
Combining Restoring Array and Logarithmic
Dividers into an Approximate Hybrid Design

Weiqiang Liu1, Jing Li1, Tao Xu1, Chenghua Wang1, Paolo Montuschi2, Fabrizio Lombardi3

1College of EIE, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China, E-mail: liuweiqiang@nuaa.edu.cn
2CCE Department, Politecnico di Torino, Torino, 10129, Italy, E-mail: paolo.montuschi@polito.it

3Department of ECE, Northeastern University, Boston, MA 02115, USA, Email: lombardi@ece.neu.edu

Abstract—This paper proposes a new design of an
approximate hybrid divider (AXHD), which combines the
restoring array and the logarithmic dividers to achieve an
excellent tradeoff between accuracy and hardware performance.
Exact restoring divider cells (EXDCrs) are used to generate the
MSBs of the quotient for attaining a high accuracy; the other
quotient digits are processed by a logarithmic divider as inexact
scheme to improve figures of merit such as power consumption,
area and delay. The proposed AXHD is evaluated and analyzed
using error and hardware metrics. The proposed design is also
compared with the exact restoring divider (EXDr) and previous
approximate restoring dividers (AXDrs). The results show that
the proposed design achieves very good performance in terms of
accuracy and hardware; case studies for image processing also
show the validity of the proposed designs.

Keywords—Approximate Computing; Logarithmic Divider;
Restoring Array Divider; Low Power.

I. INTRODUCTION
Power has been one of the main challenges in integrated

circuit design. Computing systems are usually designed to
generate outputs with the highest precision, which despite
advances in feature size, also results in high power consumption
and large hardware complexity (such as implementation area).
In many applications (such as image processing, machine
learning and computer vision), human perception mitigates the
effects of computational errors. Approximate computing has
been proposed as an innovative technique for low power and
high performance systems in which errors can be tolerated [1]-
[3].

As basic operations of an arithmetic processor, addition and
multiplication are very important for achieving high
performance; therefore, they have been extensively studied for
approximate computing while also reducing power
consumption [4]. Error metrics including the error rate (ER),
error distance (ED), mean error distance (MED), normalized
mean error distance (NMED) [5] have been proposed for
evaluating the designs of approximate arithmetic circuits.
Approximate adders have been extensively studied in the
technical literature; among the many proposed schemes,
approximate adder designs include speculative [6-7] and non-
speculative transistor-level full adders [8-9].

The operation of multiplication is more complex than
addition. Approximate design techniques can be applied to
different parts of a conventional multiplier, such as operands
[10-11], partial product (PP) generation [12] and PP tree [13-
14]. Approximate dividers has received less attention in the
technical literature. [15] has proposed the design of an
approximate unsigned non-restoring divider (AXDnr); different
AXDnrs have been proposed by replacing the logic primitives
with approximate subtractors. Three types of approximate
subtractors cell (AXSC) are then designed at transistor level.
Exact subtractor cells (EXSCs), that are critical in the operation
of the array divider, are truncated or replaced by AXSCs using
various schemes. The ED and MED are then used to evaluate
the error characteristics of the approximate divider. Both the
restoring and non-restoring array dividers have been analyzed
for approximate computing; [16] has shown that an approximate
unsigned restoring divider (AXDr) has better performance than
AXDnr with respect to power consumption while also
introducing a small degradation in accuracy. The same
replacement and truncation schemes of [15] have been applied
to a restoring divider; [17] has proposed designs of an
approximate high-radix divider, in which an approximate
signed-digit adder cell is utilized to replace the exact signed-
digit adder cell. The high-radix algorithm is usually applied to
sequential circuits due to the extensive usage of look-up tables.
A high-radix division scheme without a look-up table has been
proposed in [18]; the replacement and truncation schemes from
[15] have also been used to this high-radix exact array divider.

A divider based on dynamic approximation has been
proposed in [19]. As the higher order bits are more significant
than lower order bits, usually an approximate divider is
designed by truncating the lower bits; for different lengths of
input operands, leading one detectors and a barrel shifter are
utilized to reduce the inaccuracy. The lengths of the bits
processed by the accurate divider are adjustable to reduce
inaccuracy and power dissipation.

