
FP-ANR: A representation format to handle floating-point cancellation at run-time

David Defour∗

LAMPS, Univ. Perpignan Via Domitia, F-66860, Perpignan, France
∗ david.defour@univ-perp.fr

Abstract—When dealing with floating-point numbers, there

are several sources of error which can drastically reduce

the numerical quality of computed results. One of those er-

ror sources is the loss of significance or cancellation, which

occurs during for example, the subtraction of two nearly

equal numbers. In this article, we propose a representation

format named Floating-Point Adaptive Noise Reduction (FP-
ANR). This format embeds cancellation information directly

into the floating-point representation format thanks to a ded-

icated pattern. With this format, insignificant trailing bits

lost during cancellation are removed from every manipulated

floating-point number. The immediate consequence is that it

increases the numerical confidence of computed values. The

proposed representation format corresponds to a simple and

efficient implementation of significance arithmetic based and

compatible with the IEEE Standard 754 standard.

1. Introduction

Floating-point numbers, which are normalized by the
IEEE Standard 754 standard [1], correspond to a bounded
discretization of real numbers. Therefore, a floating-point
number corresponds to the representation of an exact num-
ber combined with errors due to discretization, accumulation
of rounding errors or cancellation. In other words, a floating-
point number embeds useful information along with noise
linked to those errors.

When numerical noise becomes dominant, for example
during catastrophic cancellation, there are no more useful
bits of information in the representated numbers. Unfortu-
nately, the occurence of this situation is undetectable just
by looking at the representation. This is due to the fact
that with the widely used IEEE Standard 754 representation
format, there is no way of distinguishing useful numerical
information from noise. This problem has been identified
and addressed since the late 1950s with significance arith-
metic [2]. Significance arithmetic addressed these issues by
tailoring the number of digits to their needs.

Significance arithmetics is regaining interest thanks to
the Unum proposal [3] or indirectly through numerous prob-
lems encountered with exascale computers and the lack of
confidence in numerical results [4]. If the Unum system is
based on real problems, the proposed solution is subject to
criticism for numerous reasons as pointed out by W. Kahan

[5]. On the other hand, indirect solutions based on software
solutions to detect cancellation [6], [7], or avoiding rounding
errors [4] are not meant to be efficient nor effective for real
time execution.

This article proposes a new way to represent significant
information in floating-point numbers. The solution consists
of an altered IEEE Standard 754 representation format of the
mantissa. That information is stored using a simple pattern
that replaces insignificant digits. This makes such number
representation almost as accurate as original IEEE Standard
754 numbers. Therefore, the proposed solution corresponds
to a simple, efficient and IEEE Standard 754 compliant
implementation of significance arithmetic.

2. Preliminaries

Floating-point numbers are approximations of real num-
bers. The concept of approximation is associated with the
concept of errors. Digits of a floating-point representation
number can be split into two parts; a significant and an
insignificant part. This section provides some background
on IEEE Standard 754 floating-point arithmetic, errors and
significance arithmetic.

2.1. The IEEE Standard 754 standard

The current version of the floating-point standard, the
IEEE Standard 754[-2008] [1] published in August 2008,
includes the original binary formats along with three new
basic formats (one binary and two decimal).

Definition 1 (Floating-Point Numbers). A IEEE Standard
754 representation format is a “set of representations of
numerical values and symbols” made of finite numbers, two
infinities and two kinds of NaN (Not A Number). The set
of finite numbers are described by a set of three integers
(s,m,e) corresponding respectively to the sign, the mantissa
and the exponent. The numerical value associated with this
representation is

(−1)s ×m× be.

Values that can be represented are determined by the base
or radix b (2 or 10), the number (p) of digits in the mantissa
and the exponent parameter emax such that:

0 ≤ m ≤ bp − 1

57XXX-X-XXXXXXX-X-X/ARITH18/ c©2018 IEEE

and
1− emax ≤ e+ p− 1 ≤ emax

It should be pointed out that the number e+ p− 1 is called
the ”exponent” in some literature.

The value Zero is represented with a 0 mantissa and a
sign bit specifying a positive or negative zero.

In the case of binary formats, representation of finite
numbers is made unique by choosing the smallest repre-
sentable exponent. Numbers with an exponent in the normal
range have the leading bit set to 1. It corresponds to an
implicit bit as it is not present in the memory encoding,
allowing the memory format to have one more bit of pre-
cision. This extra bit is not present for subnormal numbers
which have an exponent outside the normal exponent range.

For example, the IEEE Standard 754 double precision
format (or binary64) is represented with 64 bits which are
split into 1 sign bit, p = 52 bits of mantissa and e = 11 bits
of exponent, whereas single precision format (or binary32)
is represented with 32 bits split into 1 sign bit, p = 23 bit
of mantissa and e = 8 bits of exponent.

