
VeriTracer: Context-enriched tracer for floating-point arithmetic analysis

Yohan Chatelain∗¶, Pablo de Oliveira Castro∗¶, Eric Petit†¶, David Defour‡,
Jordan Bieder§¶, Marc Torrent§¶

∗ University of Versailles, {yohan.chatelain, pablo.oliveira}@uvsq.fr
† Intel, eric.petit@intel.com ‡ University of Perpignan, david.defour@univ-perp.fr

§ CEA, DAM, DIF, F-91297 Arpajon, France, {jordan.bieder, marc.torrent}@cea.fr
¶ Exascale Computing Research, France

Abstract

VeriTracer automatically instruments a code and
traces the accuracy of floating-point variables over
time. VeriTracer enriches the visual traces with con-
textual information such as the call site path in which
a value was modified. Contextual information is im-
portant to understand how the floating-point errors
propagate in complex codes. VeriTracer is implemented
as an LLVM compiler tool on top of Verificarlo.
We demonstrate how VeriTracer can detect accuracy
loss and quantify the impact of using a compensated
algorithm on ABINIT, an industrial HPC application
for Ab Initio quantum computation.

1. Introduction

The recent evolution of HPC system – massive
parallelism, large SIMD vectors, asynchronicity, com-
plex memory hierarchy – and the constant growth
in computational power allow for higher resolution
simulations of complex physical phenomena. Because
HPC optimizations change the order of the operations,
they can lead to numerical accuracy bugs.

The need for tools and documented best practices
to address numerical bugs such as inherent instability
of the simulated phenomena, reproducibility of results
across architectures, compilers, and languages, are
becoming of prime importance.

The floating-point arithmetic (FPA) models real
numbers with finite precision. Consequently, the result
of an FPA operation may be truncated to fit in a finite
number of digits. The accumulation of round-off er-
rors, absorption, or cancellations along a computational
flow may lead to accuracy and precision loss [1].

In order to understand and prevent such numerical
bugs raised during a run of a given implementation,
it is important to propose numerical debugging tools

to assist users. In this paper we tackle this problem
through the following contributions:

• VeriTracer, a visualization tool that brings tem-
poral dimension to a graphical Floating-Point
analysis.

• A methodology to reduce the search space for
floating-point bugs by detecting critical functions
according to a user-defined numerical criterion.

• The use of source location and Information Flow
Analysis to enrich and help the analysis of the
precision traces.

• A co-design study to detect and improve loss
of accuracy on ABINIT [2], an academic and
industrial physics simulation code.

2. Motivating example

Evaluating the numerical reliability of a given results
computed after a long run of a program involving
numerous floating-point operations is most of the time
limited to the observation of the final results, which
might not be sufficient, as shown in the next example.

Let consider the following series proposed by J.-M.
Muller [3] :

un+1 = 111− 1130

un
+

3000

unun−1
(1)

The fixed-points of this series are roots of the
polynomial: u3 − 111u2 + 1130u − 3000 = (u −
5)(u − 6)(u − 100). Given the selected starting point
u0 = 2, u1 = −4 the mathematical limit of this series
is the root 6. Nevertheless, when computed with single
or double FPA, it converges toward the dominant root
100. Furthermore, as shown by Parker [4, p. 67], if one
is focusing on the final result, one can conclude that
the computation is fully precise and correct, which is
not the case.

65XXX-X-XXXXXXX-X-X/ARITH18/ c©2018 IEEE



Figure 1: Evolution of the number of significant dec-
imal digits (s) over time for the sequence un in
equation 1. For n = 14, s below 0 means that u14

has no correct decimal digits. Only checking the final
results is not enough to detect the accuracy loss.

Figure 1 plots the evolution of the number of sig-
nificant digits over time. One can observe, that the nu-
merical precision slowly degrades until it reaches zero
significant digits and then increases until it reaches
sixteen, the maximum number of significant digits
in double precision. The final result has been gener-
ated from an intermediate result with no significance
alerting the developer about the correctness of the
final result. All accuracy has been lost, and the series
converge precisely to 100 instead of 6.

