
A Formally-Proved Algorithm to Compute the
Correct Average of Decimal Floating-Point

Numbers

Sylvie Boldo, Florian Faissole, and Vincent Tourneur1

ARITH-25 - June 26th

1Thanks to the IEEE for the student travel award.

Introduction

FP arithmetic: IEEE-754.

IEEE-754 2008 revision adds radix-10 formats
(decimal32, decimal64).

Many algorithms designed for radix-2 FP numbers are not
valid anymore.

Goal: Adapt an existing algorithm from radix-2 FP numbers
literature to radix-10.

A Formally-Proved Algorithm to Compute the Correct Average of Decimal Floating-Point Numbers 2 / 24

Average of two FP numbers

Compute the correct rounding of the average of two FP numbers:

◦
(
a + b

2

)
with ◦ a rounding to nearest

with as few tests as possible.

A Formally-Proved Algorithm to Compute the Correct Average of Decimal Floating-Point Numbers 3 / 24

Outline

1 Radix-2 Average Algorithms

2 Unsuccessful Radix-10 Average Algorithm

3 Radix-10 Average Algorithm

4 Formal Proof with Coq and Flocq

5 Conclusion

A Formally-Proved Algorithm to Compute the Correct Average of Decimal Floating-Point Numbers 4 / 24

Outline

1 Radix-2 Average Algorithms

2 Unsuccessful Radix-10 Average Algorithm

3 Radix-10 Average Algorithm

4 Formal Proof with Coq and Flocq

5 Conclusion

A Formally-Proved Algorithm to Compute the Correct Average of Decimal Floating-Point Numbers 5 / 24

FP Average in Radix 2

Studied by Sterbenz (1974):

(a⊕ b)� 2: accurate, but may overflow when a and b share
the same sign.

(a� 2)⊕ (b � 2): accurate, except when underflow.

a⊕ ((b	 a)� 2): less accurate, but does not overflow. when a
and b share the same sign

A corresponding algorithm has been proved by Boldo to
guarantee accuracy. This is a long program, since a full sign
study is required to choose the correct formula.

A Formally-Proved Algorithm to Compute the Correct Average of Decimal Floating-Point Numbers 6 / 24

FP Average in Radix 2

Studied by Sterbenz (1974):

(a⊕ b)� 2: accurate, but may overflow when a and b share
the same sign.

(a� 2)⊕ (b � 2): accurate, except when underflow.

a⊕ ((b	 a)� 2): less accurate, but does not overflow. when a
and b share the same sign

A corresponding algorithm has been proved by Boldo to
guarantee accuracy. This is a long program, since a full sign
study is required to choose the correct formula.

A Formally-Proved Algorithm to Compute the Correct Average of Decimal Floating-Point Numbers 6 / 24

Correctly-Rounded Radix-2 Algorithm

A simpler algorithm that computes the correctly-rounded average
is formally proved by Boldo (2015). Using radix-2 binary64 FP
numbers:

double average(double C, double x, double y) {

if (C <= abs(x))

return x/2+y/2;

else

return (x+y)/2;

}

C is a constant that can be chosen between 2−967 and 2970.

A Formally-Proved Algorithm to Compute the Correct Average of Decimal Floating-Point Numbers 7 / 24

Dividing FP numbers by 2

In radix 2, dividing by 2 is exact (except when underflow).

In radix 10, there are 2 different cases:

If the mantissa is even or small: the result is exact.

Otherwise, the mantissa is odd and the result is a midpoint.

A Formally-Proved Algorithm to Compute the Correct Average of Decimal Floating-Point Numbers 8 / 24

Outline

1 Radix-2 Average Algorithms

2 Unsuccessful Radix-10 Average Algorithm

3 Radix-10 Average Algorithm

4 Formal Proof with Coq and Flocq

5 Conclusion

A Formally-Proved Algorithm to Compute the Correct Average of Decimal Floating-Point Numbers 9 / 24

Radix-10 FP Numbers Format

In this section, we use the following FP format:

Radix: 10.

Mantissa size: 4 digits.

Unbounded exponent range.

Rounding to nearest, tie-breaking to even.

A Formally-Proved Algorithm to Compute the Correct Average of Decimal Floating-Point Numbers 10 / 24

Algorithms based on (a + b)/2

Algorithm: (a⊕ b)� 2

Counter-example of correct rounding:

a = 3001× 1010, b = 1000× 100

3001
1000

30010000001
3001
15005
1500
150050000005
1501

a

b
a + b
a⊕ b
(a⊕ b)/2
(a⊕ b)� 2
(a + b)/2
◦((a + b)/2)

a/2 is a midpoint, but b is positive, so the rounding should have
been towards +∞.