2.2. Floating-Point Errors

Floating-point numbers representation format differs by
their radix and the number of bits used for their encoding.
The 2008 revision of the IEEE Standard 754 defines for-
mats for radix 2, ranging from 16 to 128 bits. For each
of these formats, the number of bits that represent the
exponent and the mantissa is fixed. Therefore, the floating-
point representation of numerical value have to be either
rounded or padded with zeros in the least significant digits of
the mantissa. This means that by construction, FP numbers
embed errors in their representation. These errors can be
separated into three groups: data uncertainty, rounding and
cancellation.

2.2.1. Uncertainty. Uncertainty [8] in data is linked to
initial input values produced by measurements, experi-
mentations using physical sensors, or numerical model
such as polynomial approximation [9]. For example, a
physical sensor producing the twenty digit value x =
12345.678901234567890 with a process exhibiting an un-
certainty of U = 10−5, corresponds to a real value in the
interval [x · (1−U);x · (1 +U)] = [12345.555; 12345.802].
This translates into 5 significant digits, the rest of the infor-
mation corresponds solely to noise or insignificant digits. As
floating-point numbers are of a fixed size, noise is kept in the
representation of those numbers and remains present in all
computation that follows. As those extra digits do not carry
any numerical meaning, it may lead to an overconfidence in
the numerical quality of the result.

2.2.2. Rounding. Because floating-point numbers have a
limited number of digits, they cannot represent real numbers
accurately. When there are more digits than the format
allows, the number is rounded and the leftovers are omitted.
The standard defines five rounding rules, two rounding to the

nearest (ties to even, ties away from zero) and three directed
rounding (toward 0,−∞,+∞). Floating-point operations in
IEEE Standard 754 satisfy:

fl(a◦ b) = (a◦ b) · (1+ ε) |ε| ≤ u ◦ ∈ {+,−,×, /}
Where u = b/2·b−p depends on the radix b and the precision
p , and fl() denote the result of a floating-point computation.

2.2.3. Cancellation. Cancellation occurs when two nearby
quantities are subtracted and the most significant digits
cancel each other. Cancellations are very common but when
many digits are lost, the effect can be severe as the number
of informative digits is reduced. In that case, this results in
catastrophic cancellation that has a dramatical impact on the
sequel of the computation.

For example, let x = 1.5× 20 and y = 1.0× 226 be two
floating-point numbers stored in binary32 format. Then the
sequence of operations r = fl(fl(x+ y)− y) produces the
result r = 0.0 which has no correct digits, as the correct
real result should be 1.5. This is due to the catastrophic
cancellation which occurred during the subtraction. Such
cancellations cannot be detected without additional exami-
nation of the source and destination of data elements, leaving
no trace of the fact that r = 0.0 was completely incorrect.

Such sequences are used for example in numerical algo-
rithms that compute errors such as the 2sum algorithm [10],
[11].

2.3. Significance arithmetic

Significance arithmetic [2], [12], [13] brings a solution
to the problem of representing an approximation of the error
along with floating-point numbers. It relies on the concept
of significant and insignificant digits.

Definition 2 (Significant and insignificant digits). Signif-
icant digits of a number are digits that carry meaning
contributing to a number. The number of significant digits
for a p-digits number X is represented by αX and the
number of insignificant digits p− αX .

Significance arithmetic sets two methods to calculate a
bound for the propagated and generated error called normal-
ized significance and unnormalized significance. The nor-
malized significance always keeps the floating-point num-
ber normalized and provides an index of significance. The
unnormalized significance does not normalize floating-point
numbers and uses the count of digits remaining after leading
zeros as an indication of their significance.

The normalized method allows as many digits as pos-
sible of a number to be retained. This requires an added
index that defines the number of significant digits. There
exists software implementations of significance arithmetic
such as for the FORSIG [14] library written in Fortran, or
Python [15]. With the unnormalized method [16], only digits
considered significant are retained.

The integration of a specific pattern in the mantissa to
categorize significant and insignificant digit has already been
proposed for decimal computer in the BCD format [17]. It

58 25th IEEE Symbosium on Computer Arithmetic (ARITH 2018)

relies upon unused bit patterns in the BCD format which
are bit-field 1010 and 1011 corresponding to respectively
digits 10 and 11. More recently, Gustafson [3] extended sig-
nificance arithmetic by proposing the Unum representation
format which is able to represent exact and approximate
numbers with varying mantissa and exponent field length.

Even though significance arithmetic offers an approxi-
mation of the error, it is not suitable for every numerical
problem related to the management of error. In particular,
significance arithmetic is not meant for self-correcting nu-
merical algorithm.

3. A format to embed cancellation information

The proposed representation format: Floating-Point
Adaptive Noise Reduction (FP-ANR) is detailed in this
section. It allows the user to split the mantissa in two:
the significant and insignificant part. Insignificant digits,
or noise, can come from initial uncertainty, or cancellation
generated during computation. This format corresponds to
an implementation of significance arithmetics based on the
existing IEEE Standard 754 format. In this article, we will
consider the radix-2 arithmetic, where bit or digit will refer
to the same notion.

3.1. The representation format

Our goal is to propose a non-intrusive solution while
being able to keep track of uncertainty due to cancellation.
By non-intrusive, we mean that the proposed solution must
be compatible with existing floating-point representation
format without exhibiting a large overhead. This discards
any solutions relying on shadow memory, or extra fields.