Approximate division by transforming the operands into the
logarithmic domain can significantly save power and area;
however, accuracy is rather low. Conventional array dividers
are more accurate but they dissipate more power; therefore, this
paper proposes an approximate hybrid divider (AXHD) based
on combining the restoring array and the logarithmic dividers.
Exact restoring divider cells (EXDCrs) are used to correct the
errors generated by conventional non-iterative logarithmic

80XXX-X-XXXXXXX-X-X/ARITH18/ c©2018 IEEE

dividers. The proposed divider designs can achieve excellent
results for specific applications.

The paper is organized as follows. Both conventional
restoring array dividers and conventional non-iterative
logarithmic are reviewed in Section 2. Section 3 presents the
proposed design of AXHD. Error analysis and hardware
evaluation are provided in Section 4. Comparison with the exact
restoring array dividers and other approximate dividers is also
provided in this section. The application of the proposed
approximate divider to image processing is presented in Section
5. The conclusion is provided in Section 6.

II. REVIEW

A. Conventional Restoring Array Divider
Let A and B to be the two operands of the integer division, and
the results of division are the quotient Q and the remainder R.
A is then given by:

 (1)
where, the dividend A and the remainder R have the same sign
and |R|<|B| [20]. The restoring divider is a widely used type of
array divider. The trial subtraction is performed in each row; the
corresponding quotient digit is 1 (0) if the trial difference is
positive (negative). If the quotient digit is 1, the trial difference
is moved as the partial remainder to the next row; otherwise, the
partial remainder is immediately dropped. The exact restoring
divider cell (EXDCr) and an 8 by 4 exact restoring divider
(EXDr) are shown in Fig. 1 and Fig. 2, respectively [16]. It is
worth observing that A conventional restoring divider
overflows when A is large and B is small, while the logarithmic
divider does not.

Fig. 1 An exact restoring divider cell [16].

Fig. 2 A conventional unsigned 8 by 4 restoring array divider [16].

B. Non-Iterative Logarithmic Divider
The operands of a logarithmic divider are given by the dividend
A and the divisor B, A and B are both positive integers, different

from zero, as the cases where either A, or B or both are zero are
usually handled separately. k is the exponent, and x is the
fractional part of the mantissa. They are expressed as follows:

 (2)

 (3)

where, k1 and k2 are the so-called characteristics of A and B,
respectively and represent the position of the leading most
significant bits. x1 and x2 are in the range of [0,1). The logarithm
of a quotient, i.e. Q, is equal to the difference of the logarithms
of the dividend and divisor.

 (4)

(5)

As when , the approximate
quotient can be expressed as follows:

 (6)

Therefore, (6) can be calculated by subtractions. There are four
steps in the conventional logarithmic divider proposed by
Mitchell [10]: leading one detection, binary-to-logarithm
conversion, mantissa subtraction and logarithm-to-binary
conversion. The leftmost one bit is detected by the leading one
detector (LOD). The binary-to-logarithm converter (BLC)
converts the input operands into logarithms. Only the most
significant bit is converted to logarithm, the logarithm of the
mantissa is approximated by itself. The division is performed by
a mantissa subtraction by the Subtractor in Fig. 3 in the
logarithmic domain. The logarithm-to-binary converter (LBC)
converts the subtraction result back to a binary number as the
final quotient. The logarithmic divider is shown in block form
in Fig. 3 [10].

Fig. 3 A 16 by 8 unsigned non-iterative logarithmic divider [10].

III. PROPOSED APPROXIMATE HYBRID DIVIDER
A logarithm divider consumes significantly less power and

requires less chip area than a conventional array divider [10]
because the rows used to perform the subtraction operations
consume more hardware resources and area compared with the
simple subtraction in logarithm divider; however, when the
operand width is large, the accuracy decreases due to the
approximation in the logarithmic conversion. Therefore, a new

EXScEXSc

Q A B

BoutBin

R

EXDCr EXDCr EXDCr EXDCr

EXDCr EXDCr EXDCr EXDCr

EXDCr EXDCr EXDCr EXDCr

EXDCr EXDCr EXDCr EXDCr

0

0

0

0

B [3:0]

A [8:0]

Q [3:0]

R [3:0]

