On various ways to split a floating-point number

Claude-Pierre Jeannerod Jean-Michel Muller Paul Zimmermann

Inria, CNRS, ENS Lyon, Université de Lyon, Université de Lorraine
France

ARITH-25
June 2018

s

— — =REITE D= UNIVERSITE
UNIV_RSIT:T D= LYoN @ DE LORRAINE

Yy,

............. . monamatisses ==
ENS DE LYON

Splitting a floating-point number

) X
-
ﬁ\:
; -
Iy

o]
B X
C X
B X B

All products are
computed exactly
with one FP
multiplication
(Dekker product)

Dekker product (1971)

=7

- .

N

|

20

frac(x)

: . First bit of x = ufp(x)

(for scalings)

Splitting a floating-point number

|
!
L .
R @ absolute splittings (e.g., [x]),

— vs relative splittings (e.g., most

significant bits, splitting of the
significands for multiplication);

7
In each "bin", the sum is @ no bit manipulations of the

computed exacty binary representations (would
result in less portable
programs) — only FP
operations.

@ Matlab program in a paper by
Zielke and Drygalla (2003),

@ analysed and improved by Rump,
Ogita, and Oishi (2008),

@ reproducible summation, by
Demmel & Nguyen.

Notation and preliminary definitions

o |EEE-754 compliant FP arithmetic with radix (3, precision p, and
extremal exponents enin and enax;

@ F = set of FP numbers. x € F can be written

M e
o (ﬂpl) o

M, e € Z, with |[M| < 8P and enin < € < emax, and |[M| maximum
under these constraints;

e significand of x: M- g=P*1;

@ RN = rounding to nearest with some given tie-breaking rule (assumed
to be either “to even” or “to away”, as in IEEE 754-2008);

Notation and preliminary definitions

Definition 1 (classical ulp)
The unit in the last place of t € R is

(FEmin—P+1 otherwise.

I.IOgB |t|J—P+1 1 > €min

Definition 2 (ufp)
The unit in the first place of t € R is

Bllegsltllif ¢ £ 0,
ufi(t) = {o ift=0

(introduced by Rump, Ogita and Oishi in 2007)

Notation and preliminary definitions

significand exponent

|) (| | | X = T.XXXXXXXXX . Ze

ufp(x) = 1.00000000 . 2°

ulp(x) = 0.00000001 . 2°

Guiding thread of the talk: catastrophic cancellation is your friend.

Absolute splittings: 1. nearest integer

Uses a constant C. Same operations as Fast2Sum, yet different
assumptions.

Algorithm 1

C |1 .10000000000...0 I

Require: C,x € F X | |
s < RN(C + x)
xp < RN(s — C) =3 s=[1.100
xp < RN(x — xp) {optional} - C [1.10000000000...0

return x, {or (xp, x¢)}

=3 [0000

First occurrence we found: Hecker (1996) in radix 2 with C = 2P~1 or
C =2P~1 4 2P=2 Use of latter constant referred to as the 1.5 trick.

Theorem 3

Assume C integer with fP~1 < C < BP. If pP~1 — C < x < BP — C, then
Xp is an integer such that |x — xp| < 1/2. Furthermore, x = xp, + x;.

Absolute splittings: 2. floor function

An interesting question is to compute | x|, or more generally |x/3%].

Algorithm 2

Require: x € F
y < RN(x —0.5)
C < RN(BP — x)
s+ RN(C +y)
xp < RN(s — C)
return xj

Theorem 4
Assume 3 is even, x € F, 0 < x < P~L. Then Algorithm 2 returns

xp = |x].

Relative splittings

@ expressing a precision-p FP number x as the exact sum of a
(p — s)-digit number x;, and an s-digit number xy;
o first use with s = | p/2| (Dekker product, 1971)

@ another use: s =p — 1 — x;, is a power of § giving the order of
magnitude of x. Two uses:
o evaluate ulp(x) or ufp(x). Useful functions in the error analysis of FP
algorithms;

Relative splittings

@ expressing a precision-p FP number x as the exact sum of a
(p — s)-digit number x;, and an s-digit number xy;
o first use with s = | p/2| (Dekker product, 1971)

