
Fast multiplication of binary polynomials with the
forthcoming vectorized VPCLMULQDQ instruction

Nir Drucker
University of Haifa, Israel,

and
Amazon Web Services Inc.1

Shay Gueron
University of Haifa, Israel,

and
Amazon Web Services Inc.1

Vlad Krasnov
CloudFlare, Inc.

San Francisco, USA

Abstract—Polynomial multiplication over binary fields F2n is
a common primitive, used for example by current cryptosystems
such as AES-GCM (with n = 128). It also turns out to be a prim-
itive for other cryptosystems, that are being designed for the Post
Quantum era, with values n � 128. Examples from the recent
submissions to the NIST Post-Quantum Cryptography project,
are BIKE, LEDAKem, and GeMSS, where the performance of
the polynomial multiplications, is significant. Therefore, efficient
polynomial multiplication over F2n , with large n, is a significant
emerging optimization target.

Anticipating future applications, Intel has recently announced
that its future architecture (codename ”Ice Lake”) will introduce
a new vectorized way to use the current VPCLMULQDQ instruc-
tion. In this paper, we demonstrate how to use this instruction
for accelerating polynomial multiplication. Our analysis shows
a prediction for at least 2x speedup for multiplications with
polynomials of degree 512 or more.

I. INTRODUCTION

Several modern encryption schemes use polynomial multi-
plication over F2n as one of their main primitives. One promi-
nent example is AES-GCM whose (almost) XOR-universal
hash function (GHASH) is an evaluation of polynomials with
coefficients in F2128 . The nonce misuse resistant Authenticated
Encryption AES-GCM-SIV is using a similar (almost) XOR-
universal hash function (POLYVAL). These evaluations can
be significantly sped up with dedicated instructions. Indeed,
modern general-purpose processors are equipped with the
”carry-less multiplication” instruction PCLMULQDQ [1], [2].

Multiplication of polynomials with higher degrees (≥ 128)
is becoming a useful computational task for newly designed
cryptosystems that are based on coding or multivariate poly-
nomials. These are motivated by the NIST Post-Quantum
Project [3] that targets the definition of the next generation
of quantum-resistant public key and signature cryptosystems.
We give three examples out of the recent 69 submissions
to this project, that use polynomial multiplication in F2n :
BIKE [4] (MDPC codes) with n = 32, 749, LEDAKem [5]
(LDPC codes) with n = 99, 053, and GeMSS [6] (multivariate
polynomials) using n = 354. We note that the performance of
the polynomial multiplication is significant in these algorithms,
for example, the key generation and the encapsulation steps
of BIKE are dominated by such multiplications.

1This work was done prior to joining Amazon.

Intel has recently announced [7] that its future architecture,
codename ”Ice Lake”, will introduce a new instruction called
VPCLMULQDQ. This instruction, together with the new vector-
ized AES instructions (VAESENC and VAESDEC), are useful
for accelerating AES-GCM. However, we argue that even as a
standalone instruction, VPCLMULQDQ is useful for some new
emerging algorithms, which paper demonstrates how it can be
used for accelerating ”big” polynomial multiplications (with
degree > 511).

The correctness of the algorithms (and the code) can be
checked now, but actual performance measurements require
a real CPU, which is currently unavailable. To address this
difficulty, we use other techniques to estimate the future
performance, such as counting instructions and running with
some ”stand in” replacements. The results of both techniques
are similar, and this allows us to predict that polynomial
multiplication is going to be at least 2x faster on these future
CPUs, compared to the current software implementations on
the current architectures.

The paper is organized as follows: Section II describes the
new VPCLMULQDQ instruction. Section III presents some con-
cepts that we use for polynomial multiplications. Section IV
presents our new implementation. We show our experimental
results in Section V, and conclude in Section VI.

