit adder
has to be split into a 6-bit adder and a 3-bit adder to get access
to this carry.

In parallel with the selection of ¢; 12, the 6 MBS to be
used in the selection of digit ¢;+3 are computed speculatively
for every value of ¢;5.Thus, the non-redundant estimation of
rem|i + 2] is obtained in the five 7-bit adders, by adding the
shifted 7 MSB of rem/[i + 1] plus the 7 MSBs of —¢; 12 X d.
Then, digit ¢;+2 is used to select the correct adder output, and
qi+3 1s selected according Table II(a).

This way, the delay of the logic in the cycle has been
reduced with respect to a plain implementation of the three
quotient-digit selection functions.

In the quotient-digit selection, SELECT block in the fig-
ure, the quotient digit is coded as a 1-hot 5-bit code
{qp2,qpl,qz,qnl, qn2}, so that for example, gp2 = 1,
gpl = qz = qnl = gqn2 = 0 if ¢;;1 = +2. The logic function
to get every bit in the 1-hot 5-bit code is relatively simple, a
3-level 2-input gate logic function.

The quotient is obtained in a redundant signed-digit rep-
resentation with 2 words, a positive word (quot_pos) storing
the positive digits and a negative word (quot_neg) storing the
negative digits. For example, a final single precision quotient

quot =100 (—1)21(—1) 000111 is represented by

quot_pos = 1 000 210 000 111

quot_neg = 0 001 001 000 000

Note that if the quotient digit is 0, there will be a 0 in both
the positive and the negative words. The final quotient Q[n]
in equation (1) is obtained by subtracting both words and
rounding the result. Alternatively, an on-the-fly conversion [1]
could be used, but in our implementation this result in a worse
cycle time.

V. EVALUATION

In this section we evaluate or design in terms of latency,
area and timing ands compare it with other recent dividers.

A. Latency

The number of fractional bits of the quotient the algorithm
has to obtain is 53 for double precision (52 fractional bits plus
the guard bit), 24 for single precision (23 fractional bits plus
the guard bit) and 11 for half precision (10 fractional bits plus
the guard bit). Additionally, there is an integer digit which can
be 1 or 2. This integer digit is obtained in parallel with the
prescaling.

Hence, the number of digit cycles required for half, single
and double precision are 2, 4 and 9 respectively. So, for normal
operands the latency is

o Half precision, 4 cycles:
E1/PS-DGT-DGT-RND1

o Single precision, 6 cycles:
E1/PS-DGT-DGT-DGT-DGT-RND1

o Double precision, 11 cycles:
E1/PS-DGT-DGT-DGT-DGT-DGT-DGT-DGT-DGT-
DGT-RNDI

being E1/PS the initial (where operands are unpacked and
some conditions are determined), and prescaling cycle (scaling
of divisor and dividend, left shift of the dividend if = < d
and integer digit calculation), DGT the digit cycle (3 radix-4
iterations per digit cycle), and RND1 the rounding cycle.

In case or normal operands, the initial stage and the
prescaling stage are done in the same cycle. If any of the
operands is subnormal, the initial and the prescaling stages
are done in different cycles; this is because the operand needs
to be normalized, that is in [1,2), before to be prescaled. So,
in case of subnormal inputs there will be 1 or 2 additional
normalization stages, NM1, NM2, before the prescaling (PS)
cycle.

In case of a tiny result and additional rounding stage RND2,
after RNDI1, is needed.

As an example, the latency of a single-precision division
with one subnormal operand and tiny result is 9 cycles:

E1-NM1-PS-DGT-DGT-DGT-DGT-RND1-RND2 .

Table IIT compares the latency of the proposed divider with
the latency of some other recent processors for floating-point
half, single and double precisions with normalized operands
and result [4], [6], [8] [10]. The latencies shown in the table

92 25" IEEE Symbosium on Computer Arithmetic (ARITH 2018)

TABLE III
LATENCY COMPARISON

HP SP DP
AMD K7 [8] N/A 16 20
AMD Jaguar [10] | N/A 14 19
IBM z13 [4] N/A 23 37
HAL Sparc [6] N/A 16 19
This paper 4 6 11

include the iteration cycles and the pre- and post-processing
cycles, such unpacking, prescaling and rounding. Note that no
cycles for normalization are been included because it has been
assumed that the operands are already normalized; although, as
stated previously, the proposed divider can handle subnormal
inputs and outputs.