LOD LOD

BLC BLC

Subtractor

LBC

A 16 bits B8 bits

19 bits 10 bits

19 bitsk + x

Q 16 bits

k1 + x1 k2 + x2

25th IEEE Symbosium on Computer Arithmetic (ARITH 2018) 81

approximate hybrid design (AXHD) combining an exact
restoring and logarithmic dividers is proposed in this work.
 As mentioned above, the conventional restoring divider will
overflow when X is large and Y is small, while the logarithmic
divider won’t. The proposed AXHD combines the array and the
logarithmic dividers as shown, at block level, in Fig. 4. Extra
rows are added to the array to avoid overflowing by computing
more trial subtractions. For a 16 by 8 EXDr, 8 extra rows are
added, in which both the quotient and the remainder are 16-bit
wide. Its design principle is to use the exact division for the most
significant bits and an approximate logarithmic division for the
remaining bits. The trade-off is between accuracy, area, speed
and power.
 In the proposed design of this approximate divider, p rows
of EXDCrs are used to calculate the most significant quotient
digits to improve the accuracy; p should be selected according
to the accuracy requirement of a specific application and
therefore, 16-p is the replacement depth. The partial remainder
generated by EXDCrs is then computed by the logarithmic
divider for the remaining quotient digits; p rows of EXDCrs
make up an exact divider whose input dividend is p-bit wide. In
particular, p=0 corresponds to a full logarithmic divider and
p=16 corresponds to an exact restoring array divider. If p is
sufficiently small, then a very simple hardware can be expected
for implementing the exact division part. Prior to considering
the 16 by 8 AXHD implementation, we explore the feasibility
of our design by considering first an 8 by 4 AXHD. Fig. 5
depicts the scheme for p=2. The first two lines of the EXDC
blocks correspond to p=2 and the rightmost cascaded part is
shown Fig. 3, which is drawn now for the case of 8 by 4.

Fig. 4 16 by 8 AXHD based on restoring and logarithmic dividers.

Fig. 5. 8 by 4 AXHD based on restoring and logarithmic dividers for p=2.

 The length of the quotient digits required by EXDCrs can be
adjusted by the number of EXDCr rows, i.e., p. A large p results
in more accurate results at the cost of both a higher power
consumption and hardware complexity. As a logarithmic
divider is used for the last quotient bits, the remainder is not
available. However, the computation of the remainder is
naturally not in the purposes of approximate division [15].

Fig. 6 shows a detailed example of the proposed 8 by 4
AXHD. The dividend is 156 and the divisor is 3 with p =2. The
final result shows that the difference between the exact quotient
(i.e., Q=52) and the approximate quotient (i.e., Q=55) is only 3.

0 0 1 1X Y

Exact Restoring Divider Logarithmic Divider

1 0X1

0 0 1 1Y

K=2

Q[7:6] 0 0

R 1 0

X2

Y

LOD

0 0 1 1 1 0 0

0 0 1 1

1

1 1 1k1

k2

BLC 1 0 0 1 1 1 011

1 1

Suber

LBC

1 1 0 1 1 1 001

1 1 0 1 1 1

The AX QThe EX Q 0 0 1 1 0 1 1 10 0 1 1 0 1 0 0

0 0 1 1 1 0 01

1

0

1

Fig. 6 An example of the proposed 8 by 4 AXHD.

IV. ERROR ANALYSIS AND HARDWARE EVALUATION
The results of the normalized mean error distance (NMED),

power, delay, area and PDP are provided in this section. The
NMED is defined as the MED normalized by the maximum
output of the accurate design. The error results are generated
using exhaustive simulation. The NMED power product
(NMPP) are also provided to evaluate the tradeoff between
power and accuracy.

The proposed AXHD design is compared with [16], in
which the rows of EXDCrs are replaced by approximate
restoring divider cells (AXDCrs) by four replacement schemes,
i.e., vertical replacement (VR), horizontal replacement (HR),
square replacement (SR) and triangle replacement (TR). The
approximate restoring dividers with HR and TR schemes have
a better performance than those with VR and SR schemes [16].
Furthermore, the structure of the HR scheme is similar to the
proposed scheme. Therefore, the proposed divider is compared
with the three approximate restoring array dividers (AXDrs)
with HR and TR schemes (i.e. AXDr1, AXDr2 and AXDr3) of
[16] and the conventional exact restoring divider. These divider
have been assessed by utilizing various replacement depths.

A. Error Analysis

TABLE I. NMED () OF AXHD AND AXDRS.

