A Formally-Proved Algorithm to Compute the

Correct Average of Decimal Floating-Point
Numbers

Sylvie Boldo, Florian Faissole, and Vincent Tourneur!

[]
. ey
informatics g¥mathematics
575 université

L d

ARITH-25 - June 26th

'Thanks to the IEEE for the student travel award.

Introduction

@ FP arithmetic: IEEE-754.

o |EEE-754 2008 revision adds radix-10 formats
(decimal32, decimal64).

@ Many algorithms designed for radix-2 FP numbers are not
valid anymore.

Goal: Adapt an existing algorithm from radix-2 FP numbers
literature to radix-10.

A Formally-Proved Algorithm to Compute the Correct Average of Decimal Floating-Point Numbers

Average of two FP numbers

Compute the correct rounding of the average of two FP numbers:

b . .
o (a—;) with o a rounding to nearest

with as few tests as possible.

A Formally-Proved Algorithm to Compute the Correct Average of Decimal Floating-Point Numbers

© Radix-2 Average Algorithms

© Unsuccessful Radix-10 Average Algorithm
© Radix-10 Average Algorithm

@ Formal Proof with Coq and Flocq

© Conclusion

A Formally-Proved Algorithm to Compute the Correct Average of Decimal Floating-Point Numbers

Outline

0 Radix-2 Average Algorithms

A Formally-Proved Algorithm to Compute the Correct Average of Decimal Floating-Point Numbers

FP Average in Radix 2

e Studied by Sterbenz (1974):

o (a® b) @ 2: accurate, but may overflow when a and b share
the same sign.

o (a®2)® (b®2): accurate, except when underflow.

o ad® ((bS a)®2): less accurate, but does not overflow. when a
and b share the same sign

A Formally-Proved Algorithm to Compute the Correct Average of Decimal Floating-Point Numbers

FP Average in Radix 2

e Studied by Sterbenz (1974):

o (a® b) @ 2: accurate, but may overflow when a and b share
the same sign.

o (a®2)® (b®2): accurate, except when underflow.

o ad® ((bS a)®2): less accurate, but does not overflow. when a
and b share the same sign

@ A corresponding algorithm has been proved by Boldo to
guarantee accuracy. This is a long program, since a full sign
study is required to choose the correct formula.

A Formally-Proved Algorithm to Compute the Correct Average of Decimal Floating-Point Numbers

Correctly-Rounded Radix-2 Algorithm

A simpler algorithm that computes the correctly-rounded average
is formally proved by Boldo (2015). Using radix-2 binary64 FP
numbers:

double average (double C, double x, double y) {
if (C <= abs(x))
return x/2+y/2;
else
return (x+y)/2;
}

C is a constant that can be chosen between 27967 and 2970,

A Formally-Proved Algorithm to Compute the Correct Average of Decimal Floating-Point Numbers

Dividing FP numbers by 2

e In radix 2, dividing by 2 is exact (except when underflow).

@ In radix 10, there are 2 different cases:

o If the mantissa is even or small: the result is exact.

o Otherwise, the mantissa is odd and the result is a midpoint.

A Formally-Proved Algorithm to Compute the Correct Average of Decimal Floating-Point Numbers

Outline

© Unsuccessful Radix-10 Average Algorithm

A Formally-Proved Algorithm to Compute the Correct Average of Decimal Floating-Point Numbers

Radix-10 FP Numbers Format

In this section, we use the following FP format:

e Radix: 10.

o Mantissa size: 4 digits.

Unbounded exponent range.

Rounding to nearest, tie-breaking to even.

A Formally-Proved Algorithm to Compute the Correct Average of Decimal Floating-Point Numbers

Algorithms based on (a + b)/2

Algorithm: (a @ b) © 2

A Formally-Proved Algorithm to Compute the Correct Average of Decimal Floating-Point Numbers

Algorithms based on (a + b)/2

Algorithm: (a @ b) © 2

Counter-example of correct rounding:

a=3001 x 10'°, b = 1000 x 10°

a 3001

b 1000
at+b 30010000001
adb 3001

(2@ b)/2 15005

(a0 b) 22 1500

A Formally-Proved Algorithm to Compute the Correct Average of Decimal Floating-Point Numbers

Algorithms based on (a + b)/2

Algorithm: (a @ b) © 2

Counter-example of correct rounding:

a=3001 x 10'°, b = 1000 x 10°

a 3007

b 1000
at+b 30010000001
adb 3001

(2@ b)/2 15005
(adb)©?2 1500

(a+ b)/2 150050000005
o((a+ b)/2) 1501

a/2 is a midpoint, but b is positive, so the rounding should have

been towards +oo.