The proposed format, named FP-ANR, is based on a
modification of the mantissa that integrates information on
cancellation. The modification of the mantissa consists in
replacing uninformative bits, or bits lost during cancellation,
by a given pattern. This pattern must be self-detectable to
avoid using extra fields as in the Unum. There are two
possible patterns: First, a 1 followed by as many 0s as
needed, second a 0 followed by as many 1s as needed.
With any one of these solutions, one can easily deduce the
number of cancelled bits by scanning the mantissa from
right to left to detect the first 1 (or 0 respectively). The
assembly instruction that performs this operation is usually
named Count Trailing Zero/One. The rest of this article will
focus on the first pattern (1 followed by 0s). The first 1
encountered from right to left in the mantissa will be called
the significant flag.

With FP-ANR, one bit of the mantissa is used to rep-
resent the significant flag. It means that a number with a
p-bit mantissa will have at most p − 1 informative bits
which is 1 bit less than the corresponding IEEE Stan-
dard 754 representation format which FP-ANR is built
upon. For example, the value 1.0 which corresponds to
the binary32 IEEE Standard 754 representation number

Table 1. BINARY REPRESENTATION OF THE VALUE 1234.56 WITH AN
UNCERTAINTY 10−3%

binary32 0 10001001 00110100101000111101100

FP-ANR 0 10001001 00110100101000110000000

0 01111111 00000000000000000000000 will be represented
in the FP-ANR format by

0 01111111 00000000000000000000001

The rightmost bit equal to 1 and corresponding to the
significant flag, indicates the position between significant
and insignificant bit in the mantissa. In other words, this
representation corresponds to the floating-point number 1.0
accurate up to 23 bits. Alternatively, the FP-ANR represen-
tation string

0 01111111 00000000000010000000000

corresponds to the floating-point number 1.0 as well, but
accurate to 13 bits.

This slight modification affects the set of finite numbers
as defined by the IEEE Standard 754 standard including
normal and subnormal numbers. The representation format
of special values which includes infinities, NaN and 0
remains unchanged as no significant flag is embedded.

The major difference between the IEEE Standard 754
representation format and the FP-ANR format is that IEEE
Standard 754 can manipulate exact values such as 1.0
whereas FP-ANR deals solely with approximation (except
for 0). This is a drawback as discussed in section 2.3,
which is why the proposed format cannot be considered as
a universal format.

3.2. Managing uncertainties

With FP-ANR, uncertainty is integrated directly in the
mantissa. For example, let us consider a physical process
which produces the value x = 1234.56 with an uncertainty
U = 10−5 and its representations (Table 1). With the IEEE
Standard 754, there is no direct solution to integrate the
information on uncertainty in the representation number. It
is still possible to circumvent this problem by using interval
arithmetic, but this will requires at least 2 numbers. With
FPANR, the information on uncertainty is integrated by eval-
uating the number of significant digit, which corresponds to
�|log2(U)|� = 16 bits.

As we can observe, with the IEEE Standard 754 format
the value will be translated directly into its binary format
where the last 8 insignificant bits correspond to noise.
Whereas with FP-ANR we can distinguish significant and
insignificant bits.

When all signicant bits are lost we can keep track
of that information, which is not the case with the other
representation format. In that case we have information on
the order of magnitude of the insignificance. This concept
is similar to the concept of informatical zero represented
by @.0 in CADNA [7]. For example, let us consider the

25th IEEE Symbosium on Computer Arithmetic (ARITH 2018) 59

following number where all bits of the mantissa are set to
0 and only the implicit bit is set to 1.

0 01111111 00000000000000000000000

This representation number means that there are no signifi-
cant bits in the mantissa. However, there is still useful em-
bedded information which is the order of magnitude of the
error stored in the exponent. This information can be used in
further computation involving such a number: For example,
in an addition to discard bits of weight less than the one
corresponding to insignificant bit. It can potentially avoid
a division by zero resulting from an unwanted catastrophic
cancellation where all bits are lost.

3.3. Addition of FP-ANR

As we have seen in section 2.2.3, the least significant
bits of the mantissa are usually uninformative as they cor-
responds to noise due to cancelation or discretization. The
information on insignificant bit has to be propagated during
operations. This can be done by updating the position of the
significant flag found in the result of an addition between
two FP-ANR as follow.

Let A, B and R be three FP-ANR numbers with re-
spectively αA, αB and αR significant bits. The number of
significant bits αR of the results R = A◦B with ◦ ∈ {+,−}
is determined by:

αR = expR −MAX((expA −αA), (expB −αB))

where expX corresponds to the exponents of the FP-ANR
number X with X ∈ {A,B,R}. One can notice that the
quantities (expA −αA) and (expB −αB) correspond to the
absolute error.