Depth 2 4 6 8 10 12 14 16
AXHD 0.32 2.17 8.99 33.5 178.3 282 359 377
AXDr1 HR 1.07 9.05 40.8 160 423.0 630 1,443 1,443
AXDr2 HR 7.86 33.6 137 566 2,747 13,747 122,187 508,714
AXDr3 HR 1.01 8.64 37.9 146 370.2 590 1,537 1,635
AXDr1 TR 0.00 0.12 1.44 9.11 40.70 152 450 721
AXDr2 TR 0.19 1.39 6.61 27.6 107.4 393.2 1341 4256
AXDr3 TR 0.02 0.36 2.20 10.2 41.9 155 496 818

p Rows of EXDCrs

Logarithmic
Divider

X p bits Y8 bits

16-p bits partial remainder

the first p quotient digits the last 16-p quotient digits

16 bits quotient

EXDCr EXDCr EXDCr EXDCr

EXDCr EXDCr EXDCr EXDCr

0

0

Y [3:0]

X [7:0]

Q [7:6]

Q [5:0]

LOD LOD

BLC BLC

Subtractor

LBC

A 8 bits B4 bits

10 bits 5 bits

10 bitsk + x

Q 8bits

k1 + x1 k2 + x2

0 0 0

0

0 0

82 25th IEEE Symbosium on Computer Arithmetic (ARITH 2018)

AXHD can calculate the quotient only; therefore, the
NMED of the integer quotient is provided in Table I. The
NMEDs of AXHD at different approximation depth are shown
in Figs. 7-8; a comparison with AXDrs using HR and TR
schemes is also provided. As the error of HR and TR grows
exponentially by increasing the replacement depth, a
logarithmic axis is used in the figures.

Fig. 7 The NMED of the proposed AXHD and AXDrs using HR schemes for
various replacement depth.

Fig. 8 The NMED of the proposed AXHD and AXDrs using TR schemes for
various replacement depth.

The proposed hybrid divider has a smaller NMED compared
with previous AXDrs using HR [16] at the same replacement
depth. Compared with AXDrs with a TR scheme at a small
depth, the NMED of the proposed AXHD is slightly larger
compared with AXDrs with a TR scheme. However, as the
replacement depth is increased, the NMED of the AXHD
increases slowly and is lower than AXDrs when the replacement
depth is larger than 12.

B. Hardware Evaluation
The proposed design and AXDrs are described at gate-level

in Verilog HDL and verified by Synopsys VCS. All designs are
then synthesized by the Synopsys Design Compiler using the
NanGate 45 nm Open Cell Library. The average power
consumption is found using the Synopsys Power Compiler with
a back annotated switching activity file generated from the
random input vectors. The critical path delay, area, power

consumption and PDP are reported in this section at different
values for replacement depth.

TABLE II. POWER (μW) OF AXHD AND AXDRS.

Depth 2 4 6 8 10 12 14 16
AXHD 2675 2130 1724 1279 885 712 616 500
AXDr1 HR 1930 1867 1785 1657 1672 1623 1520 1506
AXDr2 HR 1922 1869 1752 1720 1785 1919 1959 2059
AXDr3 HR 1833 1701 1504 1348 1201 1141 1086 1032
AXDr1 TR 1953 1953 1936 1832 1765 1645 1572 1545
AXDr2 TR 1960 1941 1892 1817 1747 1688 1706 1755
AXDr3 TR 1969 1876 1789 1595 1411 1288 1151 1060

Table II reports the power consumption of the AXHD and

AXDrs. As shown in Figs. 9-10, by increasing the replacement
depth, the power of AXHD decreases nearly linear. When the
replacement depth is larger than 8, the proposed design
performs better than AXDrs [16]. However, when the
replacement depth is smaller than 5, AXHD consumes more
power than EXDrs. When the replacement depth is smaller
than 8, AXDrs outperform AXHD in terms of power
consumption.

Fig. 9 Power of the proposed AXHD, EXDr, and AXDrs using HR schemes at
various replacement depths.

Fig. 10 Power of the proposed AXHD, EXDr, and AXDrs using TR schemes
at various replacement depths.

Table III shows the delay results of AXHD and AXDrs. As
shown in Figs. 11-12, the delay of AXHD decrease linearly; the

25th IEEE Symbosium on Computer Arithmetic (ARITH 2018) 83

AXDrs with HR or TR schemes have no significant
improvement in terms of delay. In the proposed design, the
delay has been improved significantly when the replacement
depth is large because the delay of the logarithmic divider is
small. When the replacement depth is small, the delay is mainly
determined by the EXDCrs.