The goal of VeriTracer is to display the numerical
history as a temporal story, thus helping understand the
numerical behavior of programs. It allows focusing on
a program’s region of interest, in a given execution
context, and visualize its numerical behavior. Figure 1
was automatically generated with VeriTracer.

3. Background

Floating-point arithmetic (FPA) refers to an approxi-
mation of real numbers and operations on them. FPA is
defined by the IEEE-754 standard [5]. The discretiza-
tion of real numbers by FP leads to the so-called error
of representation. For example, the decimal number 0.1
has a finite representation in base 10 while it has an
infinite representation in base 2. Also, the result of an
operation on FP may have more digits than available in
the format, leading to round-off errors. Finally, when
subtracting two numbers that are very close, part of
the mantissa is canceled which reduces the number of
significant bits in the result. Goldberg [1] reviews the
floating point representation and its dangers.

Stochastic Arithmetic proposes automatic methods
to estimate the number of significant digits in a result.
Numerical errors are approximated by introducing ran-
dom perturbations at each FP operation. By repeating

this process many times and studying the spread of
the output results one can stochastically approximate
the significance of a computation. Two main methods
have been proposed: CESTAC [6] and Monte Carlo
Arithmetic (MCA) [4].

CADNA [7] is a library implementing CESTAC.
It provides special C and Fortran types to simulate
floating-point inaccuracies by randomly changing the
IEEE rounding mode. Verrou [8] is a Valgrind tool that
automatically replaces all the floating-point operations
by CESTAC operations. A recent extension [9] of
CADNA leverages Delta-Debug [10] to pinpoint the
parts of a source code that can be rewritten using
single precision. Verificarlo [11] is a compiler based
on LLVM which replaces the floating-point opera-
tions by their MCA counterparts. FpDebug [12] uses
shadow memory for detecting accuracy problems with
Valgrind by computing in higher precision. Similary,
Herbgrind [13] is a tool based on Valgrind that can
automatically localize floating-points errors and find
the causes of inaccuracies by tracking operations de-
pendencies. Craft HPC [14] instruments codes for de-
tecting catastrophic cancellations at runtime. Although
efficient, these tools study the error locally. Measuring
the accuracy loss for a given variable does not provide
information about its story: how the numerical quality
of a variable evolves during its life is potentially
critical information as section 2 revealed.

Collecting and tracing numerical accuracy informa-
tion over time is a novel contribution of this paper.
Nevertheless, collecting, processing and tracing perfor-
mance metrics is a well studied problem in the perfor-
mance characterization research field [15], [16], [17],
[18], [19]. Performance characterization must analyze
an application to target potential execution overhead.
Such tools can display a significant amount of infor-
mation over time for large multiprocess applications.
We aim at bringing solutions to extract and visualize
complex information over time from the performance
characterization community to the numerical analysis
community.

3.1. Monte Carlo Arithmetic

Monte Carlo Arithmetic (MCA) as proposed by
Parker [4] corresponds to a stochastic arithmetic that
extends the IEEE-754 Floating-Point Arithmetic. MCA
models the round-off errors of the FPA by introducing
a random noise in each floating-point operation. By
sampling a large number of MCA executions of a
program, one can simulate the error distribution for
a given result and estimate the number of significant
digits. Replacing floating-point expression by their

66 25th IEEE Symbosium on Computer Arithmetic (ARITH 2018)



MCA counterparts by hand is a tedious task for real
codes. Verificarlo [11] automates this process.

Unlike other stochastic arithmetic, the advantage of
MCA is that the magnitude of the error introduced is
configurable. Therefore it can simulate the effects of
running on lower precision hardware. The precision at
which MCA operates is called the virtual precision.
For a given value x, the noise is modeled as follow:

inexact(x) = x+ 2ex−tξ

where ex is the order of magnitude of x, t the virtual
precision and ξ a random variable between [− 1

2 ,
1
2 ].