A Formally-Proved Algorithm to Compute the Correct Average of Decimal Floating-Point Numbers 11 / 24

Algorithms based on (a + b)/2

Algorithm: (a⊕ b)� 2

Counter-example of correct rounding:

a = 3001× 1010, b = 1000× 100

3001
1000

30010000001
3001
15005
1500
150050000005
1501

a

b
a + b
a⊕ b
(a⊕ b)/2
(a⊕ b)� 2
(a + b)/2
◦((a + b)/2)

a/2 is a midpoint, but b is positive, so the rounding should have
been towards +∞.

A Formally-Proved Algorithm to Compute the Correct Average of Decimal Floating-Point Numbers 11 / 24

Algorithms based on (a + b)/2

Algorithm: (a⊕ b)� 2

Counter-example of correct rounding:

a = 3001× 1010, b = 1000× 100

3001
1000

30010000001
3001
15005
1500
150050000005
1501

a

b
a + b
a⊕ b
(a⊕ b)/2
(a⊕ b)� 2
(a + b)/2
◦((a + b)/2)

a/2 is a midpoint, but b is positive, so the rounding should have
been towards +∞.

A Formally-Proved Algorithm to Compute the Correct Average of Decimal Floating-Point Numbers 11 / 24

Algorithms based on (a/2) + (b/2)

Algorithm: (a� 2)⊕ (b � 2)

Counter-example of correct rounding: (same)

a = 3001× 1010, b = 1000× 100

3001
1000

15005
1500

5000
150000000005
1500
150050000005
1501

a

b
a/2
a� 2
b/2
(a� 2) + (b � 2)
(a� 2)⊕ (b � 2)
(a + b)/2
◦((a + b)/2)

Same issue, a/2 is a midpoint, and is rounded before taking into
account the value of b.
A Formally-Proved Algorithm to Compute the Correct Average of Decimal Floating-Point Numbers 12 / 24

Algorithms based on (a/2) + (b/2)

Algorithm: (a� 2)⊕ (b � 2)

Counter-example of correct rounding: (same)

a = 3001× 1010, b = 1000× 100

3001
1000

15005
1500

5000
150000000005
1500
150050000005
1501

a

b
a/2
a� 2
b/2
(a� 2) + (b � 2)
(a� 2)⊕ (b � 2)
(a + b)/2
◦((a + b)/2)

Same issue, a/2 is a midpoint, and is rounded before taking into
account the value of b.
A Formally-Proved Algorithm to Compute the Correct Average of Decimal Floating-Point Numbers 12 / 24

Algorithms based on (a/2) + (b/2)

Algorithm: (a� 2)⊕ (b � 2)

Counter-example of correct rounding: (same)

a = 3001× 1010, b = 1000× 100

3001
1000

15005
1500

5000
150000000005
1500
150050000005
1501

a

b
a/2
a� 2
b/2
(a� 2) + (b � 2)
(a� 2)⊕ (b � 2)
(a + b)/2
◦((a + b)/2)

Same issue, a/2 is a midpoint, and is rounded before taking into
account the value of b.
A Formally-Proved Algorithm to Compute the Correct Average of Decimal Floating-Point Numbers 12 / 24

Algorithms based on (a/2) + (b/2), using FMA

Algorithm: ◦(a× 0.5 + (b � 2))
There is one rounding less thanks to the FMA operator.

Counter-example of correct rounding:

a = 2001× 1010, b = 2001× 108

2001
2001
10005
1000

10005
10105
1010
1010505
1011

a

b
b/2
b � 2
a× 0.5
a× 0.5 + (b � 2)
◦(a× 0.5 + (b � 2))
(a + b)/2
◦((a + b)/2)

A Formally-Proved Algorithm to Compute the Correct Average of Decimal Floating-Point Numbers 13 / 24

Algorithms based on (a/2) + (b/2), using FMA

Algorithm: ◦(a× 0.5 + (b � 2))
There is one rounding less thanks to the FMA operator.

Counter-example of correct rounding:

a = 2001× 1010, b = 2001× 108

2001
2001
10005
1000

10005
10105
1010
1010505
1011

a

b
b/2
b � 2
a× 0.5
a× 0.5 + (b � 2)
◦(a× 0.5 + (b � 2))
(a + b)/2
◦((a + b)/2)

A Formally-Proved Algorithm to Compute the Correct Average of Decimal Floating-Point Numbers 13 / 24

Algorithms based on (a/2) + (b/2), using FMA

Algorithm: ◦(a× 0.5 + (b � 2))
There is one rounding less thanks to the FMA operator.