3.4. Multiplication and division of FP-ANR

Propagation of significant information during multipli-
cation corresponds to the simplest case. The number of
significant bits resulting from a multiplication between two
FP-ANR numbers is estimated as follows:

Let X with X ∈ A,B,R be a FP-ANR representation of
the number x with x ∈ {a, b, r} respectively, with αX sig-
nificant bits. The number αR of significant bits in the results
R = A · B can be approximated by αR = MIN(αA, αB).
This approximation corresponds to the minimal number
of bit lost during cancellation and does not consider the
accumulation of it.

We chose to not consider the accumulation of uncer-
tainty as its estimation would grow too fast during un-
certainty propagation. This differs from interval arithmetic
that will always overestimate the error. For comparison
purposes, lets consider the case of accumulation of uncer-
tainty. The number of significant bit αX corresponds to
an error eX in X is such that X = x · (1 + eX) with
|eX | ≤ 2−αX . The error for the multiplication R = A · B
corresponds to R = (a · b) · (1 + ea + eb + ea · eb)
and the error term er = ea + eb + ea · eb is such that

|er| ≤ 2−αA + 2−αB + 2−αA−αB . The error er is maximal
when αA = αB . A more accurate approximation that con-
siders the accumulation of uncertainty for the multiplication
is

αR =

{
MIN(αA, αB)− 2 when αA = αB

MIN(αA, αB)− 1 when αA 	= αB
(1)

For similar reasons, we decided to not consider the
accumulation of uncertainty for the division R = A/B. The
number αR of significant bits in the results R = A/B is
set to αR = MIN(αA, αB). This differs from a solution
considering the accumulation of uncertainty as follows.

The error for the division can be expressed as R =
a
b · 1+ea

1+eb
. This formula can be rewritten by expressing

the denominator term for the error as an infinite series
R = a

b · (1 + ea) · (1 − eb + e2b + ...). Since the error
eb is required by the number format to be less than 1, e2b
and all the higher order terms can be neglected. The error
term for the division er = ea − eb − ea · eb is such that
|er| ≤ 2−αA + 2−αB + 2−αA−αB . Therefore, equation 1
corresponds to a more accurate approximation that consider
the accumulation of uncertainty for the division.

3.5. Other operations using FP-ANR

We can consider the propagation of uncertainty in the
case of more complex operations as well (e.g. exponential,
logarithms or trigonometric function). Such functions have
already been considered in previous work on significant
arithmetic [2].

Let R and X be FP-ANR representations of the number
r and x respectively, with αR and αX significant bits. We
would like to estimate the number of significant bits αR

when R = f(X) with f a function of X .
The number of significant digits can be approximated

using results on the propagation of uncertainty. It can be
done by looking at the extremum on the interval of values
corresponding to the initial uncertainty interval [X · (1 −
eX);X · (1+ eX)] with eX the error in X such that |eX | ≤
2−αX .

This uncertainty can be estimated using a first-order
Taylor series expansion. It consists in replacing the function
f by its local tangent:

f(X · (1 + eX)) = f(X) + f ′(X) ·X · eX + o(X · eX)

with o(x) a function which quickly tends toward 0. There-
fore, the uncertainty in the result R can be estimated by:

eR ≈ |f ′(X) ·X · eX |

This estimation is valid only if the function is considered
quasi-linear and quasi-Gaussian on the interval [X · (1 −
eX);X · (1 + eX)] . This corresponds to an estimation of
the number of significant bits of the result αR:

αR = log2

∣∣∣∣ f(X)

f ′(X) ·X · eX

∣∣∣∣

60 25th IEEE Symbosium on Computer Arithmetic (ARITH 2018)

Table 2. APPROXIMATION OF THE NUMBER OF SIGNIFICANT DIGITS αR

FOR SOME FUNCTIONS f(X)

.

R = f(X) f ′(X) αR ≈√
X − 1

2·√X
αX + log2|2| = αX + 1

exp(X) exp(X) αX + log2|1/X| = αX − log2|X|
ln(X) 1/X αX + log2|ln(X)|
sin(X) cos(X) αX + log2

∣
∣
∣

sin(X)
X·cos(X)

∣
∣
∣

cos(X) −sin(x) αX + log2

∣
∣
∣

cos(X)
X·sin(X)

∣
∣
∣

Combining this equation with the estimation of the number
of significant digits αX = −log2 |eX |, we get:

αR − αX ≈ log2

∣∣∣∣ f(X)

f ′(X) ·X

∣∣∣∣
where log2 is approximated using the exponent part of its
floating-point representation format. Table 2 summarizes
some of these approximation of the number of significant
digits αR for some functions f(X).

3.6. Rounding in FP-ANR

It should be noticed that the presence of the significant
flag is independent of the rounding problem. Therefore, we
propose to use similar rounding strategies with FP-ANR
as done with the IEEE Standard 754 format. The only
difference being the bit position, where rounding will be
done. With FP-ANR, rounding is operated on the last bit
of the significant part, whereas it is done on the last bit
of the mantissa for the IEEE Standard 754 representation
format. However, the exact impact of rounding remains to
be evaluated.