To ensure that MCA approximation behaves as FPA
on average, the probability distribution of ξ must be
unbiased and its expected average equal to 0 [4, p. 33].
In the following, we consider ξ to be uniform. We
define � as the FPA approximation of an arithmetic
operation. MCA provides three error modes.

Random Rounding (RR): x�RRy = inexact(x�y),
models round-off error by introducing an error after the
operation. From a numerical analysis point of view,
it can be seen as a forward error analysis. RR mode
preserves exact operations [4, p.33,§6.4] when used
with t = 53 for double values (t = 24 for single).

Precision Bounding (PB): x�PB y = inexact(x)�
inexact(y), models cancellation by disturbing both
inputs. It models the backward error.

Full MCA: x �MCA y = inexact(inexact(x) �
inexact(y)) is the composition of the previous modes.

By simulating round-off and cancellation errors in a
large number of samples, MCA is able to estimate the
numerical quality of a computation. The number of
significant digits can be estimated by computing the
magnitude of the relative error in the resulting sample,

s = − logβ

∣
∣
∣
μ

σ

∣
∣
∣

where σ is the standard deviation and μ the expected
value for a large enough number of sampling and β is
the base. One can refer to [4] for a complete discussion
of the different modes and their link with round-off
errors and a proof that s is a good approximation of
the number of significant digits of the result.

4. VeriTracer: Principles of design

In this section, we address the design of VeriTracer,
a tool built upon Verificarlo[11]. This tool aims at
providing a temporal dimension to numerical analyses
of real-world programs.

To achieve this goal, VeriTracer automatically in-
struments a code to replace each floating-point opera-
tion with its MCA counterpart. Figure 2 presents the

Figure 2: VeriTracer workflow.

workflow of VeriTracer built upon Verificarlo, a tool
based on LLVM Compiler [20]. First, VeriTracer takes
source code supported by LLVM front-end as input
files such as C, C++ or Fortran. Second, VeriTracer
replaces every FP operation by its MCA equivalent
and inserts tracing probes to gather error and context
information. Third, an executable is generated and is
run multiples times, such that each sample produces a
binary trace. Fourth, traces are merged and a visual
representation enriched with context information is
produced. One can notice that by operating at the back-
end level, the optimizations made by the compiler are
preserved and instrumented by VeriTracer.

4.1. Instrumentations

A program manipulates numerical values through
variables or constants in various formats on which
operations are applied. The instrumentation platform
must gather numerical information such as accuracy
on any variables at every step during its lifetime and
associate this information with its context.

VeriTracer relies on the Verificarlo framework which
replaces every FP operations by its MCA counterparts.
To gather the tracing and context information, Veri-
Tracer inserts tracing probes after each FP operation.
During each execution of the program, data produced
by the VeriTracer’s probes are saved in binary files,
with one file per MCA run.

Instrumenting a program is possible either at com-
pile time as we do in VeriTracer with LLVM or
dynamically with a framework such as Valgrind or Pin.
The compile time instrumentation has less overhead at
runtime since no dynamic patching is necessary. For
example, the authors of AddressSanitizer [21] report
a smaller slowdown when using LLVM for instru-
mentation compared to higher overhead with dynamic
instrumentation tools such as Valgrind.

25th IEEE Symbosium on Computer Arithmetic (ARITH 2018) 67



Figure 3: Control-flow analysis

4.2. Information flow analysis

In this article we consider an asynchronous analysis
based on a Monte Carlo process. Each run generates
a set of data, and many runs are collected. However,
since the analysis is asynchronous, we must ensure
that variables come from the same control-flow path
to build meaningful statistic. Since each execution is
slightly different from the others due to the noise
added by MCA, they may have divergent flow paths.
Moreover, from a temporal point of view, two measures
for a given variable may not be correlated if they do
not share the same history. This history is related to
the execution flow path. To tackle this issue, we need
to compare the information flow of variables. This is
called information flow analysis. This analysis can be
done at three different granularities: context, control-
flow and data-flow. In the following, we outline our
design for the three information flow analysis in Veri-
Tracer, currently only context analysis is implemented.