TABLE III. DELAY (ns) OF AXHD AND AXDRS.

Depth 2 4 6 8 10 12 14 16
AXHD 9.01 7.83 6.75 5.69 4.44 3.24 2.2 1.44
AXDr1 HR 8.62 8.5 8.59 8.56 8.54 8.55 8.63 8.61
AXDr2 HR 8.43 8.47 8.39 8.26 8.3 8.34 8.09 8.19
AXDr3 HR 8.51 8.46 8.3 8.25 8.14 8.13 8.23 8.02
AXDr1 TR 8.84 8.89 8.85 8.76 8.84 8.76 8.75 8.78
AXDr2 TR 8.8 8.85 8.74 8.79 8.67 8.57 8.6 8.56
AXDr3 TR 8.86 8.84 8.79 8.75 8.74 8.57 8.5 8.33

Fig. 11 Delay of the proposed AXHD, EXDr, and AXDrs using HR schemes
at various replacement depths.

Fig. 12 Delay of the proposed AXHD, EXDr, and AXDrs using TR schemes
at various replacement depths.

The area results are provided in Table IV. It can be seen in
Figs. 13-14 that the area of the AXHD decreases steadily with
an increase of the replacement depth, which is again much
smaller than AXDrs when the replacement depth is larger than
8. When the replacement is smaller than 6, the AXHD has a
larger area than EXD and when the replacement is smaller than
8, AXDrs have a smaller area.

TABLE IV. AREA (μM²) OF AXHD AND AXDRS.

Depth 2 4 6 8 10 12 14 16
AXHD 1694 1523 1361 1184 928 775 631 433
AXDr1 HR 1324 1310 1293 1278 1283 1266 1245 1207
AXDr2 HR 1294 1231 1163 1096 1033 979 899 843
AXDr3 HR 1292 1252 1198 1145 1099 1063 995 945
AXDr1 TR 1362 1362 1364 1340 1334 1317 1304 1303
AXDr2 TR 1363 1328 1277 1219 1158 1085 1020 967
AXDr3 TR 1359 1316 1290 1224 1153 1126 1074 1025

Fig. 13 Area of the proposed AXHD, EXDr, and AXDrs using HR schemes at
various replacement depths.

Fig. 14 Area of the proposed AXHD, EXDr, and AXDrs using TR schemes at
various replacement depths.

The power delay product (PDP) is used to evaluate the
overall hardware performance of the designs (Table V). As
shown in Fig. 15-16, AXHD has significant advantages when
the replacement depth is larger than 6. AXDr3 with a TR
scheme is close to the proposed design. When the replacement
depth is smaller than 4, EXDr and AXDrs outperform AXHD.

TABLE V. PDP (fJ) OF AXHD AND AXDRS.

Depth 2 4 6 8 10 12 14 16
AXHD 24102 16675 11636 7280 3929 2308 1355 721
AXDr1 HR 16640 15871 15334 14186 14281 13872 13118 12968
AXDr2 HR 16204 15828 14697 14207 14817 16007 15850 16862
AXDr3 HR 15601 14390 12485 11118 9775 9276 8935 8277
AXDr1 TR 17265 17361 17134 16050 15601 14414 13752 13567
AXDr2 TR 17248 17181 16539 15972 15145 14465 14668 15020
AXDr3 TR 17444 16579 15724 13953 12332 11042 9780 8828

84 25th IEEE Symbosium on Computer Arithmetic (ARITH 2018)

Fig. 15 PDP of the proposed AXHD, EXDr, and AXDrs using HR schemes at
various replacement depths.

Fig. 16 PDP of the proposed AXHD, EXDr, and AXDrs using TR schemes at
various replacement depths.

C. NMED Power Product (NMPP)
The NMPP is also used to evaluate the trade-off between

accuracy and power consumption (Table VI). As shown in Fig.
17 the proposed AXHD shows a better performance under this
metric than AXDrs with a HR scheme for all replacement
depths. However (Fig. 18) only when the replacement depth is
larger than 12, AXHD is better than AXDrs under the TR
scheme.

So under all previous comparative metrics, AXHD has
advantages in terms of accuracy and hardware performance
when the replacement depth is larger, so the proposed design is
suitable for approximate dividers with large bit-width operands.