II. THE VPCLMULQDQ INSTRUCTION

Algorithm 1 DST = VPCLMULQDQ(SRC1, SRC2, Imm8)
Inputs: SRC1, SRC2 (wide registers) Imm8 (8 bits)
Outputs: DST (a wide register)

1: procedure VPCLMULQDQ(SRC1, SRC2, Imm8)
2: for i := 0 to KL− 1 do
3: j1 = 2i+ Imm8[0]
4: j2 = 2i+ Imm8[4]
5: T1[63 : 0] = SRC1[64(j1 + 1)− 1 : 64j1]
6: T2[63 : 0] = SRC2[64(j2 + 1)− 1 : 64j2]
7: DST[128(i+ 1)− 1 : 128i] = PCLMULQDQ(T1, T2)

return DST

Alg. 1 [7] presents the extended instruction VPCLMULQDQ.
It vectorizes polynomial (carry-less) multiplications, and is
able to perform KL = 1/2/4 multiplications of two qwords
(64 bits). The multiplicands are selected from two source
operands, which are 128/256/512-bit registers (named xmm,
ymm, zmm, respectively), and the selection is determined by
the value of the immediate byte. Note that the case KL = 1

111XXX-X-XXXXXXX-X-X/ARITH18/ c©2018 IEEE

a7 a6 a5 a4 a3 a2 a1 a0

b7 b6 b5 b4 b3 b2 b1 b0
a0b7 a0b6 a0b5 a0b4 a0b3 a0b2 a0b1 a0b0

a1b7 a1b6 a1b5 a1b4 a1b3 a1b2 a1b1 a1b0
a2b7 a2b6 a2b5 a2b4 a2b3 a2b2 a2b1 a2b0

a3b7 a3b6 a3b5 a3b4 a3b3 a3b2 a3b1 a3b0
a4b7 a4b6 a4b5 a4b4 a4b3 a4b2 a4b1 a4b0

a5b7 a5b6 a5b5 a5b4 a5b3 a5b2 a5b1 a5b0
a6b7 a6b6 a6b5 a6b4 a6b3 a6b2 a6b1 a6b0

a7b7 a7b6 a7b5 a7b4 a7b3 a7b2 a7b1 a7b0

Fig. 1. Schoolbook multiplication of 8× 8 qwords (or 4× 4 qwords in red dashed border). The size of each aibj is 128 bits.

using xmm registers, is exactly the VPCLMULQDQ instruction
that is currently available in the modern CPU’s.

III. POLYNOMIAL MULTIPLICATION

Obviously, polynomial multiplication can be executed by
the standard schoolbook algorithms. However, for sufficiently
high degrees, a Carry-less Karatsuba algorithm [1], [2], [8] is
faster. For even higher degrees, other algorithms such as Toom-
Cook [9], [10] may become useful. These algorithms (e.g.,
Karatsuba and Toom-Cook) work in a recursive way, where at
each step multiplies smaller degree operands. After a sufficient
number of iterations, the involved polynomial has a small
enough degree, and then it pays to revert to the schoolbook
multiplication, for the final step.

In [11], we showed that for polynomials of degree slightly
smaller or equal to a power of two, the best performance
is attained with a recursive Karatsuba algorithm, until the
polynomials area the degree of 255 (4 qwords), and then revert
to the schoolbook multiplication.

Here, we demonstrate how the new VPCLMULQDQ instruc-
tion can be used for two methods that multiply polynomials of
degree 511 (8 qwords): a) A schoolbook multiplication of 8×8
qwords using zmm registers; b) A Karatsuba multiplication
that invokes a 4 × 4 qwords schoolbook multiplication, as
its ”core”, and uses ymm registers. We compare them to a
reference implementation [11] that uses the existing version
of PCLMULQDQ, for a Karatsuba multiplication that wraps a
4× 4 qwords schoolbook flow.

IV. VPCLMULQDQ AND SCHOOLBOOK

We use the same algorithm for both the 8×8 qwords and 4×
4 qwords multiplications. The only difference is in the sizes of
the wide registers that are used (zmm and ymm, respectively).
For brevity, we present only the 8× 8 qwords version, but in
each table, also mark the 4× 4 qwords parts with red dashed
lines. Fig. 2 shows a real (37-lines) code snippet of the 4× 4
qwords multiplication, as an example.

Fig. 1 illustrates the basic schoolbook multiplication with
polynomials of degree 511, namely a, b. They are represented
by 8 qwords a = a7||a6||, . . . , ||a0 and b = b7||b6||, . . . , ||b0
(where || denotes concatenation of qwords). Note that Fig.
2 (Steps 26-31 and 33-36) sums up the values in the even
columns (bold) and the value in the odd columns separately
(as recommended in [11]). Note also that the horizontal lines
contain 16 qwords, and that this quantity fits perfectly in two

zmm registers. This is why splitting each row into ”even”
and ”odd” columns, where each part is 8 qwords long, seems
natural. We use 16 zmm registers, namely Even0, . . . , Even7
and Odd0, . . . , Odd7, to accommodate these values. Table I
presents the layout of the qwords in the registers.