3.7. FP-ANR and the Table Maker’s Dilemma

In addition to the propagation of the significant flag,
there is another problem regarding elementary functions: the
Table Maker’s Dilemma [18]. The Table Maker’s Dilemma
corresponds to the problem of computing approximations
of elementary functions with enough bits to ensure correct
rounding. This problem is known to be difficult with the
IEEE Standard 754 representation format since there is no
bound on the number of bits required for every function and
every format.

With FP-ANR, the Table Maker’s Dilemma is circum-
vented as follows. One can set a target accuracy t function
of the number of significant bits αX of the input number X
mandatory to evaluate the results of an elementary function.
For example, one can set t = 2 · αX . If rounding can be
done, then the process ends. If rouding is not possible, this
corresponds to a hard to round case meaning that we are not
sure of the last bit in the significant part. This uncertainty
due to the Table Maker’s Dilemma can be integrated in
the FP-ANR format by left-shifting the significant flag one
position. This way reproducibility and portability of the
results provided by correct rounding is preserved.

3.8. Interaction between FP-ANR and IEEE Stan-

dard 754

One major advantage of FP-ANR is that it is com-
patible with the IEEE Standard 754 representation format.
As with any format, compatibility can be assured thanks
to conversion. Conversion between those two formats is
straightforward as only the mantissa must be modified. From
FP-ANR to IEEE Standard 754 format, this can be done by
replacing the significant flag with a 0. From IEEE Standard
754 to FP-ANR format, this can be done by replacing the
right-most bit of the mantissa by the significant flag (a 1 in
the last position).

In addition to conversion, one can notice that the IEEE
Standard 754 operators can process FP-ANR numbers. This
will not lead to a crash or irrelevant results: it merely
modifies the meaning of the insignificant bits. Nevertheless,
it should not be considered as a serious issue as those
bits correspond to noise. However when FP-ANR operators
process IEEE Standard 754 numbers, the situation becomes
more problematic, as the meaning of the resulting number
depends on the position of the last bit set to 1.

4. Implementations

4.1. Software implementation

In this section, we describe a simplified software em-
ulation of the proposed format. This section focuses on
basic operations on the FP-ANR format related to the IEEE
Standard 754 binary32 format.

Two C++ classes have been implemented to deal with
single and double precision formats. These two classes are
based on the header file of the CADNA library [7], where
the code related to stochastic arithmetic is replaced with
operations on significance arithmetic. This library can ad-
vantageously replace the IEEE Standard 754 formats (float,
double) and major operations for those formats. It is avail-
able for download at http://perso.univ-perp.fr/david.defour/

One can notice that the biggest advantage of the
FP-ANR over other solutions that require extra memory
(shadow memory or extra fields), is that it could be easily
integrated in a compiler pass. Indeed, memory allocation,
bit manipulations (such as extraction of exponent, sign,...),
tricky pointer manipulation are straightforward with the
proposed format. However, such implementations is out of
the scope for this article and will be developed in future
work.

4.1.1. Conversion. Programs in Listing 1 rely on the
ieee754.h header file provided by many Linux distributions.
This header file defines the type ieee754 float that eases
access to the bitfield of floating-point numbers. The two
functions convert a number between binary32 and the FP-
ANR format by managing the significant flag according to
the rules defined in section 3.8.

25th IEEE Symbosium on Computer Arithmetic (ARITH 2018) 61

Listing 1. Functions to convert between FP-ANR and binary32 format
i n c l u d e <i e e e 7 5 4 . h>

/ / Conver t a b i n a r y 3 2 number f
/ / t o a p b i t s FP−ANR number
f l o a t Floa t2FpAnr (f l o a t f , i n t p){

union i e e e 7 5 4 f l o a t d ;
d . f = f ;

p r e c = MIN(2 2 , p) ;

d . i e e e . s i g n i f i c a n d &= (0 x7FFFFF<<(23−p)) ;
/ / S e t t h e s i g n i f i c a n t f l a g
d . i e e e . s i g n i f i c a n d |= 1<<(22−p) ;

re turn d . f ;
}

/ / Conver t a p b i t s FP−ANR number
/ / t o a b i n a r y 3 2 number
f l o a t FpAnr2F loa t (f l o a t f , i n t ∗p){

union i e e e 7 5 4 f l o a t d ;
i n t c ;

d . f = t h i s−>v a l u e ;

i f (d . i e e e . s i g n i f i c a n d !=0){
c = c o u n t t r a i l i n g z e r o s (d . i e e e . s i g n i f i c a n d) ;
/ / Remove t h e s i g n i f i c a n t f l a g
d . i e e e . s i g n i f i c a n d ˆ= 1<<c ;

}

∗p = 22−c ;
re turn (d . f) ;

}

4.1.2. Operations. We wrote a set of operations over FP-
ANR numbers. Listing 2 describes how information on can-
cellation is propagated during addition and multiplication.

