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Abstract—This paper proposes a new design of an 
approximate hybrid divider (AXHD), which combines the 
restoring array and the logarithmic dividers to achieve an 
excellent tradeoff between accuracy and hardware performance.  
Exact restoring divider cells (EXDCrs) are used to generate the 
MSBs of the quotient for attaining a high accuracy; the other 
quotient digits are processed by a logarithmic divider as inexact 
scheme to improve figures of merit such as power consumption, 
area and delay. The proposed AXHD is evaluated and analyzed 
using error and hardware metrics. The proposed design is also 
compared with the exact restoring divider (EXDr) and previous 
approximate restoring dividers (AXDrs). The results show that 
the proposed design achieves very good performance in terms of 
accuracy and hardware; case studies for image processing also 
show the validity of the proposed designs. 

Keywords—Approximate Computing; Logarithmic Divider; 
Restoring Array Divider; Low Power. 

I. INTRODUCTION 
Power has been one of the main challenges in integrated 

circuit design. Computing systems are usually designed to 
generate outputs with the highest precision, which despite 
advances in feature size, also results in high power consumption 
and large hardware complexity (such as implementation area). 
In many applications (such as image processing, machine 
learning and computer vision), human perception mitigates the 
effects of computational errors. Approximate computing has 
been proposed as an innovative technique for low power and 
high performance systems in which errors can be tolerated [1]-
[3].  

As basic operations of an arithmetic processor, addition and 
multiplication are very important for achieving high 
performance; therefore, they have been extensively studied for 
approximate computing while also reducing power 
consumption [4]. Error metrics including the error rate (ER), 
error distance (ED), mean error distance (MED), normalized 
mean error distance (NMED) [5] have been proposed for 
evaluating the designs of approximate arithmetic circuits.  
Approximate adders have been extensively studied in the 
technical literature; among the many proposed schemes, 
approximate adder designs include speculative [6-7] and non-
speculative transistor-level full adders [8-9].  

The operation of multiplication is more complex than 
addition. Approximate design techniques can be applied to 
different parts of a conventional multiplier, such as operands 
[10-11], partial product (PP) generation [12] and PP tree [13-
14]. Approximate dividers has received less attention in the 
technical literature. [15] has proposed the design of an 
approximate unsigned non-restoring divider (AXDnr); different 
AXDnrs have been proposed by replacing the logic primitives 
with approximate subtractors. Three types of approximate 
subtractors cell (AXSC) are then designed at transistor level. 
Exact subtractor cells (EXSCs), that are critical in the operation 
of the array divider, are truncated or replaced by AXSCs using 
various schemes. The ED and MED are then used to evaluate 
the error characteristics of the approximate divider. Both the 
restoring and non-restoring array dividers have been analyzed 
for approximate computing; [16] has shown that an approximate 
unsigned restoring divider (AXDr)  has better performance than 
AXDnr with respect to power consumption while also 
introducing a small degradation in accuracy. The same 
replacement and truncation schemes of [15] have been applied 
to a restoring divider; [17] has proposed designs of an 
approximate high-radix divider, in which an approximate 
signed-digit adder cell is utilized to replace the exact signed-
digit adder cell. The high-radix algorithm is usually applied to 
sequential circuits due to the extensive usage of look-up tables.  
A high-radix division scheme without a look-up table has been 
proposed in [18]; the replacement and truncation schemes from 
[15] have also been used to this high-radix exact array divider.  

A divider based on dynamic approximation has been 
proposed in [19]. As the higher order bits are more significant 
than lower order bits, usually an approximate divider is 
designed by truncating the lower bits; for different lengths of 
input operands, leading one detectors and a barrel shifter are 
utilized to reduce the inaccuracy. The lengths of the bits 
processed by the accurate divider are adjustable to reduce 
inaccuracy and power dissipation. 