Counter-example of correct rounding:

a = 2001× 1010, b = 2001× 108

2001
2001
10005
1000

10005
10105
1010
1010505
1011

a

b
b/2
b � 2
a× 0.5
a× 0.5 + (b � 2)
◦(a× 0.5 + (b � 2))
(a + b)/2
◦((a + b)/2)

A Formally-Proved Algorithm to Compute the Correct Average of Decimal Floating-Point Numbers 13 / 24

Outline

1 Radix-2 Average Algorithms

2 Unsuccessful Radix-10 Average Algorithm

3 Radix-10 Average Algorithm

4 Formal Proof with Coq and Flocq

5 Conclusion

A Formally-Proved Algorithm to Compute the Correct Average of Decimal Floating-Point Numbers 14 / 24

TwoSum

TwoSum (x , y) computes (with 6 flops) the sum of x and y , and
the rounding error. It works in radix-10 and returns the rounding
and the error of an FP addition (always representable exactly by an
FP number).

(a, b) = TwoSum (x , y) =⇒

x + y = a + b ∧ |b| ≤ ulp (a)

2

A Formally-Proved Algorithm to Compute the Correct Average of Decimal Floating-Point Numbers 15 / 24

Sketch of the Proof with Unbounded Exponent Range

1 Function Average10(x , y)
2 (a, b) = TwoSum (x , y)
3 if ◦(a× 0.5− (a� 2)) = 0 then
4 return ◦(b × 0.5 + (a� 2))
5 else
6 return ◦(a× 0.5 + b)

The if checks whether a/2 is a FP number.

If a/2 ∈ F, we have a� 2 = a/2. So the computations of line
4 are exact until the last rounding.

In the other case, a/2 is a midpoint and we rely on the
following lemma.

In the other case, b is not divided by 2 contrary to intuition.

A Formally-Proved Algorithm to Compute the Correct Average of Decimal Floating-Point Numbers 16 / 24

Sketch of the Proof with Unbounded Exponent Range

1 Function Average10(x , y)
2 (a, b) = TwoSum (x , y)
3 if ◦(a× 0.5− (a� 2)) = 0 then
4 return ◦(b × 0.5 + (a� 2))
5 else
6 return ◦(a× 0.5 + b)

The if checks whether a/2 is a FP number.

If a/2 ∈ F, we have a� 2 = a/2. So the computations of line
4 are exact until the last rounding.

In the other case, a/2 is a midpoint and we rely on the
following lemma.

In the other case, b is not divided by 2 contrary to intuition.

A Formally-Proved Algorithm to Compute the Correct Average of Decimal Floating-Point Numbers 16 / 24

Sketch of the Proof with Unbounded Exponent Range

1 Function Average10(x , y)
2 (a, b) = TwoSum (x , y)
3 if ◦(a× 0.5− (a� 2)) = 0 then
4 return ◦(b × 0.5 + (a� 2))
5 else
6 return ◦(a× 0.5 + b)

The if checks whether a/2 is a FP number.

If a/2 ∈ F, we have a� 2 = a/2. So the computations of line
4 are exact until the last rounding.

In the other case, a/2 is a midpoint and we rely on the
following lemma.

In the other case, b is not divided by 2 contrary to intuition.

A Formally-Proved Algorithm to Compute the Correct Average of Decimal Floating-Point Numbers 16 / 24

Sketch of the Proof with Unbounded Exponent Range

1 Function Average10(x , y)
2 (a, b) = TwoSum (x , y)
3 if ◦(a× 0.5− (a� 2)) = 0 then
4 return ◦(b × 0.5 + (a� 2))
5 else
6 return ◦(a× 0.5 + b)

The if checks whether a/2 is a FP number.

If a/2 ∈ F, we have a� 2 = a/2. So the computations of line
4 are exact until the last rounding.

In the other case, a/2 is a midpoint and we rely on the
following lemma.

In the other case, b is not divided by 2 contrary to intuition.

A Formally-Proved Algorithm to Compute the Correct Average of Decimal Floating-Point Numbers 16 / 24

Sketch of the Proof with Unbounded Exponent Range

1 Function Average10(x , y)
2 (a, b) = TwoSum (x , y)
3 if ◦(a× 0.5− (a� 2)) = 0 then
4 return ◦(b × 0.5 + (a� 2))
5 else
6 return ◦(a× 0.5 + b)

The if checks whether a/2 is a FP number.

If a/2 ∈ F, we have a� 2 = a/2. So the computations of line
4 are exact until the last rounding.

In the other case, a/2 is a midpoint and we rely on the
following lemma.

In the other case, b is not divided by 2 contrary to intuition.