@ another use: s =p — 1 — x;, is a power of § giving the order of
magnitude of x. Two uses:

o evaluate ulp(x) or ufp(x). Useful functions in the error analysis of FP
algorithms;

— exact information

Relative splittings

@ expressing a precision-p FP number x as the exact sum of a
(p — s)-digit number x;, and an s-digit number xy;
o first use with s = | p/2| (Dekker product, 1971)

@ another use: s =p — 1 — x;, is a power of § giving the order of
magnitude of x. Two uses:

o evaluate ulp(x) or ufp(x). Useful functions in the error analysis of FP
algorithms;

— exact information

e power of § close to |x|: for scaling x, such a weaker condition suffices,
and can be satisfied using fewer operations.

Relative splittings

@ expressing a precision-p FP number x as the exact sum of a
(p — s)-digit number x;, and an s-digit number xy;
o first use with s = | p/2| (Dekker product, 1971)

@ another use: s =p — 1 — x;, is a power of § giving the order of
magnitude of x. Two uses:

o evaluate ulp(x) or ufp(x). Useful functions in the error analysis of FP
algorithms;

— exact information

e power of § close to |x|: for scaling x, such a weaker condition suffices,
and can be satisfied using fewer operations.

— approximate information

Veltkamp splitting

x € Fand s < p — two FP numbers x;, and x; s.t. x = x; + xy, with the
significand of x;, fitting in p — s digits, and the one of x; in s digits (s — 1
when 5 =2 and s > 2).

Remember: catastrophic can-

Algorithm 3 Veltkamp's splitting. cellation is your friend!
Require: C = °+1and x in F L
N — 1
~ < RN(Cx) o
5 = RN(x =) i
xp < RN(y +)
xe & RN~ x) —
return (xp, x¢) —

o Dekker (1971): radix 2 analysis, implicitly assuming no overflow;
@ extended to any radix 8 by Linnainmaa (1981);
@ works correctly even in the presence of underflows;

@ Boldo (2006): Cx does not overflow = no other operation overflows.

_10-

Veltkamp splitting: FMA variant

If an FMA instruction is available, we suggest the following variant, that
requires fewer operations.
Remarks

Algorithm 4 FMA-based relative ° X obtained in para||e| with Xp

litting.
SPItHNg @ even without an FMA, ~ and
Require: C=03°+1and xinF B°x can be computed in

v < RN(Cx) parallel,

xp < RN(y — 8°x)
xp < RN(Cx —)
return (xp, x¢)

@ the bounds on the numbers of
digits of x, and x; given by
Theorem 5 can be attained.

Theorem 5

Llet x e F ands € Z s.t. 1 <s < p. Barring underflow and overflow,
Algorithm 4 computes xp, x¢ € F s.t. x = x, + xp. If =2, the
significands of xp and x; have at most p — s and s bits, respectively. If
B > 2 then they have at most p — s + 1 and s + 1 digits, respectively.

-11-

Extracting a single bit (radix 2)

e computing ufp(x) or ulp(x), or scaling x;

@ Veltkamp's splitting (Algorithm 3) to x with s = p — 1: the resulting
Xxp has a 1-bit significand and it is nearest x in precision p —s = 1.

e For computing sign(x) - ufp(x), we can use the following algorithm,
introduced by Rump (2009).

Algorithm 5 Very rough explanation:

Require: 3 =2, o =2P"141 ¢ = ° g~ 2P Ix+x
1—2P, and xeF o r~ 2P 1x
q < RN(px) — g — r = x but in the massive
r < RN(vq) cancellation we loose all bits
6+ RN(g —r) but the most significant.

return §

~12-

Extracting a single bit (radix 2)

These solutions raise the following issues.

o If |x| is large, then an overflow can occur in the first line of both
Algorithms 3 and 5.

@ To avoid overflow in Algorithm 5: scale it by replacing ¢ by % +27°P
and returning 2P) at the end. However, this variant will not work for
subnormal x.

— to use Algorithm 5, we somehow need to check the order of
magnitude of x.

o If we are only interested in scaling x, then requiring the exact value of
ufp(x) is overkill: one can get a power of 2 “close” to x with a
cheaper algorithm.