Approximate division by transforming the operands into the 
logarithmic domain can significantly save power and area; 
however, accuracy is rather low. Conventional array dividers 
are more accurate but they dissipate more power; therefore, this 
paper proposes an approximate hybrid divider (AXHD) based 
on combining the restoring array and the logarithmic dividers. 
Exact restoring divider cells (EXDCrs) are used to correct the 
errors generated by conventional non-iterative logarithmic 
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dividers. The proposed divider designs can achieve excellent 
results for specific applications.  

The paper is organized as follows. Both conventional 
restoring array dividers and conventional non-iterative 
logarithmic are reviewed in Section 2. Section 3 presents the 
proposed design of AXHD. Error analysis and hardware 
evaluation are provided in Section 4. Comparison with the exact 
restoring array dividers and other approximate dividers is also 
provided in this section. The application of the proposed 
approximate divider to image processing is presented in Section 
5. The conclusion is provided in Section 6. 

II. REVIEW 

A. Conventional Restoring Array Divider 
Let A and B to be the two operands of the integer division, and 
the results of division are the quotient Q and the remainder R. 
A is then given by: 

               (1) 
where, the dividend A and the remainder R have the same sign 
and |R|<|B| [20]. The restoring divider is a widely used type of 
array divider. The trial subtraction is performed in each row; the 
corresponding quotient digit is 1 (0) if the trial difference is 
positive (negative). If the quotient digit is 1, the trial difference 
is moved as the partial remainder to the next row; otherwise, the 
partial remainder is immediately dropped. The exact restoring 
divider cell (EXDCr) and an 8 by 4 exact restoring divider 
(EXDr) are shown in Fig. 1 and Fig. 2, respectively [16]. It is 
worth observing that A conventional restoring divider 
overflows when A is large and B is small, while the logarithmic 
divider does not.  

 
Fig. 1 An exact restoring divider cell [16]. 

 
Fig. 2 A conventional unsigned 8 by 4 restoring array divider [16]. 

B. Non-Iterative Logarithmic Divider 
The operands of a logarithmic divider are given by the dividend 
A and the divisor B, A and B are both positive integers, different 

from zero, as the cases where either A, or B or both are zero are 
usually handled separately. k is the exponent, and x is the 
fractional part of the mantissa. They are expressed as follows:  

             (2) 

               (3)

where, k1 and k2 are the so-called characteristics of A and B, 
respectively and represent the position of the leading most 
significant bits. x1 and x2 are in the range of [0,1). The logarithm 
of a quotient, i.e. Q, is equal to the difference of the logarithms 
of the dividend and divisor.  

             (4) 

(5) 

As  when , the approximate 
quotient can be expressed as follows: 

                          (6) 

Therefore, (6) can be calculated by subtractions. There are four 
steps in the conventional logarithmic divider proposed by 
Mitchell [10]: leading one detection, binary-to-logarithm 
conversion, mantissa subtraction and logarithm-to-binary 
conversion. The leftmost one bit is detected by the leading one 
detector (LOD). The binary-to-logarithm converter (BLC) 
converts the input operands into logarithms. Only the most 
significant bit is converted to logarithm, the logarithm of the 
mantissa is approximated by itself. The division is performed by 
a mantissa subtraction by the Subtractor in Fig. 3 in the 
logarithmic domain. The logarithm-to-binary converter (LBC) 
converts the subtraction result back to a binary number as the 
final quotient. The logarithmic divider is shown in block form  
in Fig. 3 [10]. 

 
Fig. 3 A 16 by 8 unsigned non-iterative logarithmic divider [10]. 