Listing 2. Functions to perform addition and multiplication over FP-ANR
format

f l o a t FpAnrAdd (f l o a t a1 , f l o a t a2){
f l o a t r e s ;
i n t e1 , e2 , e r ;
i n t p1 , p2 ;

r e s = FpAnr2F loa t (a1 , &p1) + FpAnr2F loa t (a2 , &p2) ;

f r e x p (a1 , &e1) ;
f r e x p (a2 , &e2) ;
f r e x p (r e s , &e r) ;

re turn Floa t2FpAnr (r e s , er−MAX((e1−p1) , (e2−p2))) ;
}

f l o a t FpAnrMul (f l o a t a1 , f l o a t a2){
f l o a t r e s ;
i n t p1 , p2 ;

r e s = FpAnr2F loa t (a1 , &p1) ∗ FpAnr2F loa t (a2 , &p2) ;

re turn Floa t2FpAnr (r e s , MIN(p1 , p2)) ;
}

One can notice that this simplified version implements
truncation as the rounding mode. There are two solutions
to implement other roundings. The first and easiest solution
consists of adding a given quantity to the mantissa followed
by a truncation. However, this solution is subject to the
double rounding problem [19]. The second solution consists
of allowing the hardware to perform the rounding at the
right position in the mantissa. It can be done by right
shifting the mantissa so that the least significant bit of the

Figure 1. Generation of the significant flag from a mantissa in FP-ANR
format based on a tree of OR gate.

significant part of the FP-ANR format corresponds with the
least significant bit of the mantissa of the IEEE Standard
754 representation format. Providing those rounding modes
is achieved by adding extra shifting instructions.

4.2. Hardware implementation

Hardware implementation of the FP-ANR is more
straightforward and simpler than the software solution. As
the FP-ANR and the IEEE Standard 754 format are similar,
FP-ANR can rely on the existing IEEE Standard 754 hard-
ware implementation. The only difference is the introduction
of the necessary hardware to manage the position of the
significant flag and rounding. This requires the introduction
of a trailing zero count at the input and mantissa shifters
for the rounding. This operation can be done with a priority
enforcer/encoder corresponding to a chain of elements with
a ripple signal, scanning bit of the mantissa from right to
left. The ripple signal signifies that ”nothing before it” is
valid and it could be replaced with a tree of OR gates to split
the mantissa between its significant and insignificant part.
This could be done using a carry lookahead implementation.
Figure 4.2 exhibits a simple implementation of this operation
based on a tree of OR gates.

5. Example

Cancellation can affect the convergence and accuracy of
iterative numerical algorithms. As an example, let us con-
sider Archimedes formulae to compute the approximation
of π. The iteration is given by:

t0 =
1√
3
, ti+1 =

√
t2i + 1− 1

ti
, π ≈ 6× 2i × ti

We have implemented this equation using IEEE-754
double precision and the 64 bits FP-ANR format. Results
for iteration up to i = 27 are given in Table 3. One can
notice that the accuracy of the approximations based on
the IEEE-754 format is increasing up to the 13th iteration,
and is slowly decreasing till the 26th iteration. Moreover,
starting from the 27th iteration, a problematic Not-a-Number
appears. The rightmost columns of Table 3 are reporting for
the FP-ANR format both the value and the number of bits
which are considered. This valuable information helps to
avoid invalid operation resulting in a NaN.

On this example, one can notice that with the IEEE-754,
there is no way to determine when the result is wrong and

62 25th IEEE Symbosium on Computer Arithmetic (ARITH 2018)

Table 3. COMPARISON BETWEEN THE IEEE-754 DOUBLE PRECISION
FORMAT AND THE FP-ANR FORMAT FOR THE COMPUTATION OF π

DECIMALS USING ARCHIMEDES FORMULAE. BOLD NUMBERS
CORRESPOND TO VALID DECIMALS.

Iter. IEEE-754 FP-ANR (value ; αR)
0 3.464101615137755e+00 3.464101615137754e+00 52
1 3.215390309173475e+00 3.215390309173465e+00 49
2 3.159659942097510e+00 3.159659942097420e+00 47
3 3.146086215131467e+00 3.146086215131277e+00 45
4 3.142714599645573e+00 3.142714599644023e+00 43
5 3.141873049979866e+00 3.141873049977221e+00 41
6 3.141662747055068e+00 3.141662747046212e+00 39
7 3.141610176599522e+00 3.141610176535323e+00 37
8 3.141597034323337e+00 3.141597034060396e+00 35
9 3.141593748816856e+00 3.141593747306615e+00 33

10 3.141592927873633e+00 3.141592921689153e+00 31
11 3.141592725622592e+00 3.141592703759670e+00 29
12 3.141592671741545e+00 3.141592592000961e+00 27
13 3.141592618900886e+00 3.141592383384705e+00 25
14 3.141592671741545e+00 3.141592025756836e+00 23
15 3.141591935881973e+00 3.141588211059570e+00 21
16 3.141592671741545e+00 3.141571044921875e+00 19
17 3.141581007579364e+00 3.141540527343750e+00 17
18 3.141592671741545e+00 3.141357421875000e+00 15
19 3.141406154737622e+00 3.140625000000000e+00 13
20 3.140543492401100e+00 3.136718750000000e+00 11
21 3.140006864690968e+00 3.125000000000000e+00 9
22 3.134945375658852e+00 3.093750000000000e+00 7
23 3.140006864690968e+00 3.000000000000000e+00 5
24 3.224515243534819e+00 3.000000000000000e+00 3
25 2.791117213058638e+00 2.000000000000000e+00 1
26 0.000000000000000e+00 ERR(2ˆ1) 0
27 NaN ERR(2ˆ1) 0

how wrong it is. Whereas with FP-ANR, the number of bit
that could potentially be considered valid is known at each
iterations and invalid operations can be avoided.