Most of the design in the table uses a multiplicative division
algorithm , [6], [8] [10], and one of them uses a radix-4 digit-
recurrence implementation [4].

As shown in the Table, our proposal gets much lower
latencies. The multiplicative implementation are limited by
the latency of the multiplier of multiply-and-accumulate units
that, as stated in the introduction, can be very significant. On
the other hand, the implementation in [4] uses a very low
radix, which implies a high number of iterations. although its
implementation is quite simple.

In our implementation we have been able to put in a
single cycle three radix 4 iterations by using speculation
between iteration in the same cycle. In addition, there are only
two 2 pre- and post-processing cycles before the iterations,
unpacking of operands and prescaling, and rounding.

B. Area

On the other hand, the divider area is larger in our im-
plementation than in the other implementations in the table.
Our divider uses a large number of CSAs and CPAs in the
iterative part: five 58-bit CSAs for iteration for a total of 15
CSAs, five 9-bit CPAs, and 5 7-bit CPAs, plus the logic for
the selection of 3 quotient digits and the multiplexers, twelve
58-bit 4:1 muxes and two 5:1 small wide muxes. In addition,
in the prescaling logic three 58-bit adders and some additional
logic, CSAs, multiplexers, and a reduced selection logic, are
needed.

Multiplicative division algorithms involve only modest ad-
ditional cost because the existing FP multipliers are reused to
perform each algorithm iteration. Only a look-up table for the
initial seed and some additional logic is needed to implement
the divider.

The area of the radix-4 divider is also modest. The redun-
dant partial remainder consists of a sum part of 116 bits and
a carry part of 28 bits (only 1 out 4 carries are flopped); the 6
most-significant bits must be in non-redundant format because
they are used for the quotient digit selection. The iteration is
implemented with an stage of 3:2 CSA and one stage of a
4-bit CPA; an additional 6-bit CPA is needed to deliver the 6
most-significant bits to the digit selection table.

TABLE IV
DELAY OF BASIC GATES AND MODULES OF THE DIVIDER

FO4 ps

inverter 1 6

2-input gate 1.33 8

basic gates | 3-input gate 1.67 10
Xor gate 2 12

2:1 mux 2.66 16

58-bit adder 14.35 86

54-bit sub 14.35 86

prescaling reduced SEL logic 4 24
2:1 mux with load | 2.66 + log,(58)* 40

6-bit adder 9.43 56

7-bit adder 9.34 56

digit 9-bit adder 11 66
cycle 3:2 CSA 4 24
5:1 mux 4.33 26

SEL logic 5.33 4+ log,(64)* 50

*Due to fanout

The area of the rounding stage has not been included in the
discussion because it should be roughly the same for all the
implementations.

C. Timing

For the critical path delay estimation the Logical Effort
model [12] is used in this section. Table IV summarizes the
delay of the basic gates (upper part) and of the main modules
in figures 2 and 3 (middle and lower parts respectively) in
terms of a FO4 and its equivalent in picoseconds. We have
considered a FO4 delay of 6 ps. The load of every signal
have be taken into account, so that a fanout of n adds a delay
equivalent to log, n FO4.

The fanout affects especially to the SELECT module in the
figure. This module consists of a 4 2-input logic levels, but the
module output, the quotient digit, has a high fanout, roughly
64 gates.

Then, in the prescaling cycle there are two paths with
roughly the path the same estimated delay,

54-bit sub — 2:1 mux with large fanout — 2:1 mux

and

2:1 mux — 3:2 CSA — 58-bit adder — 2:1 mux

being the delay of each path 142 ps. Note the large fanout in
the first path 2:1 mux.

In the digit cycle, there are several candidates to be the
critical path, but due to large fanout at the output of the SEL
logic, the critical path is the one marked in blue in figure 3.
It consists of

25" IEEE Symbosium on Computer Arithmetic (ARITH 2018) 93

6-bit adder — SEL logic — 5:1 mux — SEL logic
— 5:1 mux — SEL logic — 5:1 mux

with an estimated delay of 300 ps.
Then, in conclusion, the critical path of the divider is in the
digit cycle and has a estimated delay of 300 ps.