TABLE I
A SPLIT PRESENTATION OF THE EVEN AND ODD COLUMNS PRESENTED IN

FIGURE 1, THE RED DASHED LINE MARKS THE 4× 4 QWORDS
MULTIPLICATION BOUNDARY

Register Values
alias (4 packets of 128-bits dashed for alignment)
Even0 - - - - a0b6 a0b4 a0b2 a0b0
Even1 - - - a1b7 a1b5 a1b3 a1b1 -
Even2 - - - a2b6 a2b4 a2b2 a2b0 -
Even3 - - a3b7 a3b5 a3b3 a3b1 - -
Even4 - - a4b6 a4b4 a4b2 a4b0 - -
Even5 - a5b7 a5b5 a5b3 a5b1 - - -
Even6 - a6b6 a6b4 a6b2 a6b0 - - -
Even7 a7b7 a7b5 a7b3 a7b1 - - - -
Odd0 - - - - a0b7 a0b5 a0b3 a0b1
Odd1 - - - - a1b6 a1b4 a1b2 a1b0
Odd2 - - - a2b7 a2b5 a2b3 a2b1 -
Odd3 - - - a3b6 a3b4 a3b2 a3b0 -
Odd4 - - a4b7 a4b5 a4b3 a4b1 - -
Odd5 - - a5b6 a5b4 a5b2 a5b0 - -
Odd6 - a6b7 a6b5 a6b3 a6b1 - - -
Odd7 - a7b6 a7b4 a7b2 a7b0 - - -

TABLE II
PERMUTATION OF VALUES FROM TABLE I FOR 8× 8 MULTIPLICATION

Register Permutation mask Output Values
alias (Original qword idx) (4 packets of 128-bits)
Even0 - a0b6 a0b4 a0b2 a0b0
Even1 5 4 3 2 1 0 7 6 a1b5 a1b3 a1b1 a1b7
Even2 5 4 3 2 1 0 7 6 a2b4 a2b2 a2b0 a2b6
Even3 3 2 1 0 7 6 5 4 a3b3 a3b1 a3b7 a3b5
Even4 3 2 1 0 7 6 5 4 a4b2 a4b0 a4b6 a4b4
Even5 1 0 7 6 5 4 3 2 a5b1 a5b7 a5b5 a5b3
Even6 1 0 7 6 5 4 3 2 a6b0 a6b6 a6b4 a6b2
Even7 - a7b7 a7b5 a7b3 a7b1
Odd0 - a0b7 a0b5 a0b3 a0b1
Odd1 - a1b6 a1b4 a1b2 a1b0
Odd2 5 4 3 2 1 0 7 6 a2b5 a2b3 a2b1 a2b7
Odd3 5 4 3 2 1 0 7 6 a3b4 a3b2 a3b0 a3b6
Odd4 3 2 1 0 7 6 5 4 a4b3 a4b1 a4b7 a4b5
Odd5 3 2 1 0 7 6 5 4 a5b2 a5b0 a5b6 a5b4
Odd6 1 0 7 6 5 4 3 2 a6b1 a6b7 a6b5 a6b3
Odd7 1 0 7 6 5 4 3 2 a7b0 a7b6 a7b4 a7b2

Values as formatted as in Table I, are loaded to wide regis-
ters as follows: load b to the wide register B; split the second
polynomial a across four wide registers A0, . . . , A3, where

112 25th IEEE Symbosium on Computer Arithmetic (ARITH 2018)

TABLE III
PERMUTATION OF VALUES FROM TABLE I FOR 4× 4 MULTIPLICATION

Register Permutation Output
alias mask values
Even0 - a0b2 a0b0
Even1 1 0 3 2 a1b1 a1b3
Even2 1 0 3 2 a2b0 a2b2
Even3 - a3b3 a3b1
Odd0 - a0b3 a0b1
Odd1 - a1b2 a1b0
Odd2 1 0 3 2 a2b1 a2b3
Odd3 1 0 3 2 a3b1 a3b3

Ai = a2i+1||a2i||a2i+1||a2i||a2i+1||a2i||a2i+1||a2i. We carry
out the multiplication by using VPCLMULQDQ instructions as
described in Fig. 2, Steps 12-19.