6. Comparisons with Other Methods

6.1. Performance

We have tested the overhead for the addition, multi-
plication and division of the proposed format compared
to hardcoded IEEE Standard 754 operations and CADNA
[20] operations on an 2,4 Ghz Intel Core i5, with LLVM
version 8.1.0. Results are reported in table 4. These results
correspond to the implementation of the prototype library
available at http://perso.univ-perp.fr/david.defour/. One can
notice that the overhead of the FP-ANR over hardcoded
operations range between 8.5 for the multiplication and 21
for the addition. If this overhead is higher than the one of
CADNA, we should recall that the FP-ANR is intended to
be implemented in hardware and therefore available at no
cost.

6.2. Comparison with Unum

Recently [3], Gustafson proposed a modified version
of significance arithmetic with an extra field (unum field)
which indicates if a number is exact. However, according to

Table 4. EXECUTION TIME OF COMMON OPERATIONS IN THE FP-ANR
AND THE CADNA FORMAT NORMALIZED WITH THE IEEE STANDARD

754 OPERATIONS.

double float
Operations FP-ANR CADNA FP-ANR CADNA
Addition 11 7.5 11.3 15

Multiplication 4.7 3.5 3.96 4.0
Division 6.1 5.0 7.8 14.2

William Kahan, the principal architect of IEEE 754-1985,
this format presents several drawbacks [5]. Among them, he
states:
• The Unum computation does not always deliver correct

results.
• The Unums can be expensive in terms of time and

power consumption.
• The bit length of Unum format can change during

computation, which make its hardware implementation
harder than with fixed-size format especially regarding
memory allocation, de-allocation and accesses.

The last two points are serious issues that the FP-ANR
format does not exhibit. However, the Unum possesses some
properties that the FP-ANR does not, such as being able to
handle exact numbers.

6.3. Comparison with Stochastic arithmetic

Stochastic arithmetic provides an estimation of the
numerical confidence of computed results. The CESTAC
method formalizes a simplified version of discrete stochastic
arithmetic using randomized rounding for each floating-
point operation. This method is implemented using C++
overloaded operators in the CADNA library [7]. This library
detects the number of significant digits with a high degree of
confidence. It also detects instability such as cancellation,
branching instability and mathematical instability. It con-
sists of replacing each floating-point number by a set of 3
floating-point numbers plus an integer, on which stochastic
operation are performed. Thanks to those extra fields, such
systems provide a tighter bound than the FP-ANR format.
However, similarly to the Unum format, those extra fields
manipulated with the CADNA hinder memory management
and performance.

6.4. Comparison with Monte-Carlo arithmetic

Another alternative to estimate numerical quality of
computed result can be achieved by using the Monte-Carlo
arithmetic suggested by Parker [21]. Monte-Carlo arithmetic
gathers rounding and catastrophic cancellation errors by
applying randomization on input and output operands at
a given virtual precision. A recent implementation of this
solution has been proposed with Verificarlo [6]. Verificarlo
implement a LLVM pass which replaces every floating-point
operation automatically with the Monte Carlo Arithmetic.

Even though Verificarlo is implemented directly as a
compiler pass, which makes it very efficient, the large

25th IEEE Symbosium on Computer Arithmetic (ARITH 2018) 63

number of execution samples necessary to collect qualitative
results remains a major drawback. The solution proposed by
the authors consists of running those numerous execution in
parallel. Although this solution reduces the global execution
time, it does not reduce the total amount of work to gather
this information.

7. Conclusions and Perspectives

New representation formats for floating-point numbers
were introduced in the IEEE Standard 754[-2008] revision.
This is an attempt to adapt the format to the real need of
applications. However, dealing with various formats require
a numerical analysis of the program, which is a tedious
task that can be solely executed by the expert. Some recent
work has been proposed to automate this analysis and/or the
benefit of formats changes.

In this article, we have presented a solution that brings
the significance arithmetic up-to-date, and makes it compat-
ible with the IEEE Standard 754[-2008]. Significance arith-
metic is a concept that adds information on significant digits
to each floating-point number. It can provide information on
cancellation errors, and if sufficiently accurate, on rounding
error. It consists of a representation format with rules for
the propagation of error.

The proposed solution is a simple pattern embedded
in the mantissa of floating-point numbers. This pattern is
self-sufficient and does not require extra fields or memory.
This solution presents numerous advantages as it is a simple
concept to understand, simple to implement and proves to
be memory efficient. Tests on a preliminary version shows
that the cost for the detection in software of the proposed
pattern is higher compared to other solutions. However, the
simplicity of the solution suggests that the performance
could be improved using hardware support similar to the
management of the rounding modes (e.g. specific instruc-
tions or execution flag).