VI. CONCLUSIONS

The architecture of a radix-64 floating-point divider pro-
viding 6 bits of the quotient per cycle is presented. To get a
simple implementation and a affordable timing the radix-64
iteration is build with 3 radix-4 iterations, each one providing
2 bits of the quotient for a throughput of 6-bit per cycle, using
speculation between consecutive iterations in the cycle.

Additionally, to have a simple digit selection logic, the
divisor has been prescaled to a value close to 1, in such a
way that the digit selection function does not depends on the
divisor, it depends only on the 6 most-significant bits of the
remainder. Prescaling has been implemented as the addition
of three terms, which depend on the most-significant bits of
the divisor. Of course, the dividend has to be scaled by the
same amount than the divisor as well.

Further latency reductions for some floating-point precisions
are obtained by left-shifting the dividend by 1 bit when it is
larger than the divisor to have the result in {1,2), and by
performing the first iteration, which gives the integer digit of
the result, in parallel with the prescaling.

The result is a low latency floating-point digit-recurrence
divider, with latencies of 11, 6 and 4 cycles for double-
precision, single-precision and half-precision, respectively.

REFERENCES

[1] M. Ercegovac and T. Lang. Division and Square Root. Digit-Recurrence
Algorithms and Implementations. Kluwer Academic Publishers. (1994).

[2] M. Ercegovac and T. Lang. Simple Radix-4 Division with Operand
Scaling. IEEE. Transactions on Computers, Vol. 39, No. 9, pp. 1204-
1208, (1994).

[3] M. Ercegovac and T. Lang,Digital Arithmetic. San Mateo, CA, USA:
Morgan Kaufmann, (2004).

[4] . G. Gerwig, H. Wetter, E. M. Schwarz, J. Haess. High Performance
Floating-Point Unit with 116 bit Wide Divider. Proceedings of 16th
IEEE international Symposium on Computer Arithmetic. (2003).

[5] T. Lang and J. D. Bruguera. Floating-Point Multiply-Add-Fused with
Reduced Latency. IEEE. Transactions on Computers, Vol. 53, No. 8,
pp. 988-1003, (2004).

[6] A. Naini, A. Dhablania. /-GHz HAL SPARC64 Dual Floating-Point Unit
with RAS Features. Proceedings of 15th IEEE international Symposium
on Computer Arithmetic. (2001).

[71 A. Nannarelli. Performance/Power Space Exploration for Binary64
Division Units. IEEE. Transactions on Computers, Vol. 65, No. 5, pp.
1671-1677, (2016).

[8] S.F. Oberman. Floating Point Division and Square Root Algorithms and
Implementation in the AMD-K7 Microprocessor. Proceedings of 14th
IEEE international Symposium on Computer Arithmetic. (1999).

[9] J. Preiss, M. Boersma and S. M. Mueller. Advanced Clockgating
Schemes for Fused-Multiply-Add-Type Floating-Point Units. Proceed-
ings of 19th IEEE international Symposium on Computer Arithmetic.
(2009).

[10] J. Rupley, J. King, E. Quinnell, F. Galloway, K. Patton, P. M. Seidel, J.
Dinh, H. Bui, A. Bhowmik. The Floating-Point Unit of the Jaguar x86
Core. Proceedings of 21th IEEE international Symposium on Computer
Arithmetic. (2013).

[11] S. Srinivasan, K. Bhudiya, R. Ramanarayanan, P. S. Babu, T. Jacob,
S. K. Mathew, R. Krishnamurthy and V. Erraguntla. Split-path Fused
Floating Point Multiply Accumulate (FPMAC). Proceedings of 21th
IEEE international Symposium on Computer Arithmetic. (2013).

[12] I. Sutherland, B. Sproull, and D. Harris Logical Effort: Designing Fast
CMOS Circuits. The Morgan Kaufmann Series in Computer Architecture
and Design. Morgan Kaufmann Publishers. (1999) .

94 25" IEEE Symbosium on Computer Arithmetic (ARITH 2018)