~13-

Extracting a single bit (radix 2)

Algorithm 6 sign(x) - ulp(x) for radix 2 and |x| > 26min,

Require: §=2,¢9=1—-2"P and x € F
a < RN(v¥x)
d < RN(x — a)
return §

Theorem 6

If |x| > 2émin then Algorithm 6 returns

an(x) Tulp(x) if x| is a power of 2,
sign(x)-
& ulp(x) otherwise.

Similar algorithm for ufp(x), under the condition |x| < 28max—P+1,

14

Underflow-safe and almost overflow-free scaling

°e =2 p=>4

@ RN breaks ties “to even” or “to away”;

Given a nonzero FP number x, compute a scaling factor § s.t.:

@ |x|/d is much above the underflow threshold and much below the
overflow threshold (so that, for example, we can safely square it);

@ 0 is an integer power of 2 (— no rounding errors when multiplying or
dividing by it).

Algorithms proposed just before: simple, but underflow or overflow can
occur for many inputs x.

~15-

Underflow-safe and almost overflow-free scaling

Following algorithm: underflow-safe and almost overflow-free in the sense
that only the two extreme values x = +(2 — 217P) . 2emax must be
excluded.

Algorithm 7

Require: 3 =2, & =27P 4272+l p — 2emin=P+l gnd x c F
y + |x|
e < RN(®y + 1) {or e <+~ RN(RN(®y) + 1) without FMA}
Ysup < RN(y + e)

6 <« RN(Ysup -)/)
return

~16-

Underflow-safe and almost overflow-free scaling

First 3 lines of Algorithm 7: algorithm due to Rump, Zimmermann, Boldo

and

Melquiond, that computes the FP successor of x ¢ [2émin, 2€min+2],

We have,

Theorem 7

For x € F with |x| # (2 — 217P) . 28max the value § returned by
Algorithm 7 satisfies:

if RN is with “ties to even” then § is a power of 2;

if RN is with “ties to away” then § is a power of 2, unless
|x| = 28mintl _ 2emin=PF1 jn which case it equals 3 - 28min—P+1;
if x # 0, then

Ll

makes § a good candidate for scaling x;
in the paper: application to v/a2 + b2.

-17-

Experimental results

Although we considered floating-point operations only, we can compare
with bit-manipulations.

The C programs we used are publicly available (see proceedings).

Experimental setup: Intel i5-4590 processor, Debian testing, GCC 7.3.0
with -O3 optimization level, FPU control set to rounding to double.

Computation of round or floor:

round floor

Algorithms 1 and 2 0.106s 0.173s

Bit manipulation 0.302s 0.203s
GNU libm rint and floor 0.146s 0.209s

Note: Algorithms 1 and 2 require |x| < 25! and 0 < x < 252 respectively.

~18-

Relative splitting of a double-precision number

Splitting into x and xy:

Xh
Algorithm 3 26 bits
Algorithm 4 26 bits
Algorithm 4 with FMA 26 bits
Bit manipulation 26 bits

Algorithms 3 and 4 assume no intermediate overflow or underflow.

Xy
26 bits
27 bits
27 bits
27 bits

time
0.108s
0.106s
0.108s
0.095s

~-10-

Conclusion

systematic review of splitting algorithms

found some new algorithms, in particular with FMA

(]

many applications for absolute and relative splitting

in their application range, these algorithms are competitive with
(less-portable) bit-manipulation algorithms

90

Motivation

Question of Pierrick Gaudry (Caramba team, Nancy, France):
Multiple-precision integer arithmetic in Javascript.

Javascript has only a 32-bit integer type, but 53-bit doubles!

Storing 16-bit integers in a double precision register, we can accumulate
up to 221 products of 32 bits, and then have to perform
floor(x/65536.0) to normalize.

The Javascript code Math.Floor (x/65536.0) is slow on old internet
browsers (Internet Explorer version 7 or 8)!

The Javascript standard says it is IEEE754, with always round to nearest,
ties to even.

Pierrick Gaudry then opened the "Handbook of Floating-Point
Arithmetic” ...

21-

First algorithm (designed by Pierrick Gaudry):
Assume 0 < x < 236 and x is an integer

We can compute floor (x) as follows:

Let C =230 27142717,

s < RN(C + x)

Return RN(s — C)

Question: can we get rid of the condition “x integer”?

99