III. PROPOSED APPROXIMATE HYBRID DIVIDER 
A logarithm divider consumes significantly less power and 

requires less chip area than a conventional array divider [10] 
because the rows used to perform the subtraction operations 
consume more hardware resources and area compared with the 
simple subtraction in logarithm divider; however, when the 
operand width is large, the accuracy decreases due to the 
approximation in the logarithmic conversion. Therefore, a new 
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approximate hybrid design (AXHD) combining an exact 
restoring and logarithmic dividers is proposed in this work. 
 As mentioned above, the conventional restoring divider will 
overflow when X is large and Y is small, while the logarithmic 
divider won’t. The proposed AXHD combines the array and the 
logarithmic dividers as shown, at block level, in Fig. 4. Extra 
rows are added to the array to avoid overflowing by computing 
more trial subtractions.  For a 16 by 8 EXDr, 8 extra rows are 
added, in which both the quotient and the remainder are 16-bit 
wide. Its design principle is to use the exact division for the most 
significant bits and an approximate logarithmic division for the 
remaining bits. The trade-off is between accuracy, area, speed 
and power.  
 In the proposed design of this approximate divider, p rows 
of EXDCrs are used to calculate the most significant quotient 
digits to improve the accuracy; p should be selected according 
to the accuracy requirement of a specific application and 
therefore, 16-p is the replacement depth. The partial remainder 
generated by EXDCrs is then computed by the logarithmic 
divider for the remaining quotient digits; p rows of EXDCrs 
make up an exact divider whose input dividend is p-bit wide. In 
particular, p=0 corresponds to a full logarithmic divider and 
p=16 corresponds to an exact restoring array divider. If p is 
sufficiently small, then a very simple hardware can be expected 
for implementing the exact division part. Prior to considering 
the 16 by 8 AXHD implementation, we explore the feasibility 
of our design by considering first an 8 by 4 AXHD. Fig. 5 
depicts the scheme for p=2. The first two lines of the EXDC 
blocks correspond to p=2 and the rightmost cascaded part is 
shown Fig. 3, which is drawn now for the case of 8 by 4. 

 
Fig. 4 16 by 8 AXHD based on restoring and logarithmic dividers. 

 

Fig. 5. 8 by 4 AXHD based on restoring and logarithmic dividers for p=2. 

 The length of the quotient digits required by EXDCrs can be 
adjusted by the number of EXDCr rows, i.e., p. A large p results 
in more accurate results at the cost of both a higher power 
consumption and hardware complexity. As a logarithmic 
divider is used for the last quotient bits, the remainder is not 
available. However, the computation of the remainder is 
naturally not in the purposes of approximate division [15].  

Fig. 6 shows a detailed example of the proposed 8 by 4 
AXHD. The dividend is 156 and the divisor is 3 with p =2. The 
final result shows that the difference between the exact quotient 
(i.e., Q=52) and the approximate quotient (i.e., Q=55) is only 3. 
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Fig. 6  An example of the proposed 8 by 4 AXHD. 

IV. ERROR ANALYSIS AND HARDWARE EVALUATION 
The results of the normalized mean error distance (NMED), 

power, delay, area and PDP are provided in this section. The 
NMED is defined as the MED normalized by the maximum 
output of the accurate design. The error results are generated 
using exhaustive simulation. The NMED power product 
(NMPP) are also provided to evaluate the tradeoff between 
power and accuracy. 

The proposed AXHD design is compared with [16], in 
which the rows of EXDCrs are replaced by approximate 
restoring divider cells (AXDCrs) by four replacement schemes, 
i.e., vertical replacement (VR), horizontal replacement (HR), 
square replacement (SR) and triangle replacement (TR). The 
approximate restoring dividers with HR and TR schemes have 
a better performance than those with VR and SR schemes [16]. 
Furthermore, the structure of the HR scheme is similar to the 
proposed scheme. Therefore, the proposed divider is compared 
with the three approximate restoring array dividers (AXDrs) 
with HR and TR schemes (i.e. AXDr1, AXDr2 and AXDr3) of 
[16] and the conventional exact restoring divider. These divider 
have been assessed by utilizing various replacement depths.  

A. Error Analysis 

TABLE I. NMED ( ) OF AXHD AND AXDRS. 