A Formally-Proved Algorithm to Compute the Correct Average of Decimal Floating-Point Numbers

Algorithms based on (a/2) + (b/2)

Algorithm: (a©2) ® (b© 2)

A Formally-Proved Algorithm to Compute the Correct Average of Decimal Floating-Point Numbers

Algorithms based on (a/2) + (b/2)

Algorithm: (a©2) ® (b© 2)
Counter-example of correct rounding: (same)

a = 3001 x 10'°, b = 1000 x 10°

a 3007

b 1000
a/2 15005

a2 1500

b/2 [5000]

(3 2) + (b 2) [150000000005
(a0 2)® (bo2) [1500

A Formally-Proved Algorithm to Compute the Correct Average of Decimal Floating-Point Numbers

Algorithms based on (a/2) + (b/2)

Algorithm: (a©2) ® (b© 2)

Counter-example of correct rounding: (same)

a = 3001 x 10'°, b = 1000 x 10°

a [3001]

b [1000]
a/2 150055

aQ?2 1500

b/2 [5000]
(a©2) + (bo2) [1500000000005
(a02)® (b 2) [1500

(a+ b)/2 150050000005
o((a+ b)/2) 1501

Same issue, a/2 is a midpoint, and is rounded before taking into

account the value of b.

A Formally-Proved Algorithm to Compute the Correct Average of Decimal Floating-Point Numbers

Algorithms based on (a/2) + (b/2), using FMA

Algorithm: o(a x 0.5+ (b @ 2))
There is one rounding less thanks to the FMA operator.

A Formally-Proved Algorithm to Compute the Correct Average of Decimal Floating-Point Numbers

Algorithms based on (a/2) + (b/2), using FMA

Algorithm: o(a x 0.5+ (b @ 2))
There is one rounding less thanks to the FMA operator.

Counter-example of correct rounding:

a=2001 x 10'°, b = 2001 x 108

a [2001]

b 2001
b/2 10005
bo?2 1000
ax0.5 10005
ax05+(bo?2) 10105
o(lax 05+ (b®?2)) 1010

A Formally-Proved Algorithm to Compute the Correct Average of Decimal Floating-Point Numbers

Algorithms based on (a/2) + (b/2), using FMA

Algorithm: o(a x 0.5+ (b @ 2))

There is one rounding less thanks to the FMA operator.

Counter-example of correct rounding:

a=2001 x 10'°, b = 2001 x 108

a [2001]

b 2001
b/2 10005
bo?2 1000
ax0.b 10005
ax05+(bo?2) 10105
o(ax 0.5+ (b0 ?2)) 1010
(a+ b)/2 1010505
o((a+ b)/2) 1011

A Formally-Proved Algorithm to Compute the Correct Average of Decimal Floating-Point Numbers

Outline

© Radix-10 Average Algorithm

A Formally-Proved Algorithm to Compute the Correct Average of Decimal Floating-Point Numbers

TwoSum (x, y) computes (with 6 flops) the sum of x and y, and
the rounding error. It works in radix-10 and returns the rounding
and the error of an FP addition (always representable exactly by an
FP number).

(a, b) = TwoSum (x,y) =

ulp (a)

x+y=a+b A |b< >

A Formally-Proved Algorithm to Compute the Correct Average of Decimal Floating-Point Numbers

Sketch of the Proof with Unbounded Exponent Range

o s, W=

Function AveragelO(x, y)
(a, b) = TwoSum (x, y)
if o(ax0.5—(a®2)) =0 then
‘ return o(b x 0.5+ (a ©2))
else
L return o(a x 0.5 + b)

A Formally-Proved Algorithm to Compute the Correct Average of Decimal Floating-Point Numbers

Sketch of the Proof with Unbounded Exponent Range

o s, W=

Function AveragelO(x, y)
(a, b) = TwoSum (x, y)
if o(ax0.5—(a®2)) =0 then
‘ return o(b x 0.5+ (a ©2))
else
L return o(a x 0.5 + b)

@ The if checks whether a/2 is a FP number.

A Formally-Proved Algorithm to Compute the Correct Average of Decimal Floating-Point Numbers

Sketch of the Proof with Unbounded Exponent Range

o s, W=

Function AveragelO(x, y)
(a, b) = TwoSum (x, y)
if o(ax0.5—(a®2)) =0 then
‘ return o(b x 0.5+ (a ©2))
else
L return o(a x 0.5 + b)

@ The if checks whether a/2 is a FP number.

o If a/2 € F, we have a@ 2 = a/2. So the computations of line
4 are exact until the last rounding.

A Formally-Proved Algorithm to Compute the Correct Average of Decimal Floating-Point Numbers

Sketch of the Proof with Unbounded Exponent Range

o s, W=

Function AveragelO(x, y)
(a, b) = TwoSum (x, y)
if o(ax0.5—(a®2)) =0 then
‘ return o(b x 0.5+ (a ©2))
else
L return o(a x 0.5 + b)

@ The if checks whether a/2 is a FP number.

o If a/2 € F, we have a@ 2 = a/2. So the computations of line
4 are exact until the last rounding.

@ In the other case, a/2 is a midpoint and we rely on the
following lemma.