A Formally-Proved Algorithm to Compute the Correct Average of Decimal Floating-Point Numbers 16 / 24

Technical Lemma

Lemma (Midpoint)

Let m = g + ulp (g)
2 with g ∈ F, m > 0 and 0 < e ≤ ulp (g)

2 .

m 	 e = g

m ⊕ e = succ (g)

R

g− g = m 	 e succ (g) = m ⊕ em

m + em − e

A Formally-Proved Algorithm to Compute the Correct Average of Decimal Floating-Point Numbers 17 / 24

Outline

1 Radix-2 Average Algorithms

2 Unsuccessful Radix-10 Average Algorithm

3 Radix-10 Average Algorithm

4 Formal Proof with Coq and Flocq

5 Conclusion

A Formally-Proved Algorithm to Compute the Correct Average of Decimal Floating-Point Numbers 18 / 24

Formal Proof Software

The Coq proof assistant

Floating-Point numbers library: Flocq (Boldo-Melquiond),
which provides an FP numbers formalization and many results.

There are several FP formats in Flocq, defined as subsets of
reals numbers R. All formats depend on a radix (β).

FLX: unbounded exponent range.
FLT: exponent has a minimal value (gradual underflow).

Format Parameters Constraints

FLX β, p |m| < βp

FLT β, p, emin |m| < βp, e ≥ emin

A real number is a FP number if equal to m × βe

A Formally-Proved Algorithm to Compute the Correct Average of Decimal Floating-Point Numbers 19 / 24

Definition of the Algorithm

We define our algorithm in Coq:

Definition average10 (x y : R) :=

if (Req_bool (round (x/2 - round (x/2))) 0)

then round (y/2 + round (x/2))

else round (x/2 + y).

We assume that this function is called with the output of TwoSum.

A Formally-Proved Algorithm to Compute the Correct Average of Decimal Floating-Point Numbers 20 / 24

Main Theorem

This is the main theorem, stating the correctness of the algorithm:

Theorem average10_correct :

forall a b, format a → format b →
Rabs b <= (ulp a) / 2 →
average10 a b = round ((a + b) / 2).

format x means that x ∈ F. We define it depending on the
chosen format.

round x is ◦(x). It also depends on the format, and is a
rounding to nearest, with an arbitrary tie.

ulp x is ulp (x).

A Formally-Proved Algorithm to Compute the Correct Average of Decimal Floating-Point Numbers 21 / 24

Main Theorem

This is the main theorem, stating the correctness of the algorithm:

Theorem average10_correct :

forall a b, format a → format b →
Rabs b <= (ulp a) / 2 →
average10 a b = round ((a + b) / 2).

format x means that x ∈ F. We define it depending on the
chosen format.

round x is ◦(x). It also depends on the format, and is a
rounding to nearest, with an arbitrary tie.

ulp x is ulp (x).

A Formally-Proved Algorithm to Compute the Correct Average of Decimal Floating-Point Numbers 21 / 24

Proofs and Generalizations

1 Function Average10(x , y)
2 (a, b) = TwoSum (x , y)
3 if ◦(a× 0.5− (a� 2)) = 0 then
4 return ◦(b × 0.5 + (a� 2))
5 else
6 return ◦(a× 0.5 + b)

We first prove it with an unbounded exponent range (FLX).

We then prove that it holds with gradual underflow (FLT).

The test ◦(a× 0.5− (a� 2)) = 0 is not equivalent to a/2 ∈ F.
In the else case, one must compute ◦(a× 0.5 + b), instead of
◦(a× 0.5 + b � 2) (both would work in FLX).

We generalize it for any even radix.

A Formally-Proved Algorithm to Compute the Correct Average of Decimal Floating-Point Numbers 22 / 24

Outline

1 Radix-2 Average Algorithms

2 Unsuccessful Radix-10 Average Algorithm

3 Radix-10 Average Algorithm

4 Formal Proof with Coq and Flocq

5 Conclusion

A Formally-Proved Algorithm to Compute the Correct Average of Decimal Floating-Point Numbers 23 / 24

Conclusion

Summary:

The algorithm computes the correct rounding (to nearest) of
the average of two FP numbers: ◦ ((a + b)/2).
It holds with gradual underflow.
It holds with any tie-breaking rule.
It is formally-proved.
It has been generalized to any even radix.

We have problems with spurious overflows (due to TwoSum).

We showed that it may not be straightforward to adapt some
existing algorithms from radix-2 literature to radix-10.

A Formally-Proved Algorithm to Compute the Correct Average of Decimal Floating-Point Numbers 24 / 24

Conclusion

Summary:

The algorithm computes the correct rounding (to nearest) of
the average of two FP numbers: ◦ ((a + b)/2).
It holds with gradual underflow.
It holds with any tie-breaking rule.
It is formally-proved.
It has been generalized to any even radix.

We have problems with spurious overflows (due to TwoSum).

We showed that it may not be straightforward to adapt some
existing algorithms from radix-2 literature to radix-10.

A Formally-Proved Algorithm to Compute the Correct Average of Decimal Floating-Point Numbers 24 / 24

	Introduction
	Radix-2 Average Algorithms
	Unsuccessful Radix-10 Average Algorithm
	Radix-10 Average Algorithm
	Formal Proof with Coq and Flocq
	Conclusion