TABLE VI. NMPP (nW) RESULTS OF AXHD AND AXDRS.

Depth 2 4 6 8 10 12 14 16
AXHD 0.86 4.62 15.5 42.8 157.8 200.8 221.4 188.8
AXDr1 HR 2.07 16.9 72.9 266 707.5 1021.8 2192.8 2172.6
AXDr2 HR 15.1 62.8 239 974 4905 26384.2 239389.2 1047341
AXDr3 HR 1.85 14.7 57.1 197 444.5 672.9 1668.8 1687.4
AXDr1 TR 0 0.24 2.8 16.7 71.9 249.3 707.9 1114.5
AXDr2 TR 0.38 2.7 12.5 50.2 187.6 663.7 2286.4 7467.5
AXDr3 TR 0.05 0.68 3.9 16.3 59.1 199.5 571.1 866.4

Fig. 17 NMPP of the proposed AXHD and AXDrs using HR schemes at
various replacement depths.

Fig. 18 NMPP of the proposed AXHD and AXDrs using TR schemes at various
replacement depths.

V. APPLICATIONS
In this section, two applications of image processing

involving pixel division (only for quotient calculation, namely,
change detection and background removal) are studied using
the proposed AXHD. 16-to-8 AXHD and EXDr are used to
compute the inputs (X and Y) of 8-bit grayscale images (Figs.
19 and 20) with replacement depths of 3, 6 and 9. To implement
the pixel division operation in an integer divider, the dividend
is multiplied by a constant for the mean value of the output
image to be equal to the mean value of the example image prior
to division. The peak signal-noise ratio (PSNR) at different
replacement depths is provided (Tables VII and VIII) to show
the difference between exact and approximate results.

TABLE VII. PSNR OF AXHD WITH DIFFERENT REPLACEMENT DEPTHS FOR
CHANGE DETECTION.

Depth 1 2 3 4 5 6 7 8

PSNR
/dB

Infinite Infinite 84.69 64.99 61.32 54.17 39.87 39.71

Depth 9 10 11 12 13 14 15 16

PSNR
/dB

39.71 39.71 39.71 39.71 39.71 39.71 39.71 39.71

25th IEEE Symbosium on Computer Arithmetic (ARITH 2018) 85

TABLE VIII. PSNR OF AXHD WITH DIFFERENT REPLACEMENT DEPTHS FOR
BACKGROUND REMOVAL.

Depth 1 2 3 4 5 6 7 8

PSNR
/dB

Infinite Infinite 74.17 62.95 56.07 50.32 43.04 27.12

Depth 9 10 11 12 13 14 15 16

PSNR
/dB

27.12 27.12 27.12 27.12 27.12 27.12 27.12 27.12

For both applications, there is no loss when the replacement
depth is 1 and 2; the PSNR decreases when the replacement
depth increases. When the replacement depth is larger than 7,
the PSNRs converge to 39.71 and 27.12 for change detection
and background removal respectively, as the input dividend is
dropped totally into the logarithmic divider.

VI. CONCLUSION
The designs of hybrid approximate dividers (AXHDs) have

been presented in this paper. The non-iterative logarithmic
divider is combined with a conventional restoring array divider,
because it has the advantage of low power consumption. By
replacing the last rows of exact cells (EXDrs) by the
logarithmic divider, a very good tradeoff between accuracy and
hardware performance (i.e. power delay and area) is achieved.
The proposed dividers are analyzed with error and hardware
metrics; the results show that the proposed AXHD design

performs better than other approximate dividers, especially
when the replacement depth is large. Case studies for two
image processing applications confirm the validity of the
proposed AXHD design.

REFERENCES
[1] J. Han and M. Orshansky, “Approximate computing: an emerging

paradigm for energy-efficient design,” in Proc. 18th IEEE European Test
Symposium (ETS), 2013, pp.1-6.

[2] S. Venkataramani, S. Chakradhar, K. Roy and A. Raghunathan,
“Approximate computing and the quest for computing efficiency,” in
Proc. 52nd Annual Design Automation Conference (DAC), 2015, Article
120, 6 pages.

[3] Q. Xu, N.-S. Kim and T. Mytkowicz, “Approximate Computing: A
Survey,” IEEE Design & Test, vol. 33, no.1, pp. 8-22, 2016.

