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Arithmetic in neuromorphic chips

Neuromorphic chips are designed to simulate Spiking-Neural-Networks — very
biologically realistic models of neurons and synapses.

The main question is: How much bits do we need for arithmetic operations in
neuromorphic hardware?

Fixed- or floating-point?

How much bits is enough to simulate the brain? (Brain as defined by
computational neuroscientists - not just application specific deep learning,
machine learning etc.)

For this work we chose: Fixed-point, internal 39-bits with programmable
approximation to 32-bit output.



Motivation: Why accelerate
exponential function?
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Similar equations are derived for describing ion channel opening/closing, intrinsic neuron
current activation/deactivation and plasticity of the synaptic gap (to change the weight in
learning).

LIF neuron membrane voltage is modelled as:

Energy/memory/delay is significant using soft-exponential (decay)!

3/20 Images: Furtak, S. (2018). Neurons. In R. Biswas-Diener & E. Diener (Eds), Noba textbook series:



Neuromorphic chips
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SpiNNaker (Manchester, 2011)
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144 ARM MAF cores

128K memory per core (With
capability to use other core’s
memories)

~2GB Off-chip memory

Single precision floating point
hardware unit

Random Number Generators
Machine Learning Accelerator

1W power (+power management
based on neural network activity)

exp and log (base e) accelerators

(x144)

SpiNNaker-2 (Manchester, Dresden,

2020)

Image: Sebastian Hoppner, SpiNNaker2, NICE2018



Most used functions in SpiNNaker

* Exponential decay e™

 Random number generation

* Reciprocal 1/x (E.g. sigmoid activation/deactivation function)
* Multiply-accumulate for ODE solvers

Proposed method for arithmetic in SpiNNaker-2:

Use fixed-point arithmetic when building accelerators — at least 4x less
area/energy than floating-point*.
Use floating-point unit in ARM MA4F only for accuracy sensitive models (Complex
neuron ODE).
Use fixed-point arithmetic everywhere else (+ accelerators and DSP instruction
set)

7/20 *Data from: “High-Performance Hardware for Machine Learning”, W. Dally, U.C. Berkeley, 2016



Well known shift-and-add algorithm

for exp/log”
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With correct initialization, n iterations produce n-1 significant bits approximation.

* Elementary Functions — Algorithms and Implementation 3™ ed., Muller, 2016



Implementation
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Results: Accuracy and
monotonicity s16.15 format
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10/20 math.h double precision exp() (error = result(x) — exp(x))



11/20

Results: Accuracy and
monotonicity s16.15 format

Each case has reduced accuracy by running less loops (Where each loop gives
approximately 4 bits of answer).
e = 2715 = 0.000030517578125

e’ l0ge(x)
N Maxabs.err. Monotonic Max abs.err. Monotonic
8 0.00004425 Yes 0.00003082 Yes
7 0.00023559 Yes 0.00003082 Yes
6 0.00387969 Yes 0.00003082 Yes
5 0.06096649 Yes 0.00003112 Yes
4 0.99264343 Yes 0.00004089 No
3 15.3052932 No 0.00019928 No
2  241.053592 No 0.00268463 No
1 3352.69732 No 0.03837280 No
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Results: Accuracy and

monotonicity s0.31 format

Each case has reduced accuracy by running less loops (Where each loop

gives approximately 4 bits of answer).

e = 2731 = 0:000000000465661

X

loge(x)

N Max abs.err. Monotonic  Max abs.err. Monotonic
8 0.000000000722 Yes 0.000000001387 Yes
7 0.000000003744 No 0.000000003613 Yes
6 0.000000059274 No 0.000000040312 Yes
5 0.000000945120 No 0.000000645976 No
4 0.000014910344 No 0.000010420316 No
3 0.000236990545 No 0.000170091129 No
2 0.003536022179 No 0.002655907041 No
1 0.045793333569 No 0.038344341439 No




echnology and Implementation
Strategy

 GLOBALFOUNDRIES 22FDX (FDSOI) technology [1]
* Adaptive body biasing (ABB) solution and foundation IP by Dresden
Spinoff Racyics [2] = Enables operation down to 0.40V (0.36V wc) .
* Forward Body Bias Scheme with Low-VT (LVT) and Super-low-VT Racyics
(SLVT) flavors.
* Power performance area (PPA) studies for neuromorphic
application scenarios

FOUNDRIES®
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Target implementation point for maximum energy efficiency at
nominally 0.50V and 250MHz (worst case 0.45V and 0C)

13/20 Source: Sebastian Hoppner, SpiNNaker2, NICE2018



Results: Synthesis and timing
analysis

6 accelerator versions are covered with varying number of iteration hardware units
instantiated, denoted by variable I.

Iterations per  Area SLVT Timing Max la-

cycle, 1 (um?) cells met tency (cycles/op)
1 6108 7.3% Y 34

2 8755 3.1% Y 18

3 10361 21.2% Y 13

4 11524 36% Y 10

6 17368 59.6% Y 3

8 21893 68.7% N 6
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Results: Synthesis and timing
analysis

* Same conditions as before, but now varying the clock frequency constraint.

* Area and leakage is measured for two units with I1=1 and 1=4.
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Results: Place and route
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* Full processing element is shown after P&R with
the accelerator in red.

 The power consumption of the circuit is analysed
in a typical process condition at worst case power '
conditions of 0.5V at 85C.

e Software testcases on a netlist of the PE show
0.16-0.39nJ/exp energy (depending on the level
of approximation)

 56x-325x lower EDP than SpiNNaker software

exp.
Exp accelerator Software exp
Throughput 20.8-50M exp/s 2.6M exp/s
Latency 5-12 cycles/exp™ 95 cycles/exp
Energy per exp | 0.16 nJ/exp- 2.74nJ/exp
0.39nJ/exp
Total area 5928 pm? -
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Conclusion

Accelerator with almost full accuracy in fixed-point s16.15 and s0.31 formats
was presented.

Approximation control for experimenting with accuracy was explored.

The prototype chip is currently in manufacturing. The chips will arrive in the lab
later in 2018.

lterative algorithms cause challenges for tighter timing constraints due to very
seqguential nature.

We have discussed how to parallelize a single iteration module, but leakage is
still a problem if more than 2 iterations are placed in a clock cycle.

Unit with 4 iterations is quite a good design point for power, area and ops/s.



Further work

Exponential/logarithm unit:

Floating-point conversion

Rounding; higher radix shift-and-add; programmable fixed-point format.
We have another exponential function design using LUTs and polynomial
approximation — comparison of two approaches in 22nm.

How to parallelize shift-add algorithms further?

Other neuromorphic arithmetic for saving energy/memory:

18/20

Stochastic rounding (allows smaller precision arithmetic without loss of accuracy

in some applications)
Approximate arithmetic with errors in the circuit (leverage error tolerance of

neuromorphic applications)



Extra references

Images of the chips:

* https://newsroom.intel.com/editorials/intel-creates-neuromorphic-research-
community/

* http://www.artificialbrains.com/brainscales

* https://en.wikipedia.org/wiki/TrueNorth

* https://ai-ctx.com/products/dynap/

* http://niceworkshop.org/wp-content/uploads/2018/05/2-27-SHoppner-
SpiNNaker2.pdf

Implementation technology:

[1] R. Carter et al., "22nm FDSOI technology for emerging mobile, Internet-of-Things,
and RF applications," 2016 IEEE International Electron Devices Meeting (IEDM), San
Francisco, CA, 2016, pp. 2.2.1-2.2.4. doi: 10.1109/1EDM.2016.7838029

[2] www.makeChip.design
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