For efficient (vectorized) schoolbook accumulation, we use
the VPERMPD instruction that can shuffle the qwords in each
register. This instruction receives a wide register R[511 : 0]
and the mask M [511 : 0], and outputs O[511 : 0], where
O[64(i+1) : 64i] = R[64(t+1) : 64t], t = M [64i+2 : 64i],
i = 0, . . . , 7. The masks that define the permutations are given
in Table II (or in Table III for the 4× 4 multiplication).

For example, in Fig. 2 Steps 21-24, we use the wide register
Perm which holds the mask ”1 0 3 2”. Subsequently, we
accumulate the ”high part” (the boldface values in Tables
II and III), and the ”low part” of the even columns in
EvenSumHigh and EvenSumLow, respectively. We do the same
for the odd columns, accumulating them in OddSumHigh and
OddSumLow, respectively (Fig. 2, Steps 26-31 and 33-36).
Finally, we shift the value OddSumHigh||OddSumLow by one
qword to the left (Fig. 2, Steps 38-39), and add the 16-
qword result to EvenSumHigh||EvenSumLow, to obtain the
final product.

Our implementation uses the mask registers %k1, . . . ,%k6
(such registers are part of the AVX512 architecture), in order
to perform operations on parts of a wide register. For example,
consider Steps 27-36 in Fig. 2: the halves (i. e., upper/lower
qwords) of the ymm registers are xored separately by using
the mask registers k1 = 0xc (upper) and k2 = 0x03 (lower).
Note that the code snippets in Fig. 2 assume that the mask and
the permutation registers are already initialized to the relevant
value (e. g., before the recursive Karatsuba flow).

V. RESULTS

This section provides the performance results of our study.
To this end, we wrote three core flows that performs school-
book multiplication: a) A reference code that performs 4× 4
qwords multiplication, written in AVX (xmm registers) and
uses PCLMULQDQinstructions; b) A 4× 4 qwords multiplica-
tion written with AVX512 and the new VPCLMULQDQ instruc-
tion; c) A 8 × 8 qwords multiplication written with AVX512
and the new VPCLMULQDQ instruction. We also wrote a
recursive Karatsuba wrapper, optimized with AVX instructions
that run on modern CPUs. Subsequently, we replaced the
underlying core flow and collected the results. The core
functionality was written in x86 assembly, and wrapped by

1 vmovdqu64 (a) , A0
2 vmovdqu64 (b) , B
3 vpermpd A0 , PermA1 , A1
4 vpermpd A0 , PermA0 , A0
5

6 vxorpd OddSumLow , OddSumLow , OddSumLow
7 vxorpd OddSumHigh , OddSumHigh , OddSumHigh
8 vxorpd EvenSumLow , EvenSumLow , EvenSumLow
9 vxorpd EvenSumHigh , EvenSumHigh , EvenSumHigh

10 vxorpd Zero , Zero , Zero
11

12 vpclmulqdq A0 , B , Even0 , 0x00
13 vpclmulqdq A0 , B , Even1 , 0x11
14 vpclmulqdq A1 , B , Even2 , 0x00
15 vpclmulqdq A1 , B , Even3 , 0x11
16 vpclmulqdq A0 , B , Odd0 , 0x10
17 vpclmulqdq A0 , B , Odd1 , 0x01
18 vpclmulqdq A1 , B , Odd2 , 0x10
19 vpclmulqdq A1 , B , Odd3 , 0x01
20

21 vpermpd Even1 , Perm , Even1
22 vpermpd Even2 , Perm , Even2
23 vpermpd Odd2 , Perm , Odd2
24 vpermpd Odd3 , Perm , Odd3
25

26 vmovdqa64 Even0 , EvenSumLow
27 vxorpd EvenSumLow , Even1 , EvenSumLow{%k1}
28 vxorpd EvenSumLow , Even2 , EvenSumLow{%k1}
29 vmovdqa64 Even3 , EvenSumHigh
30 vxorpd EvenSumHigh , Even1 , EvenSumHigh{%k2}
31 vxorpd EvenSumHigh , Even2 , EvenSumHigh{%k2}
32

33 vxorpd Odd1 , Odd0 , OddSumLow
34 vxorpd Odd2 , OddSumLow , OddSumLow{%k1}
35 vxorpd Odd3 , OddSumLow , OddSumLow{%k1}
36 vxorpd Odd3 , Odd2 , OddSumHigh{%k2}
37

38 v a l i g n q 0x3 , OddSumLow , OddSumHigh , OddSumHigh
39 v a l i g n q 0x3 , Zero , OddSumLow , OddSumLow
40

41 vxorpd OddSumLow , EvenSumLow , EvenSumLow
42 vxorpd OddSumHigh , EvenSumHigh , EvenSumHigh
43

44 vmovdqu64 EvenSumLow , (r e s)
45 vmovdqu64 EvenSumHigh , 0x20 (r e s)

Fig. 2. Schoolbook multiplication of 4 × 4 qwords:
res[1023 : 0] = a[511 : 0] · b[511 : 0].

assisting C code compiled with gcc (version 5.4.0) in 64-bit
mode, using the ”O3” Optimization level.