4.2.1. Context analysis. Context-analysis considers
the context of a function call where the probe is
located. A function can be called by different parent
functions which can be called themselves by different
functions. The list of the caller ancestors is the call
site path (CSP). Depending on its CSP, a function may
have different behaviors. Not identifying them can lead
to wrong interpretations since successive values may
not be correlated, from a temporal point of view.

4.2.2. Control-flow analysis. The control-flow analy-
sis considers the path taken within a function where
the probe is located. Figure 3 illustrates this problem.
On this example, at stage 1, the program can take
the branch 2 or not. Among different executions, the
execution trace will not exhibit the same number of
variables traced, whether they take this branch or not.
Another issue with Control-flow analysis arises when
considering basic blocks 4 and 5. Both blocks use the
same variables but in different sequences of operation.

An efficient solution to control-flow analysis con-
sists in dynamically computing a hash value associated

with a path as it is proposed in [22]. The hash sum
captures the branches path taken and can differentiate
execution paths. It tags each branch with a unique
identifier and builds the hash value associated with a
path. It applies a hash function between the previous
and the current branch visited. The hash function is
chosen to minimize collisions, with a small overhead.

4.2.3. Data-flow analysis. The data-flow analysis con-
siders the dependencies between variables across a
program. As the errors introduced by MCA can be
propagated through calculations, it is interesting to
keep track of these dependencies. This class of analysis
allows us to observe the interactions between variables,
and have information on errors propagation.

Taint analysis [23] checks which computations are
affected by a set of variables tainted by the user. A
taint policy defines the propagation rules for tainting.
Tainted variables would be, in our case, the variables
disturbed by MCA. The taint flow follows variables
affected by the tainted variables to construct the
contamination chain which represents the variables
affected by the error introduced.

The forward symbolic execution [23] represents the
execution of a program with a logical formula. With
a logical formula, it is possible to apply mathematical
logic to the data-flow analysis and reason on values
domain providing strong proofs. However, the number
of possibilities to explore is exponential.

4.3. Pinpointing relevant functions

Introducing MCA errors and tracing each function
of a large code is an expensive process. Moreover,
disturbing the computation of a function may impact
the computation of others functions. We should an-
alyze functions by groups, however, this leads to a
combinatorial explosion. To reduce the search space,
we propose a two steps heuristic. First, functions are
separated according to their numerical impact on the
precision based on a criterion given by the user, which
can be a reference value computed by the program.
Second, functions are classified according to their
impact on the selected criterion.

4.3.1. Search space reduction. The solution we pro-
pose consists in instrumenting one function of the
program at a time. We execute each function with
the maximal MCA error that is to say using a virtual
precision of 1 bit. If the reference value computed with
MCA is different from the IEEE result, the function is
tagged as critical and not critical otherwise.

68 25th IEEE Symbosium on Computer Arithmetic (ARITH 2018)



By focusing on executions with a single modified
function, our process does not capture coupling effects
which would require more costly and sophisticated
techniques such as ANOVA multivariate analysis. Nev-
ertheless, it provides a reasonable approximation of
the set of critical functions that impact the criterion,
therefore reducing the search space.

4.3.2. Search space ordering. The identification of
interesting functions is done by ordering the set of
critical functions using numerical stress resistance.
Numerical stress resistance consists in looking for the
minimal virtual precision (tmin) such that the criterion
is identical to the one computed without MCA. tmin

is identified in logarithmic time by dichotomy on the
level of error introduced during MCA.

Once, tmin is gathered for every function, the set
of critical functions is ordered according to the tmin

value. Functions with a small (large) tmin are con-
sidered to have a minimal (maximal) impact on the
numerical error of the criterion. In the current stage of
development of VeriTracer, this ordered set is displayed
on a graph for manual inspection and selection of
functions of interest.

4.4. LLVM instrumentation

Instrumentation is done at Intermediate Representa-
tion (IR) [20] level. The LLVM IR is a virtual assembly
code which abstracts hardware through virtual regis-
ters. In this format, there is no strict mapping between
virtual registers and physical registers. LLVM transfers
values between the memory and virtual registers with
the load and store instructions. The memory is
divided into three parts: the stack, the heap, and the
global area. The alloca instruction allocates memory
on the stack. LLVM uses Static Single Assignment
(SSA) form to manage virtual registers. This form de-
fines each variable once. An instruction that produces
a value, like the add instruction, implicitly creates a
new virtual register to represent the resulting value.