Depth 2 4 6 8 10 12 14 16 
AXHD 0.32 2.17 8.99 33.5 178.3 282 359 377 
AXDr1 HR 1.07 9.05 40.8 160 423.0 630 1,443 1,443 
AXDr2 HR 7.86 33.6 137 566 2,747 13,747 122,187 508,714 
AXDr3 HR 1.01 8.64 37.9 146 370.2 590 1,537 1,635 
AXDr1 TR 0.00 0.12 1.44 9.11 40.70 152 450 721 
AXDr2 TR 0.19 1.39 6.61 27.6 107.4 393.2 1341 4256 
AXDr3 TR 0.02 0.36 2.20 10.2 41.9 155 496 818 
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AXHD can calculate the quotient only; therefore, the 
NMED of the integer quotient is provided in Table I. The 
NMEDs of AXHD at different approximation depth are shown 
in Figs. 7-8; a comparison with AXDrs using HR and TR 
schemes is also provided. As the error of HR and TR grows 
exponentially by increasing the replacement depth, a 
logarithmic axis is used in the figures. 

 
Fig. 7 The NMED of the proposed AXHD and AXDrs using HR schemes for 
various replacement depth. 

 
Fig. 8 The NMED of the proposed AXHD and AXDrs using TR schemes for 
various replacement depth. 

The proposed hybrid divider has a smaller NMED compared 
with previous AXDrs using HR [16] at the same replacement 
depth. Compared with AXDrs with a TR scheme at a small 
depth, the NMED of the proposed AXHD is slightly larger 
compared with AXDrs with a TR scheme. However, as the 
replacement depth is increased, the NMED of the AXHD 
increases slowly and is lower than AXDrs when the replacement 
depth is larger than 12. 

B. Hardware Evaluation 
The proposed design and AXDrs are described at gate-level 

in Verilog HDL and verified by Synopsys VCS. All designs are 
then synthesized by the Synopsys Design Compiler using the 
NanGate 45 nm Open Cell Library. The average power 
consumption is found using the Synopsys Power Compiler with 
a back annotated switching activity file generated from the 
random input vectors. The critical path delay, area, power 

consumption and PDP are reported in this section at different 
values for replacement depth. 

TABLE II. POWER (μW) OF AXHD AND AXDRS. 

Depth 2 4 6 8 10 12 14 16 
AXHD 2675 2130 1724 1279 885 712 616 500 
AXDr1 HR 1930 1867 1785 1657 1672 1623 1520 1506 
AXDr2 HR 1922 1869 1752 1720 1785 1919 1959 2059 
AXDr3 HR 1833 1701 1504 1348 1201 1141 1086 1032 
AXDr1 TR 1953 1953 1936 1832 1765 1645 1572 1545 
AXDr2 TR 1960 1941 1892 1817 1747 1688 1706 1755 
AXDr3 TR 1969 1876 1789 1595 1411 1288 1151 1060 

 
Table II reports the power consumption of the AXHD and 

AXDrs. As shown in Figs. 9-10, by increasing the replacement 
depth, the power of AXHD decreases nearly linear. When the 
replacement depth is larger than 8, the proposed design 
performs better than AXDrs [16]. However, when the 
replacement depth is smaller than 5, AXHD consumes more 
power than  EXDrs. When the replacement depth is smaller 
than 8, AXDrs outperform AXHD in terms of power 
consumption. 

 
Fig. 9 Power of the proposed AXHD, EXDr, and AXDrs using HR schemes at 
various replacement depths. 

 

Fig. 10 Power of the proposed AXHD, EXDr, and AXDrs using TR schemes 
at various replacement depths. 

Table III shows the delay results of AXHD and AXDrs. As 
shown in Figs. 11-12, the delay of AXHD decrease linearly; the 
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AXDrs with HR or TR schemes have no significant 
improvement in terms of delay. In the proposed design, the 
delay has been improved significantly when the replacement 
depth is large because the delay of the logarithmic divider is 
small. When the replacement depth is small, the delay is mainly 
determined by the EXDCrs.  

TABLE III. DELAY (ns) OF AXHD AND AXDRS. 