If implemented in hardware, this solution can definitely
help developers gain confidence in their code by providing
an estimation of the number of significance digits at no cost
or help achieve reproducibility.

However, it is not meant to solve all problems related to
floating-point arithmetic. Significance arithmetics is similar
to the interval arithmetic, produces over-pessimistic bound
as results and is unable to solve the loss of correlation
between variables. For example, error computation as used
in compensated algorithm cannot be evaluated with the
significance arithmetic, whereas it works perfectly with the
IEEE Standard 754 floating-point arithmetic. For these rea-
sons, we suggest that the FP-ANR format should be used as
a complement to the traditional IEEE Standard 754 floating-
point arithmetic.

References

[1] “IEEE Standard for Floating-Point Arithmetic,” IEEE Std 754-2008,
pp. 1–70, Aug 2008.

[2] M. Goldstein, “Significance arithmetic on a digital computer,” Com-
mun. ACM, vol. 6, no. 3, pp. 111–117, Mar. 1963.

[3] J. Gustafson, “The end of numerical error.” in ARITH, 2015, p. 74.

[4] S. Collange, D. Defour, S. Graillat, and R. Iakymchuk, “Numerical
reproducibility for the parallel reduction on multi- and many-core
architectures,” Parallel Computing, vol. 49, pp. 83 – 97, 2015.

[5] W. M. Kahan. (2016, July) A critique of John L. Gustafson’s.
the end of error — Unum computation and his a radical
approach to computation with real numbers. [Online]. Available:
http://people.eecs.berkeley.edu/∼wkahan/UnumSORN.pdf

[6] C. Denis, P. de Oliveira Castro, and E. Petit, “Verificarlo: Checking
floating point accuracy through monte carlo arithmetic,” in 23nd IEEE
Symposium on Computer Arithmetic, ARITH 2016, Silicon Valley, CA,
USA, July 10-13, 2016, 2016, pp. 55–62.

[7] F. Jézéquel and J.-M. Chesneaux, “CADNA: a library for estimating
round-off error propagation,” Computer Physics Communications,
vol. 178, no. 12, pp. 933–955, 2008.

[8] J. Denker. (2018, 04) Uncertainty as applied to measurements
and calculations. [Online]. Available: http://www.av8n.com/physics/
uncertainty.htm

[9] D. Funaro, Polynomial approximation of differential equations.
Springer Science & Business Media, 2008, vol. 8.

[10] O. Møller, “Quasi double-precision in floating point addition,” BIT
Numerical Mathematics, vol. 5, no. 1, pp. 37–50, 1965.

[11] D. E. Knuth, The Art of Computer Programming, Volume 2 (3rd Ed.):
Seminumerical Algorithms. Boston, MA, USA: Addison-Wesley
Longman Publishing Co., Inc., 1997.

[12] H. L. Gray and C. J. Harrison, “Normalized floating-point arithmetic
with an index of significance,” Managing Requirements Knowledge,
International Workshop on, vol. 00, p. 244, 1959.

[13] E. A. Bond, “Significant digits in computation with approximate
numbers,” The Mathematics Teacher, vol. 24, no. 4, pp. 208–212,
1931.

[14] J. M. Hyman, “Forsig: an extension of fortran with significance
arithmetic,” Los Alamos National Lab., NM (USA), Tech. Rep., 1982.

[15] F. Johansson. (2008, 06) Basic implementation of significance
arithmetic. [Online]. Available: http://fredrik-j.blogspot.fr/2008/06/
basic-implementation-of-significance.html

[16] R. L. Ashenhurst and N. Metropolis, “Unnormalized floating point
arithmetic,” J. ACM, vol. 6, no. 3, pp. 415–428, Jul. 1959.

[17] G. Langdon, “Method and means for tracking digit significance in
arithmetic operations executed on decimal computers,” Aug. 29 1978,
uS Patent 4,110,831.

[18] V. Lefèvre, J.-M. Muller, and A. Tisserand, “Towards correctly
rounded transcendentals,” in Proceedings of the 13th IEEE Sympo-
sium on Computer Arithmetic, Asilomar, USA, 1997. Los Alamitos,
CA: IEEE Computer Society Press, 1997.

[19] É. Martin-Dorel, G. Melquiond, and J.-M. Muller, “Some issues
related to double rounding,” BIT Numerical Mathematics, vol. 53,
no. 4, pp. 897–924, 2013.

[20] P. Eberhart, J. Brajard, P. Fortin, and F. Jézéquel, “High performance
numerical validation using stochastic arithmetic.” in Reliable Com-
puting, vol. 21, 2015, pp. 35–52.

[21] D. S. Parker, “Monte Carlo arithmetic: exploiting randomness in
floating-point arithmetic,” Department of Computer Science, Univer-
sity of California, Los Angeles, Los Angeles, CA, USA, Tech. Rep.

CSD 970002, 1997.

64 25th IEEE Symbosium on Computer Arithmetic (ARITH 2018)