Without optimizations (-O0), LLVM maps each
variable to an address in memory. Each memory access
to a variable is translated as a load or store instruc-
tion. It is therefore straightforward to track FP value
changes since they directly map to store instructions.
VeriTracer identifies all FP store instructions and
inserts, immediately after each of them, a call in-
struction to a probe. Figure 5 shows the LLVM IR
of the TwoSum algorithm [25] (figure 4) compiled
without optimizations (-O0).

However, production codes are most of the time
compiled with optimizations, which are grouped into

optimizations sets such as -O2 or -O3. Those opti-
mizations sets include the mem2reg pass. At the IR
level, this optimization promotes memory references
to register references. In those cases, VeriTracer may
miss variables located in virtual registers since store
instructions never use them as shown figure 6. To over-
come this problem, VeriTracer checks every operation
on FP numbers, and if the LLVM value is linked to a
named variable, it inserts a probe.

LLVM maintains debug information about variables
during the compilation process called metadata.
Metadata are available when the debug mode is en-
abled (with -g flag). VeriTracer accesses the metadata
through functions provided by the LLVM API to
retrieve the name, the memory address, the calling
function and the source line of operation.

VeriTracer handles scalar and derived types such as
pointers, arrays, structures and any complex compound
types. LLVM uses the getelementptr instruction
to compute the memory address of a sub-element. As
a sub-element can be arbitrarily complex, multiples in-
dexes are required. For pointers, it returns the variable
targeted, for structures, it returns a pointer to a given
field, and for arrays, it returns a pointer to the element
at a given index. VeriTracer parses the intermediate
pointer chain recursively until a root variable named
in the source code is found.

5. ABINIT: industrial testcase

ABINIT [2] is a program to calculate, from the
quantum equations of density functional theory (DFT),
the optical, mechanical, vibrational, and others observ-
able properties of materials. ABINIT deduces these
properties from the properties of electrons whose num-
ber is the dimensioning variable.

It works on any chemical composition ranging from
molecules to nanostructures or solids and is widely
used by industrial and academics. ABINIT is a For-
tran program made of 1307 files, 5835 functions, for
851615 lines of code.

In this use case, ABINIT computes the total-energy
Etotal of a system composed of unit cells of 5 atoms
(BaTiO3). This structure is a variant of a type of
crystal structure called Perovskite. ABINIT is deter-
ministic: the IEEE result is the same between two
executions with the same inputs.

5.1. Selection of functions of interest

In a first step, we use Etotal accuracy as the criterion
for the filtering described in section 4.3.1. Table 1
shows that, for that use-case and solver setting, among

25th IEEE Symbosium on Computer Arithmetic (ARITH 2018) 69



void twoSum(double a,double b,
double *x_ptr,double *e_ptr)
{ double x = a + b;
double z = x - a;
double e = (a -(x-z))+(b-z);
*x_ptr = x; *e_ptr = e; }

Figure 4: TwoSum [24] in C

define void @twoSum(double %a,double
%b,double* %x_ptr,double* %e_ptr)

{%5 = load double* %a
%6 = load double* %b
%7 = fadd double %5, %6 ; a+b
store double %7, double* %x ; x=a+b
... }

Figure 5: IR with -O0

define void @twoSum(double %a,double
%b,double* %x_ptr,double* %e_ptr)

{
%1 = fadd double %a, %b ; a+b (x)
...

}

Figure 6: IR with -O3 (after reg2mem)

LLVM IR of the TwoSum function (fig. 4) with (fig. 6) and without (fig. 5) compiler optimizations. Without the
reg2mem pass, LLVM loads operands from memory and stores the result in memory for each FP operations. With
optimizations, intermediate computations transit through registers instead of memory, as computation of x shows.