Depth 2 4 6 8 10 12 14 16 
AXHD 9.01 7.83 6.75 5.69 4.44 3.24 2.2 1.44 
AXDr1 HR 8.62 8.5 8.59 8.56 8.54 8.55 8.63 8.61 
AXDr2 HR 8.43 8.47 8.39 8.26 8.3 8.34 8.09 8.19 
AXDr3 HR 8.51 8.46 8.3 8.25 8.14 8.13 8.23 8.02 
AXDr1 TR 8.84 8.89 8.85 8.76 8.84 8.76 8.75 8.78 
AXDr2 TR 8.8 8.85 8.74 8.79 8.67 8.57 8.6 8.56 
AXDr3 TR 8.86 8.84 8.79 8.75 8.74 8.57 8.5 8.33 

 
Fig. 11 Delay of the proposed AXHD, EXDr, and AXDrs using HR schemes 
at various replacement depths. 

 

Fig. 12 Delay of the proposed AXHD, EXDr, and AXDrs using TR schemes 
at various replacement depths. 

The area results are provided in Table IV. It can be seen in 
Figs. 13-14 that the area of the AXHD decreases steadily with 
an increase of the replacement depth, which is again much 
smaller than AXDrs when the replacement depth is larger than 
8. When the replacement is smaller than 6, the AXHD has a 
larger area than EXD and when the replacement is smaller than 
8, AXDrs have a smaller area. 

TABLE IV. AREA (μM²)  OF AXHD AND AXDRS. 

Depth 2 4 6 8 10 12 14 16 
AXHD 1694 1523 1361 1184 928 775 631 433 
AXDr1 HR 1324 1310 1293 1278 1283 1266 1245 1207 
AXDr2 HR 1294 1231 1163 1096 1033 979 899 843 
AXDr3 HR 1292 1252 1198 1145 1099 1063 995 945 
AXDr1 TR 1362 1362 1364 1340 1334 1317 1304 1303 
AXDr2 TR 1363 1328 1277 1219 1158 1085 1020 967 
AXDr3 TR 1359 1316 1290 1224 1153 1126 1074 1025 

 
Fig. 13 Area of the proposed AXHD, EXDr, and AXDrs using HR schemes at 
various replacement depths. 

 
Fig. 14 Area of the proposed AXHD, EXDr, and AXDrs using TR schemes at 
various replacement depths. 

The power delay product (PDP) is used to evaluate the 
overall hardware performance of the designs (Table V). As 
shown in Fig. 15-16, AXHD has significant advantages when 
the replacement depth is larger than 6. AXDr3 with a TR 
scheme is close to the proposed design. When the replacement 
depth is smaller than 4, EXDr and AXDrs outperform AXHD. 

TABLE V. PDP (fJ)  OF AXHD AND AXDRS. 

Depth 2 4 6 8 10 12 14 16 
AXHD 24102 16675 11636 7280 3929 2308 1355 721 
AXDr1 HR 16640 15871 15334 14186 14281 13872 13118 12968 
AXDr2 HR 16204 15828 14697 14207 14817 16007 15850 16862 
AXDr3 HR 15601 14390 12485 11118 9775 9276 8935 8277 
AXDr1 TR 17265 17361 17134 16050 15601 14414 13752 13567 
AXDr2 TR 17248 17181 16539 15972 15145 14465 14668 15020 
AXDr3 TR 17444 16579 15724 13953 12332 11042 9780 8828 
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Fig. 15 PDP of the proposed AXHD, EXDr, and AXDrs using HR schemes at 
various replacement depths. 

 
Fig. 16 PDP of the proposed AXHD, EXDr, and AXDrs using TR schemes at 
various replacement depths. 

C.  NMED Power Product (NMPP) 
The NMPP is also used to evaluate the trade-off between 

accuracy and power consumption (Table VI).  As shown in Fig. 
17 the proposed AXHD shows a better performance under this 
metric than AXDrs with a HR scheme for all replacement 
depths. However (Fig. 18) only when the replacement depth is 
larger than 12, AXHD is better than AXDrs under the TR 
scheme. 