A Formally-Proved Algorithm to Compute the Correct Average of Decimal Floating-Point Numbers

Sketch of the Proof with Unbounded Exponent Range

Function AveragelO(x, y)
(a, b) = TwoSum (x, y)
if o(ax0.5—(a®2)) =0 then
‘ return o(b x 0.5+ (a ©2))
else
L return o(a x 0.5 + b)

o s, W=

@ The if checks whether a/2 is a FP number.

o If a/2 € F, we have a@ 2 = a/2. So the computations of line
4 are exact until the last rounding.

@ In the other case, a/2 is a midpoint and we rely on the
following lemma.

@ In the other case, b is not divided by 2 contrary to intuition.

A Formally-Proved Algorithm to Compute the Correct Average of Decimal Floating-Point Numbers

Technical Lemma

Lemma (Midpoint)

Letm:g+”|pT(g) withgeIE‘,m>Oand0<e§”|p2(g).
e moe=g
e m® e =succ(g)

g g=moe ;m succ(g)=moe
_________ | , | , |
m-—e m+e

A Formally-Proved Algorithm to Compute the Correct Average of Decimal Floating-Point Numbers 17 / 24

Outline

0 Formal Proof with Coq and Flocq

A Formally-Proved Algorithm to Compute the Correct Average of Decimal Floating-Point Numbers

Formal Proof Software

@ The Coq proof assistant

@ Floating-Point numbers library: Flocq (Boldo-Melquiond),
which provides an FP numbers formalization and many results.

@ There are several FP formats in Flocq, defined as subsets of
reals numbers R. All formats depend on a radix (/).

e FLX: unbounded exponent range.
o FLT: exponent has a minimal value (gradual underflow).

Format | Parameters Constraints
FLX B.p [m] < 5P
FLT /Bap7 €min |m’ < Bpr e Z €min

A real number is a FP number if equal to m x (3¢

A Formally-Proved Algorithm to Compute the Correct Average of Decimal Floating-Point Numbers

Definition of the Algorithm

We define our algorithm in Coq:

Definition averagel0 (x y : R) :=
if (Req_bool (round (x/2 - round (x/2))) 0)
then round (y/2 + round (x/2))
else round (x/2 + y).

We assume that this function is called with the output of TwoSum.

A Formally-Proved Algorithm to Compute the Correct Average of Decimal Floating-Point Numbers

This is the main theorem, stating the correctness of the algorithm:

Theorem averagelO_correct
forall a b, format a — format b —
Rabs b <= (ulp a) / 2 —
averagel0 a b = round ((a + b) / 2).

A Formally-Proved Algorithm to Compute the Correct Average of Decimal Floating-Point Numbers

This is the main theorem, stating the correctness of the algorithm:

Theorem averagelO_correct
forall a b, format a — format b —
Rabs b <= (ulp a) / 2 —
averagel0 a b = round ((a + b) / 2).

@ format x means that x € F. We define it depending on the
chosen format.

@ round x is o(x). It also depends on the format, and is a
rounding to nearest, with an arbitrary tie.

e ulp x is ulp(x).

A Formally-Proved Algorithm to Compute the Correct Average of Decimal Floating-Point Numbers

Proofs and Generalizations

Function AveragelO(x, y)
(a, b) = TwoSum (x,y)
if o(ax0.5—(a®»2))=0 then
| return o(bx 0.5+ (a®2))
else
L return o(a x 0.5 + b)

(= NS N~ S R S I

e We first prove it with an unbounded exponent range (FLX).

@ We then prove that it holds with gradual underflow (FLT).

o The test o(a x 0.5 — (a@2)) = 0 is not equivalent to a/2 € F.
o In the else case, one must compute o(a x 0.5 + b), instead of
o(ax 0.5+ b®2) (both would work in FLX).

@ We generalize it for any even radix.

A Formally-Proved Algorithm to Compute the Correct Average of Decimal Floating-Point Numbers

Outline

© Conclusion

A Formally-Proved Algorithm to Compute the Correct Average of Decimal Floating-Point Numbers

Conclusion

@ Summary:

o The algorithm computes the correct rounding (to nearest) of
the average of two FP numbers: o ((a+ b)/2).

It holds with gradual underflow.

It holds with any tie-breaking rule.

It is formally-proved.

It has been generalized to any even radix.

@ We have problems with spurious overflows (due to TwoSum).

A Formally-Proved Algorithm to Compute the Correct Average of Decimal Floating-Point Numbers

Conclusion

@ Summary:

o The algorithm computes the correct rounding (to nearest) of
the average of two FP numbers: o ((a+ b)/2).

It holds with gradual underflow.

It holds with any tie-breaking rule.

It is formally-proved.

It has been generalized to any even radix.

@ We have problems with spurious overflows (due to TwoSum).

@ We showed that it may not be straightforward to adapt some
existing algorithms from radix-2 literature to radix-10.

A Formally-Proved Algorithm to Compute the Correct Average of Decimal Floating-Point Numbers

	Introduction
	Radix-2 Average Algorithms
	Unsuccessful Radix-10 Average Algorithm
	Radix-10 Average Algorithm
	Formal Proof with Coq and Flocq
	Conclusion