#Functions #FP operations

Functions visited 30410 308704
Functions with FPA 2952 308704
Critical functions 88 19235
simp_gen 1 41

Table 1: ABINIT code statistics. Filtering reduces the
search space by 33.

Instrumentation Time (s) Overhead

Original 201 1
Probes 208 1.03
MCA 236 1.17
VeriTracer (Probes + MCA) 238 1.18

Table 2: Instrumentation overhead on the Occigen clus-
ter when producing the traces in figure 8. VeriTracer
combines two instrumentations: tracing Probes, and
replacing FPA operations replaced by MCA operations.

the 2952 functions which contain FP operations, only
88 critical functions affect Etotal when noise is added.
This filtering step reduces by 33 the search space.

The second step consists of performing a numerical
sensitivity analysis sorting functions from the critical
functions set. Figure 7 computes for each function of
the critical functions set the minimal virtual precision
required to reach machine accuracy on Etotal. In other
words, the virtual precision is the number of bits
required to compute the same Etotal than in IEEE
mode. Functions close to zero have a low impact on
Etotal. On the other hand, functions that are close to
53 do not tolerate any loss of precision.

Filtering requires 2952 runs for the first step (the
number of functions) and at most 616 runs for the
second dichotomy step (88 functions × log2 53).

5.2. Tracing analysis of numerical loss

Table in figure 7 corresponds to the five most
sensitive functions for the selected criterion. In the
typical VeriTracer workflow, each of these sensitive

Figure 7: Numerical sensitive analysis on the Per-
ovskite use case. For each function on the y-axis, we
plot the minimal virtual precision required to reach
machine precision accuracy. Table on the top shows
the 5 most sensitive functions of the hatched area.

functions would be analyzed in detail. However, for
the sake of brevity in the sequel of this article, we will
only focus on simp_gen which computes an integral
by Simpsons’ rule over a generalized 1D-grid.

The main loop of simp_gen is at its core a dot
product between a function to integrate and an input
vector. Simp_gen is called many times in ABINIT
and appears in 31 different call-site paths (CSP).

VeriTracer uses Random Rounding with 53 bits
of virtual precision to simulate IEEE round-off er-
ror in double precision. We compiled ABINIT with
VeriTracer and ran 24 MCA traces. MCA traces are
independent and can be executed concurrently. In this
case, the 24 runs were launched in parallel on the
CINES Occigen cluster. Occigen has 2106 nodes with
2 processors Intel 12-Cores (E5-2690V3@2.6 GHz) by
nodes. Each node has 64 Go or 128 Go of RAM.

After post-processing, VeriTracer produces figure 8,
which represents the number of significant digits for
each call to simp_gen. Each point has a color that
depends on its CSP. Many CSPs only correspond to

70 25th IEEE Symbosium on Computer Arithmetic (ARITH 2018)



Figure 8: Original Figure 9: Compensated

Figures show profiles produced by VeriTracer of simp_gen. Several accuracy losses present in the original version
(fig. 8) are improved by the compensated algorithm Dot2 (fig. 9). Each color maps one of the 31 distinct CSPs.
Dot2 improved 30 out of 31 CSPs.Vertical dashes separate the main CSPs.

Figure 10: Without CSP, one concludes that the accu-
racy improves at the marked invocation. With CSP, one
knows that the traces belong to different computations.

a single call to simp_gen and are not easily identi-
fiable on the figure. Figure 10 is a zoom of figure 8
which illustrates that CSPs are crucial for analyzing
dependencies: without CSPs context information, one
would misinterpret results and conclude that precision
is enhanced after invocation 51000, while in fact, those
computations are independent. Furthermore, arches
within the same CSP are due to different inputs: when
integral results get close to zero, the accuracy lowers.

Among the four main CSPs, we observe several
downward spikes that correspond to accuracy loss in
the Simpsons’ integral computation. Up to six digits
of precision are lost in some of the calls.

Table 2 shows the implementation performance of
VeriTracer when producing the traces in figure 8. Each
VeriTracer execution is on average 1.18× slower than
the original execution (only the simp_gen function
is instrumented).