Currently no real processor with VPCLMULQDQ instruction
exists. Therefore, to predict the potential improvement on
future Intel architectures we used the Intel Software Devel-
oper Emulator (SDE) [12]. This tool allows us to count the
number of instructions executed during each of the tested
functions. We marked the start/end boundaries of each func-
tion with ”SSC marks” 1 and 2, respectively. This is done
by executing ”movl ssc_mark, %ebx; .byte 0x64,
0x67, 0x90” and invoking the SDE with the flags ”-
start ssc mark 1 -stop ssc mark 2 -mix -icl”. The rationale is
that a reduced number of instructions typically indicates im-
proved performance that will be observed on a real processor
(although the exact relation between the instructions count and
the eventual cycles count is not known in advanced).

Figure 3 compares the instructions count for perform-
ing polynomial multiplication, using different software ”core
flows” for polynomials of degree up to 216−1. Figure 4 zooms
in to the same comparison for polynomials of smaller degrees.
We see that the two 4× 4 implementations use twice as many
instructions as our zmm 8× 8 implementation. For the lower

25th IEEE Symbosium on Computer Arithmetic (ARITH 2018) 113

TABLE IV
INSTRUCTIONS COUNT FOR THE ”CORE FLOWS”. THE xmm AND ymm

IMPLEMENTATIONS OPERATE ON 4× 4 QWORDS THEREFORE THEIR
COUNT IS MULTIPLIED BY 3 (FOR THE KARATSUBA ALGORITHM).

Method VPCLMULQDQ VPXORPD VMOVDQU VPERMPD Other total
xmm 48 60 42 0 0 150
ymm 24 45 12 18 21 120
zmm 16 31 4 16 11 78

degree polynomials this becomes even more noticable (up to
a factor of 3.43). This can also be observed in Table IV that
summarizes the instructions count for a single call to the 8×8
qwords multiplication (with zmm). For a fair comparison, the
values reported for the 4 × 4 qwords multiplications (with
ymm or xmm) were multiplied by 3 in order to account for
their use in the Karatsuba algorithm. This count overlooks the
additional instructions that the Karatsuba wrapper requires.

The exact relation between the instructions count and the
eventual cycles count is only an indicator that could be
confirmed when a real processor is available. To further
substantiate our prediction we complement our report with
a second method that we call ”stand in”. We replace the
VPCLMULQDQ instructions with the VPMULDQ instruction that
has a latency of 5 cycles and throughput of 1 cycle [13]. This
is an similar enough to the non-vectorized PCLMULQDQ in-
struction that have the same throughput and latency between
4 to 7 cycles depends on the architecture. This approach
allows us to run experiments on a real processor (although
the results are not functionally correct we are only interested
in approximating the anticipated performance).

These experiments were carried out on a platform equipped
with the latest 7th Generation Intel R© CoreY TM processor
(”Kaby Lake”) - Intel R© Xeon R© Platinum 8124M CPU at
3.00 GHz Core R© i5 − 750. The platform has 70 GB RAM,
32K L1d and L1i cache, 1, 024K L2 cache, and 25, 344K L3
cache. It was configured to disable the Intel R© Turbo Boost
Technology, and the Enhanced Intel Speedstep R© Technology.
The runs were carried out on a Linux (Ubuntu 16.04.3 LTS)
OS.

The performance is reported in processor cycles, where
lower is better, reflecting the performance per a single core.
We use the follow measurement methodology: Each measured
function was isolated, run 25 times (warm-up), followed by
100 iterations that were clocked (using the RDTSC instruc-
tion) and averaged. To minimize the effect of background tasks
running on the system, each such experiment was repeated 10
times, and the minimum result was recorded.

Figure 5 shows a speedup of 2.2x and 1.25x between the
reference implementation and the zmm 8×8 and ymm 4×4
implementations, respectively.