So under all previous comparative metrics, AXHD has 
advantages in terms of accuracy and hardware performance 
when the replacement depth is larger, so the proposed design is 
suitable for approximate dividers with large bit-width operands. 

TABLE VI. NMPP (nW) RESULTS OF AXHD AND AXDRS. 

Depth 2 4 6 8 10 12 14 16 
AXHD 0.86 4.62 15.5 42.8 157.8 200.8 221.4 188.8 
AXDr1 HR 2.07 16.9 72.9 266 707.5 1021.8 2192.8 2172.6 
AXDr2 HR 15.1 62.8 239 974 4905 26384.2 239389.2 1047341 
AXDr3 HR 1.85 14.7 57.1 197 444.5 672.9 1668.8 1687.4 
AXDr1 TR 0 0.24 2.8 16.7 71.9 249.3 707.9 1114.5 
AXDr2 TR 0.38 2.7 12.5 50.2 187.6 663.7 2286.4 7467.5 
AXDr3 TR 0.05 0.68 3.9 16.3 59.1 199.5 571.1 866.4 

 
Fig. 17 NMPP of the proposed AXHD and AXDrs using HR schemes at 
various replacement depths. 

 

Fig. 18 NMPP of the proposed AXHD and AXDrs using TR schemes at various 
replacement depths.  

V. APPLICATIONS 
In this section, two applications of image processing 

involving pixel division (only for quotient calculation, namely, 
change detection and background removal) are studied using 
the proposed AXHD. 16-to-8 AXHD and EXDr are used to 
compute the inputs (X and Y) of 8-bit grayscale images (Figs. 
19 and 20) with replacement depths of 3, 6 and 9. To implement 
the pixel division operation in an integer divider, the dividend 
is multiplied by a constant for the mean value of the output 
image to be equal to the mean value of the example image prior 
to division. The peak signal-noise ratio (PSNR) at different 
replacement depths is provided (Tables VII and VIII) to show 
the difference between exact and approximate results.  

TABLE VII. PSNR OF AXHD WITH DIFFERENT REPLACEMENT DEPTHS FOR 
CHANGE DETECTION. 

Depth 1 2 3 4 5 6 7 8 

PSNR 
/dB 

Infinite Infinite 84.69  64.99  61.32  54.17  39.87  39.71  

Depth 9 10 11 12 13 14 15 16 

PSNR 
/dB 

39.71  39.71  39.71  39.71  39.71  39.71  39.71  39.71  
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TABLE VIII. PSNR OF AXHD WITH DIFFERENT REPLACEMENT DEPTHS FOR 
BACKGROUND REMOVAL. 

Depth 1 2 3 4 5 6 7 8 

PSNR 
/dB 

Infinite Infinite 74.17  62.95  56.07  50.32  43.04  27.12  

Depth 9 10 11 12 13 14 15 16 

PSNR 
/dB 

27.12  27.12  27.12  27.12  27.12  27.12  27.12  27.12  

For both applications, there is no loss when the replacement 
depth is 1 and 2; the PSNR decreases when the replacement 
depth increases. When the replacement depth is larger than 7, 
the PSNRs converge to 39.71 and 27.12 for change detection 
and background removal respectively, as the input dividend is 
dropped totally into the logarithmic divider. 

VI. CONCLUSION 
The designs of hybrid approximate dividers (AXHDs) have 

been presented in this paper. The non-iterative logarithmic 
divider is combined with a conventional restoring array divider, 
because it has the advantage of low power consumption. By 
replacing the last rows of exact cells (EXDrs) by the 
logarithmic divider, a very good tradeoff between accuracy and 
hardware performance (i.e. power delay and area) is achieved. 
The proposed dividers are analyzed with error and hardware 
metrics; the results show that the proposed AXHD design 

performs better than other approximate dividers, especially 
when the replacement depth is large. Case studies for two 
image processing applications confirm the validity of the 
proposed AXHD design. 
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Fig. 19 Change detection using EXDr and AXHDs. 
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Fig. 20 Background removal using EXDr and AXHDs. 
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