5.3. Effect of a compensated dot product

In the previous section, VeriTracer identified sev-
eral instances of accuracy loss during the calls to
simp_gen, one of the top five sensitive functions.

Ogita [24] introduces the dot2 algorithm that uses
an error correcting term. Since simp_gen can be
modeled as a large dot product computation, it was

rewritten with libeft dot2 implementation [26]. We
use VeriTracer to measure the impact in ABINIT and
check how much it improves the accuracy losses.

Compensated algorithms work by using exact can-
cellations to compute exact error terms. In PB mode,
each exact cancellation must be protected with calls to
VeriTracer to temporarily disable MCA noise. Never-
theless, here RR t = 53 mode does not break the exact
operations in libeft as explained in section 3.1.

After running 24 times the simp_gen compensated
version of ABINIT, VeriTracer produces figure 9. In 30
out of the 31 CSPs, the compensated algorithm fully
fixed the precision loss. Interestingly, one of the CSPs
(in red color) was not fixed by dot2. The failing CSP
computation produces multiple cancellations, but our
initial analysis shows that the cancellations are small
enough (11 bits are canceled) to be compensated. A de-
pendency analysis of the code shows that simp_gen’s
inputs in the failing CSP are themselves produced
by upstream calls to simp_gen. The precision loss
seems to be tied to the complex dependencies between
the multiple calls and require further study.

In this section, we showed how VeriTracer could
measure the impact of a numerical optimization such
as using a compensated algorithm. We were able to
entirely fix 30 out of 31 CSPs in the Simpson’s integral
computation in ABINIT.

6. Conclusion

VeriTracer is a tool to visualize the numerical be-
havior and quality of variables over time automatically.
It is built upon Verificarlo, a compiler tool which
implements Monte Carlo Arithmetic. In this article, we
have demonstrated, on an industrial physics simulator,
how VeriTracer helps in the detection of numerical
problems, in the co-design by pinpointing parts of the
code where instabilities arise and in visualizing the
impact of numerical corrections.

25th IEEE Symbosium on Computer Arithmetic (ARITH 2018) 71



This paper exposes several methodologies to auto-
mate the information flow analysis. Compilation meta-
data enriches the floating-point instrumentation and
context-sensitive analysis disambiguates the analysis.

VeriTracer is available at http://www.github.com/

verificarlo/tree/veritracer under the GPL license.
Acknowledgements We thank Exascale Computing Re-

search Lab supported by CEA, Intel, and UVSQ. This work
has been granted access to the HPC resources of CINES
under the allocation 20XX-A0031010295 made by GENCI.

References

[1] D. Goldberg, “What every computer scientist should
know about floating-point arithmetic,” ACM Computing
Surveys (CSUR), vol. 23, no. 1, pp. 5–48, 1991.

[2] X. Gonze, F. Jollet, et al., “Recent developments in the
ABINIT software package,” Computer Physics Com-
munications, vol. 205, pp. 106–131, 2016.

[3] J.-C. Bajard, D. Michelucci, J.-M. Moreau, and J.-
M. Muller, “Introduction to the Special Issue ”Real
Numbers and Computers”,” in The Journal of Universal
Computer Science, pp. 436–438, Springer, 1996.

[4] D. S. Parker, Monte Carlo Arithmetic: exploiting ran-
domness in floating-point arithmetic. University of
California. Computer Science Department, 1997.

[5] D. Zuras, M. Cowlishaw, A. Aiken, M. Applegate,
D. Bailey, S. Bass, D. Bhandarkar, M. Bhat, D. Bindel,
S. Boldo, et al., “IEEE standard for floating-point
arithmetic,” IEEE Std 754-2008, pp. 1–70, 2008.

[6] J. Vignes, “Discrete Stochastic Arithmetic for Validat-
ing Results of Numerical Software,” Numerical Algo-
rithms, vol. 37, no. 1-4, pp. 377–390, 2004.

[7] F. Jézéquel and J.-M. Chesneaux, “CADNA: a library
for estimating round-off error propagation,” Computer
Physics Communications, vol. 178, no. 12, 2008.