VI. CONCLUSION

This paper showed an algorithm that can leverage Intel’s
new instruction VPCLMULQDQ for fast polynomial multipli-
cation. We used two different prediction indicators and their
results match. Based on these findings, we predict that future

processors equipped with VPCLMULQDQ would be able to
multiply binary polynomials at least 2 times faster than they
do today.

Finally, to show the potential impact we note that polyno-
mial multiplications (with high degrees) is a noticeable part
of the workload in some of the new post-quantum proposals
[3] such as BIKE, LEDAKem, and GeMSS.

Fig. 3. Comparison of instructions count (lower is better).

Fig. 4. Comparison of instructions count (lower is better).

Fig. 5. Comparison of cycles count (lower is better). The VPCLMULQDQ in-
structions were replaced with VPMULDQ instructions

Acknowledgements
This research was supported by: The PQCRYPTO project,

which was partially funded by the European Commission

114 25th IEEE Symbosium on Computer Arithmetic (ARITH 2018)

Horizon 2020 research Programme, grant #645622; The Israel
Science Foundation (grant No. 1018/16); The Ministry of
Science and Technology, Israel, and the Department of Science
and Technology, Government of India; The BIU Center for
Research in Applied Cryptography and Cyber Security, in
conjunction with the Israel National Cyber Bureau in the Prime
Minister’s Office; The Center for Cyber Law and Policy at the
University of Haifa.

REFERENCES

[1] S. Gueron and M. Kounavis, “Efficient implementation of the galois
counter mode using a carry-less multiplier and a fast reduction
algorithm,” Information Processing Letters, vol. 110, no. 14, pp. 549 –
553, 2010. [Online]. Available: http://www.sciencedirect.com/science/
article/pii/S002001901000092X

[2] S. Gueron and M. E. Kounavis, “Intel R© carry-less multiplication
instruction and its usage for computing the gcm mode,” White Paper,
2010.

[3] −, “Nist:post-quantum cryptography - call for proposals,” September
2017, https://csrc.nist.gov/Projects/Post-Quantum-Cryptography.

[4] N. Aragon, P. Barreto, S. Bettaieb, L. Bidoux, O. Blazy, J.-C. Deneuville,
P. Gaborit, S. Gueron, T. Guneysu, C. A. Melchor et al., “Bike: Bit
flipping key encapsulation,” 2017.

[5] M. Baldi, A. Barenghi, F. Chiaraluce, G. Pelosi, and P. Santini,
“Ledakem: a post-quantum key encapsulation mechanism based on QC-
LDPC, codes,” CoRR, vol. abs/1801.08867, 2018. [Online]. Available:
http://arxiv.org/abs/1801.08867

[6] A. Casanova, J.-C. Faug‘ere, G. Macario-Rat, J. Patarin, L. Perret,
and J. Ryckeghem, “GeMSS: A Great Multivariate Short
Signature,” https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-
Cryptography/documents/round-1/submissions/GeMSS.zip, November
2017.

[7] −, “Intel architecture instruction set extensions programming reference,”
https://software.intel.com/sites/default/files/managed/c5/15/architecture-
instruction-set-extensions-programming-reference.pdf, October 2017.

[8] A. Karatsuba and Y. Ofman, “Multiplication of multidigit numbers on
automata,” Soviet Physics Doklady, vol. 7, p. 595, Jan 1963.

[9] A. L. Toom, “The complexity of a scheme of functional elements
realizing the multiplication of integers,” in Soviet Mathematics Doklady,
vol. 3, no. 4, 1963, pp. 714–716.

[10] S. A. Cook and S. O. Aanderaa, “On the minimum computation
time of functions,” Transactions of the American Mathematical
Society, vol. 142, pp. 291–314, 1969. [Online]. Available: http:
//www.jstor.org/stable/1995359

[11] N. Drucker and S. Gueron, “A toolbox for software optimization of QC-
MDPC code-based cryptosystems,” Cryptology ePrint Archive, Report
2017/1251, 2017, https://eprint.iacr.org/2017/1251.

[12] , “Intel R©software development emulator,” https://software.intel.com/
en-us/articles/intel-software-development-emulator.

[13] −, “Intel R©64 and IA-32 architectures optimization reference manual,”
June 2016.

25th IEEE Symbosium on Computer Arithmetic (ARITH 2018) 115