[4] H. Jiang, C. Liu, L. Liu, F. Lombardi and J. Han, “A review, classification,
and comparative evaluation of approximate arithmetic circuits", ACM J.
Emerging Technologies in Computing Systems, vol. 13, no. 4, Article 60,
Aug. 2017.

[5] J. Liang, J. Han, and F. Lombardi, “New metrics for the reliability of
approximate and probabilistic adders,” IEEE Trans. Computers, vol. 63,
pp. 1760-1771, 2013.

[6] S.-L. Lu, “Speeding up processing with approximation circuits,”
Computer, vol. 37, pp. 67-73, 2004.

[7] N. Zhu, W. L. Goh, W. Zhang, K. S. Yeo and Z. H. Kong, “Design of
low-power high-speed truncation error tolerant adder and its application
in digital signal processing,” IEEE Trans. VLSI Syst., vol. 18, pp.1225-
1229, 2010.

[8] H. R. Mahdiani, A. Ahmadi, S. M. Fakhraie and C. Lucas, “Bio-inspired
imprecise computational blocks for efficient VLSI implementation of
soft-computing applications,” IEEE Trans. Circuits Syst.: Part I Regular
Papers, vol. 57, pp. 850-862, 2010.

[9] V. Gupta, D. Mohapatra, A. Raghunathan and K. Roy, “Low power
digital signal processing using approximate adders,” IEEE Trans. CAD,
vol. 32, pp. 124-137, 2013.

[10] J. Mitchell, “Computer multiplication and division using binary
logarithms”, IRE Trans. Electron. Comput., vol. 11, pp. 512-517, 1962.

[11] S. Hashemi, R. Bahar and S. Reda, “DRUM: A dynamic range unbiased
multiplier for approximate applications,” in Proc. IEEE/ACM Int. Conf.
Computer Design (ICCD), 2015, pp. 418 - 425.

[12] W. Liu, L. Qian, C. Wang, H. Jiang, J. Han and F. Lombardi, "Design of
approximate radix-4 Booth multipliers for error-tolerant computing,”
IEEE Trans. Computers, vol. 66, pp.1435-1441, Aug. 2017.

[13] Y.-H. Chen and T.-Y. Chang, “A high-accuracy adaptive conditional
probability estimator for fixed-width Booth multipliers,” IEEE Trans.
Circuits Syst. I: Reg. Papers, vol. 59, pp. 594-603, 2012.

[14] G. Zervakis, K. Tsoumanis, S. Xydis, N. Axelos and K. Pekmestzi,
“Approximate multiplier architectures through partial product
perforation: power-area tradeoffs analysis,” in Proc. ACM Great Lake
Symp. VLSI, 2015, pp. 229-232.

[15] L. Chen, Jie Han, W. Liu, and F. Lombardi, "Design of approximate
unsigned integer non-restoring divider for inexact computing." In Proc.
Great Lakes Symp. VLSI, pp. 51-56, 2015.

[16] L. Chen, Jie Han, W. Liu, and F. Lombardi, "On the design of
approximate restoring dividers for error-tolerant applications." IEEE
Trans. Computers, vol. 65, pp. 2522-2533, 2016.

[17] L. Chen, F. Lombardi, P. Montuschi, J. Han, and W. Liu. "Design of
approximate high-radix dividers by inexact binary signed-digit addition."
In Proc. Great Lakes Symp. VLSI, pp. 293-298, 2017.

[18] T Aoki, K. Nakazawa, and T. Higuchi. "High-radix parallel VLSI
dividers without using quotient digit selection tables." In Proc. 30th IEEE
Int. Symp. Multiple-Valued Logic (ISMVL), pp. 345-352, 2000.

[19] S. Hashemi, R. Bahar, and S. Reda. "A low-power dynamic divider for
approximate applications." In Proc. 53rd Annual Design Automation
Conference, p. 105, 2016.

[20] B. Parhami, Computer Arithmetic: Algorithms and Hardware Designs:
Oxford University Press, 2000.

X Y EXDr

Depth=3 Depth=6 Depth=9

Fig. 19 Change detection using EXDr and AXHDs.

X Y EXDr

Depth=3 Depth=6 Depth=9

Fig. 20 Background removal using EXDr and AXHDs.

86 25th IEEE Symbosium on Computer Arithmetic (ARITH 2018)