[8] F. Févotte and B. Lathuiliere, “VERROU: a CESTAC
evaluation without recompilation,” SCAN 2016, p. 47,
2016.

[9] S. Graillat, F. Jézéquel, R. Picot, F. Févotte, and
B. Lathuilière, “Auto-tuning for floating-point precision
with Discrete Stochastic Arithmetic.” working paper or
preprint, June 2016.

[10] A. Zeller, “Isolating cause-effect chains from computer
programs,” in Proceedings of the 10th ACM SIGSOFT
symposium on Foundations of software engineering,
pp. 1–10, ACM, 2002.

[11] C. Denis, P. de Oliveira Castro, and E. Petit, “Verifi-
carlo: checking floating point accuracy through monte
carlo arithmetic,” in Computer Arithmetic (ARITH),
23nd Symposium on, pp. 55–62, IEEE, 2016.

[12] F. Benz, A. Hildebrandt, and S. Hack, “A dynamic pro-
gram analysis to find floating-point accuracy problems,”
ACM SIGPLAN, vol. 47, no. 6, pp. 453–462, 2012.

[13] A. Sanchez-Stern, P. Panchekha, S. Lerner, and Z. Tat-
lock, “Finding root causes of floating point error with
herbgrind,” arXiv preprint arXiv:1705.10416, 2017.

[14] M. O. Lam, J. K. Hollingsworth, and G. Stewart, “Dy-
namic floating-point cancellation detection,” Parallel
Computing, vol. 39, no. 3, pp. 146–155, 2013.

[15] S. S. Shende and A. D. Malony, “The TAU parallel per-
formance system,” The International Journal of High
Performance Computing Applications, vol. 20, no. 2,
pp. 287–311, 2006.

[16] J. Reinders, “VTune performance analyzer essentials,”
Intel Press, 2005.

[17] V. Pillet, J. Labarta, T. Cortes, and S. Girona, “Par-
aver: A tool to visualize and analyze parallel code,”
in Proceedings of WoTUG-18: transputer and occam
developments, vol. 44, pp. 17–31, IOS Press, 1995.

[18] A. Knüpfer, H. Brunst, J. Doleschal, M. Jurenz,
M. Lieber, H. Mickler, M. S. Müller, and W. E. Nagel,
“The vampir performance analysis tool-set,” Tools for
High Performance Computing, pp. 139–155, 2008.

[19] L. Djoudi, D. Barthou, et al., “Maqao: Modular assem-
bler quality analyzer and optimizer for itanium 2,” in
The 4th Workshop on EPIC architectures and compiler
technology, San Jose, vol. 200, 2005.

[20] C. Lattner and V. Adve, “LLVM: A compilation frame-
work for lifelong program analysis & transformation,”
in Proceedings of the international symposium on Code
generation and optimization, p. 75, IEEE, 2004.

[21] K. Serebryany, D. Bruening, A. Potapenko, and
D. Vyukov, “AddressSanitizer: A Fast Address Sanity
Checker.,” in USENIX Annual Technical Conference,
pp. 309–318, 2012.

[22] M. Zalewski, “American fuzzy lop,” 2015.

[23] E. J. Schwartz, T. Avgerinos, and D. Brumley, “All
you ever wanted to know about dynamic taint analysis
and forward symbolic execution (but might have been
afraid to ask),” in Security and privacy (SP), 2010 IEEE
symposium on, pp. 317–331, IEEE, 2010.

[24] T. Ogita, S. M. Rump, and S. Oishi, “Accurate sum and
dot product,” SIAM Journal on Scientific Computing,
vol. 26, no. 6, pp. 1955–1988, 2005.

[25] D. E. Knuth, “The art of computer programming, 3rd
edn. seminumerical algorithms, vol. 2,” 1997.

[26] F. Févotte and B. Lathuilière, “LibEFT: a library im-
plementing Error-Free transformations,” 2017.

72 25th IEEE Symbosium on Computer Arithmetic (ARITH 2018)


